# 臺灣博碩士論文加值系統

(3.235.227.117) 您好！臺灣時間：2021/07/28 04:03

:::

### 詳目顯示

:

• 被引用:0
• 點閱:114
• 評分:
• 下載:10
• 書目收藏:0
 本文探討無限域異向性線彈性體，內含一線剛性異質物與一裂紋之互制行為，應用無限域內含一中央線剛性異質物，受一差排作用之基本解，將此問題轉換為一組以未知差排密度函數分佈於裂紋面上之奇異積分方程，利用數值方法求解此積分方程並間接推得裂紋尖端之應力強度因。受均佈拉曳力作用下，文中探討線剛性異質物與裂紋尺寸、線剛性異質物與裂紋尖端距離、裂紋傾角以及異向性材料之異向程度等對應力強度因子之影響。
 The interacting problem of a rigid line and a crack embedded in the anisotropic elastic medium of infinite extent under uniform loading at infinity is investigated. Based on the Stroh formalism and with the Green’s function for a point dislocation, a system of singular integral equations for the unknown dislocation densities defined on the crack faces is derived. Numerical method is then used to calculate the solutions to the system of equations. Results are presented graphically for the stress intensity factors for orthotropic and monoclinic materials for the medium subjected to different uniform loading at infinity. The effects of the distance between a rigid line and the crack on stress intensity factors are discussed in some detail.
 目錄摘要.................................................................................................................I英文摘要.....................................................................................................II誌謝.............................................................................................................III目錄.............................................................................................................IV表目錄........................................................................................................VI圖目錄......................................................................................................VII第一章 緒論...............................................................................................1 1.1 前言.............................................................................................1 1.2 文獻回顧.....................................................................................2 1.3 研究方法與本文綱要.................................................................3第二章 理論基礎....................................................................................6 2.1 位移函數與應力函數.................................................................6 2.2 S、H和L矩陣............................................................................10第三章 問題推演..................................................................................12 3.1 問題敘述...................................................................................13 3.2 公式推演...................................................................................14 3.3 應力強度因子...........................................................................20第四章 數值方法..................................................................................23 4.1奇異積分方程組之正規化.........................................................24 4.2正規奇異積分方程組之離散化.................................................24第五章 數值結果與探討...................................................................28 5.1平行裂紋之探討.........................................................................29 5.2傾斜裂紋之探討.........................................................................51第六章 結論與展望.............................................................................66參考文獻....................................................................................................68附錄A............................................................................................................70附錄B............................................................................................................75 B.1 平行裂紋之探討(剪力條件)...................................................75 B.2 傾斜裂紋之探討(剪力條件)...................................................95自述
 Ballarini, R., Shah, S. P. and Keer, L. M., “Failure characteristics of short anchor bolts embedded in a brittle material,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 404, No. 1826, 35-54 (1986).Ballarini, R., “An integral equation approach for rigid line inhomogeneity problems,” International Journal of Fracture 33, R23-R26 (1987).Ballarini, R., Keer, L. M. and Shah, S. P., “An analytical model for the pull-out of rigid anchors,” International Journal of Fracture 33, 75-94 (1987).Ballarini, R., “A rigid line inclusion at a biomaterial interface,” Engineering Fracture Mechanics, Vol. 37, No. 1, 1-5 (1990).Ballarini, R., “A certain mixed boundary value problem for a biomaterial interface,” International Journal of Solids and Structures, Vol. 32, No 3/4, 279-289 (1995).Eshelby, J. D., Read, W. T. and Shockley, W., “Anisotropic elasticity with applications to dislocation theory,” Acta Metallurgica, Vol. 1, 251-259 (1953).Erdogan, F. and Gupta, G. D., “On the numerical solution of singular integral equations,” Quarterly of Applied Mathematics, Vol. 30, 525-534 (1972).Gerasoulis, A. and Srivastav, R. P., “A method fo the numerical solution of singular integral equations with a principal value integral,” International Journal of Engineering Science, Vol. 19, 1293-1298 (1981).Gerasoulis, A., “The use of piecewise quadratic polynomials for the solution for singular integral equations of cauchy type,” Computational Mathematics with Applications, Vol. 8, No. 1, 15-22 (1982).Isida, M., “Elastic analysis of cracks and stress intensity factors (in Japanese)” Fracture Mechanics and Strength of Materials 2, Baifuukan, 181-184 (1976).Lekhnitskii, S. G., Theory of Elasticity of an anisotropic Elastic Body. Holden-Day, San Francisco, California. (1963).Li, Qianqian, “Line inclusions in anisotropic elastic solids,” Ph.D. Thesis, University of Illinois at Chicago. (1988).Li, Qianqian, and Ting T. C. T., “Line inclusions in anisotropic elastic solids,” Transactions of the ASME, Journal of Applied Mechanics, Vol. 56, 556-563 (1989).Liou, J. Y. and Sung, J. C., “On the equivalence of the Lekhnitskii and Stroh formalisms,” European Journal of Mechanics, (revised) (2008)Muskhelishvili, N. I., Singular Integral Equations, J. R. Radok, trans., Noordhoff, Groningen, The Netherlands. (1945).Stroh, A. N., “Dislocations and cracks in anisotropic elasticity,” Phil. Mag. Vol. 3, 625-646 (1958).Theocaris, A. and Ioakimidis, N. I., “Numerical integration methods for the solution of singular integral equations,” Quarterly of Applied Mathematics, Vol. 35, 173-182 (1977).Ting, T. C. T., Anisotropic Elasticity: Theory and Application. Oxford University Press. (1996).彭文彬，〝二維異向性裂紋交互作用之探討〞，碩士論文，國立成功大學土木工程學系，2000。
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 二維異向性裂紋交互作用之探討 2 共線裂紋含內嵌物之散射問題分析 3 雙層異向性材料界面附近裂紋之分析 4 含有限長裂紋之雙異質壓電複合層板動力破壞分析 5 複合楔形體之反平面剪力變形分析 6 半雙曲線近似對含裂紋之壓電材料動態特性影響之研究 7 含裂紋之壓電材料受反平面動力點載荷之全場解析 8 含嵌入式裂縫之功能梯度壓電材料面外問題破壞分析 9 裂紋填充物對應力強度因子之影響 10 含橢圓式裂紋之圓軸應力強度因子分析與應用 11 壓電材料裂紋強度因子計算 12 含有裂紋塗層之半平面彈性體之反平面問題解析 13 圓形異質與裂紋熱彈性交互影響之研究 14 完全結合之雙層異向性材料裂紋之分析 15 焦線法求應力強度因子的適用分析

 無相關期刊

 1 異向性材料主裂紋與微裂紋共線之互制行為 2 二維垂直振動槽顆粒物質分層效應與顆粒密度、振動振幅與振動頻率之關係 3 實心與中空圓桿在扭力作用下之端點效應 4 非線性彈簧阻尼系統之振動消能分析 5 異向性界面裂紋分叉行為之研究 6 孔洞對裂紋漸近場高階參數影響之研究 7 含彈性薄層之半平面異向性裂紋體之研究 8 複合板螺栓接合應力奇異性之分析 9 等速移動荷重引致地表反應之數值初步計算 10 含剛性絕緣線異質物之壓電裂紋體解析 11 明渠緩變速流數值模擬 12 海嘯沿溪溯升之研究 13 無元素葛勒金法在二維彈力之應用 14 複合材料薄壁構件受扭力及軸力載重之非線性分析 15 轉爐石對多孔隙瀝青混凝土之影響

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室