跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 05:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王耀寬
研究生(外文):Yao-kuan Wang
論文名稱:轉爐石對多孔隙瀝青混凝土之影響
論文名稱(外文):Effect of Basic Oxygen Furnace Slag on Porous Asphalt Concrete
指導教授:陳建旭陳建旭引用關係
指導教授(外文):Jian-shiuh Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:169
中文關鍵詞:瀝青薄膜厚度電子顯微鏡安定化轉爐石多孔隙瀝青混凝土
外文關鍵詞:Asphalt Film ThicknessSEMAgingBasic Oxygen Furnace slagPorous Asphalt Concrete
相關次數:
  • 被引用被引用:27
  • 點閱點閱:606
  • 評分評分:
  • 下載下載:123
  • 收藏至我的研究室書目清單書目收藏:1
科技的進步將提升人類的生活品質,對於交通運輸系統、服務品質及行車安全的需求逐漸提高,而台灣地區高溫溼熱且雨季綿長,鋪築多孔隙瀝青混凝土(Porous Asphalt Concrete,PAC)可降低行車打滑與水花飛濺的現象,提升行車安全性,但PAC必須仰賴良好的粒料型態,才能充分地發揮粒料間互鎖 (Interlocking)之機制以承載交通荷重,然而為避免天然資源匱乏,資源的有效利用是現今國際上的趨勢,轉爐石(Basic Oxygen Furnace Slag,BOF)為煉鋼過程中的副產品,其粒形為多角塊狀、硬度大且抗壓性高,符合PAC對粒料的要求,惟轉爐石有回脹特性,必須經過安定化程序降低轉爐石活性,使其可作為安全的工程材料使用,達到廢棄物減量化、資源化的目標。
本研究採用普通安定化,將轉爐石曝曬於空氣中,取不同安定化時間(0~3個月)之轉爐石作為研究材料,進行各項相關物性、化性、安定性及工程性質試驗,並使用電子顯微鏡觀察瀝青薄膜厚度,來分析轉爐石添加於多孔隙瀝青混凝土所造成的影響。
研究結果顯示,轉爐石之比重、健性、單位重及孔隙率不受安定化的影響而有改變,但吸水率、洛杉磯磨耗率會隨安定化時間的增加而下降,而細轉爐石之未夯壓孔隙率以及含砂當量則是隨安定化時間增加而上升。由能量散佈分析儀(Energy Dispersive Spectrometer,EDS)與 X光繞射儀(X-ray Diffraction,XRD)分析結果得知鈣與碳含量在安定化前後有顯著的變化,氫離子濃度則是隨安定化時間增加而有下降趨勢,而轉爐石的回脹率在經過60天安定化程序後並無顯著下降,但最終回脹量的下降程度較為顯著,表示轉爐石經安定化程序確實能降低轉爐石活性物質含量,並趨於穩定。
由工程性質試驗結果顯示,安定化對工程性質的影響相當顯著,經安定化2個月後,添加轉爐石之試體的穩定值、Cantabro磨耗率、間接張力皆較純天然粒料高,且粗轉爐石添加量越多,回彈模數與TSR越佳,而細轉爐石除在TSR值略高於規範值外,其餘工程性質的表現都很優良,而電子顯微鏡之微觀分析結果顯示,添加轉爐石後瀝青膠漿內部的細微顆粒變多,且包裹這些細微顆粒之瀝青薄膜較薄,此現象在添加細轉爐石後會非常明顯,因此細轉爐石的瀝青膠漿可提供混凝土較高的勁度,但是抗水侵害能力會下降。
The development of technologies will promote people high quality living style. The requirement for the quality of traffic system, traffic service, and the vehicle safety are increasing. Because the weather in Taiwan was rainy, so Porous asphalt concrete(PAC)allows surface runoff to within it, thereby avoiding the wet-weather reduction of skid resistance, and splash/spray caused by the presence of a layer of water on the pavement surface. In PAC the role of the particle skeleton should be considered. However, due to lack of good-quality aggregate source, the last statement holds us to save natural resources by using industrial byproducts, as well as in other countries. Basic Oxygen Furnace(BOF)slag is a residual product of steel-making process, which is hard and durable with good angular shapes and high resistance to traffic abrasion. Because fresh BOF will hydrate rapidly and cause large-volume expansion, it should be during some aging time to alleviate the expansion potential.
In this research, aging of BOF slag, for an estimated period of 0~3 months, were investigated. This paper mainly concerned the change of surface chemistry and physical properties of different period aging of BOF slag. Experiments were also performed to determine volume expansive of BOF slag and performance of BOF slag PAC. The asphalt binder film thickness of asphalt paving mixture were studied using scanning electron microscopy(SEM).
The results indicate that water absorption, L.A. abrasion and pH range decreased with aging time increased, whereas uncompacted void content and sand equivalent of fine BOF slag decreased, and other physical properties, specific gravity, soundness and the unit weight and voids in aggregate would not change with aging time increased. Base on the result of energy dispersive spectrometer(EDS)and x-ray diffraction analysis, the changes of element calcium and carbon were significant with increasing aging time. After 2 months, the variations of the ratio of volume expansive were not significant.
Furthermore, results also indicate that, the value of Marshall stability, indirect strength, resilient modulus, and the ratio of Contabro abrasion, retained strength were better than control, after 2 months aging time. Base on the result of SEM observed, micro-particle concentration of mastics increases, due to add BOF slag in asphalt concrete, especially utilization of fine BOF slag as aggregate for PAC is quite significant. Thus the mixture of PAC which added fine BOF slag could provide higher strength and lower retained strength.
摘要 I
目錄 VIII
表目錄 XIV
圖目錄 XVII
第一章 緒論 1-1
1.1 前言 1-1
1.2 研究動機 1-3
1.3 研究目的 1-4
1.4 研究範圍 1-4
第二章 文獻回顧 2-1
2.1 多孔隙瀝青混凝土 2-1
2.1.1 多孔隙瀝青混凝土的應用 2-2
2.2 多孔隙瀝青混凝土配合設計 2-8
2.2.1 選定目標孔隙率 2-10
2.2.2 決定粒料配比 2-10
2.2.2.1 粗、細粒料 2-10
2.2.2.2 級配 2-11
2.2.3 級配的選定 2-11
2.2.4 設定最佳瀝青含量 2-14
2.2.5 配合設計試驗值檢驗 2-15
2.3 轉爐石之特性 2-16
2.3.1 轉爐石生產流程 2-16
2.3.2 轉爐石物理及化學特性 2-18
2.4 轉爐石之資源化利用 2-24
2.4.1 轉爐石利用的困難 2-24
2.4.2 轉爐石粒徑大小 2-26
2.4.3 爐石安定化 2-26
2.5 國內外轉爐石應用於瀝青混凝土之現況 2-29
2.5.1 國外轉爐石應用之現況 2-29
2.5.2 國內轉爐石應用之現況 2-31
2.6 瀝青薄膜厚度 2-32
第三章 試驗材料與研究方法 3-1
3.1 試驗架構與流程 3-1
3.2 試驗材料 3-3
3.3 粒料物性試驗 3-3
3.3.1 掃瞄式電子顯微鏡 3-4
3.4 粒料化性試驗 3-5
3.4.1 能量散射光譜儀(EDS) 3-5
3.4.2 X光繞射分析(XRD) 3-6
3.4.3 毒性特性溶出程序 3-7
3.4.4 氫離子濃度試驗(pH值) 3-9
3.5 粒料安定性分析 3-9
3.5.1 浸水回脹試驗 3-9
3.6 多孔隙瀝青混凝土配合設計 3-12
3.6.1 級配之修正方式 3-12
3.6.2 確認目標孔隙率 3-13
3.6.3 孔隙率試驗 3-13
3.6.4 瀝青混合料垂流試驗 3-15
3.6.5 Cantabro磨耗試驗 3-16
3.6.6 室內透水試驗 3-17
3.6.7 馬歇爾試體的製作 3-19
3.6.8 計算平均瀝青薄膜厚度 3-20
3.7 瀝青混凝土工程性質試驗 3-20
3.7.1 穩定值與流度值試驗 3-20
3.7.2 間接張力試驗 3-21
3.7.3 浸水殘餘強度試驗 3-22
3.7.4 回彈模數試驗 3-23
第四章 試驗結果與討論 4-1
4.1 試驗材料基本特性 4-1
4.1.1 黏結料物性試驗 4-1
4.1.2 粒料物性試驗 4-2
4.1.2.1 比重及吸水率 4-4
4.1.2.2 洛杉磯磨耗率 4-7
4.1.2.3 健性 4-8
4.1.2.4 含砂當量 4-9
4.1.2.5 單位重及孔隙率 4-10
4.1.2.6 未夯壓孔隙率 4-13
4.1.2.7 比表面積 4-14
4.1.2.8 掃瞄式電子顯微鏡(SEM) 4-15
4.1.2.9 粒料特性 4-18
4.1.3 粒料化性試驗 4-22
4.1.3.1 能量散射光譜儀(EDS) 4-22
4.1.3.2 X光繞射分析(XRD) 4-24
4.1.3.3 氫離子濃度試驗(pH值) 4-28
4.1.3.4 毒性特性溶出程序 4-30
4.1.4 粒料安定性試驗 4-30
4.1.4.1 浸水回脹試驗 4-30
4.2 多孔隙瀝青混凝土配合設計 4-33
4.2.1 選定目標孔隙率 4-33
4.2.2 嘗試級配與瀝青含量 4-33
4.2.3 體積比修正 4-34
4.2.3.1 孔隙率 4-38
4.2.3.2 連續孔隙率 4-41
4.2.4 配合設計之結果 4-43
4.3 瀝青薄膜厚度分析 4-45
4.3.1 平均瀝青薄膜厚度 4-45
4.3.2 微觀分析 4-46
4.3.2.1 試驗材料 4-47
4.3.2.2 電子顯微鏡影像分析 4-49
4.4 工程性質試驗 4-61
4.4.1 室內透水試驗 4-61
4.4.2 馬歇爾穩定值 4-62
4.4.3 Cantabro磨耗試驗值 4-64
4.4.4 間接張力 4-67
4.4.5 浸水殘餘強度試驗(TSR) 4-69
4.4.6 回彈模數試驗 4-72
第五章 結論與建議 5-1
5.1 結論 5-1
5.2 建議 5-5
參考文獻 參-1
附錄 附-1
工程會施工綱要規範 (2003) 「排水性改質瀝青混凝土鋪面」,台灣。
王金鐘 (2005) 「轉爐石作為基底層材料及其工程特性之研究」,台南。
中華鋪面工程學會 (2004a) 「近代新瀝青混凝土路面材料及產製鋪設技術」,桃園。
中華鋪面工程學會 (2004b) 「第六屆鋪面材料再生學術研討會論文集」,桃園。
中華鋪面工程學會 (2007) 「轉爐石應用於瀝青混凝土鋪面研討會專輯」,桃園。
中鋼集團 (2007) 「轉爐石利用推廣手冊」,高雄。
中國國家標準 (2001) 「CNS14602 道路用鋼爐碴」,經濟部標準檢驗局。
日本道路協會 (1999) 「排水性鋪裝技術指針(案)」,東京。
田永銘,陽世和,彭柏翰,王淑慧 (1999) 「台灣的鹼-骨材反應問題與對策」,土木水利,第26卷,第1期,第78-94頁。
林勝彥 (2006) 「轉爐石回脹行為及其顯為結構特性」,高雄。
侯清元 (2007) 「評估熟化對焚化爐底碴做為瀝青混凝土添加料之影響」,台南。
袁家偉 (2007) 「使用轉爐石提升耐久性瀝青混凝土成效之研究」,桃園。
陳彥翔 (2007) 「多孔性瀝青混凝土鋪面堵塞之定量分析與實驗室模擬」,台南。
國立中央大學土木工程研究所 (2006) 「高速公路排水路面試鋪工程成效評估研究」,桃園。
國立中央大學木工程研究所 (1999)「轉爐石取代天然粗細粒料應用於瀝青混凝土之成效評估」,桃園。
黃兆龍 (1986) 高爐熟料及飛灰材料在混凝土工程之應用,台灣營建,台北。
黃正忻 (2002) 「轉爐石級配料應用於鋪面工程基底層材料施工特性與品質控制技術之研究」,技術學刊,第17卷,第2期,第161-170頁。
楊貫一 (1992) 「爐石資源化-中鋼公司爐石應用的過去與未來」,技術與訓練,第17卷,第1期,第31-46頁。
劉國忠 (2001) 「煉鋼爐渣之資源化技術與未來推展方向」,環保月刊,第四期,十月號,第117-118頁。
蔡攀鰲 (1984) 瀝青混凝土,三民書局,台北。

Anderson, D.A., Bahia, H.U., and Donqre, R. (1992). “Rheological Properties of Mineral Filler-Asphalt Mastics and Its Importance to Pavement Performance,” ASTM Special Technical Publication, n 1147, pp. 131-153.
Bagampadde, U., AI-Abdul Wahhab, H. I., and Aiban, S. A. (1999). “Optimization of Steel Slag Aggregate for Bituminous Mixes in Saudi Arabia,” Journal of Materials in Civil Engineering, Vol. 11, n 1, pp. 30-35.
Barrett, M.E., Shaw, C.B. (2007). “Stormwater Quality Benefits of a Porous Asphalt Overlay,” Transportation Research Board Annual Meeting, Washington, D.C. (on CD-ROM).
Burak, S., Emine, A. (2007). “Effect of Asphalt Thickness on the Moisture Sensitivity Characteristics of Hot-Mix Asphalt,” Building and Environment, Vol. 42, pp. 3621-3628.
Chen, J.H., and Peng, C.H. (1998). “Analyses of Tensile Failure Properties of Asphalt-Mineral Filler Mastics,” Journal of Materials in Civil Engineering, Vol. 10, pp. 256-262.
Coomarasamy, A., and Walzak, T. L. (1995). “Effects of Moisture on Surface Chemistry of Steel Slags and Steel Slag-Asphalt Paving Mixes,” Transportation Research Record, n 1492, pp. 85-95.

Crawford, C. B., and Burn, K. N. (1969). “Building Damage from Expansive Steel Slag Backfill,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 95, pp. 1325-1334.
Elseifi, M.A., AI-Qadi, I.L., Yang, S.H., and Carprnter, S. (2008), “Validity of Asphalt Binder Film Thicken Concept in Hot-Mix Asphalt,” Transportation Research Board Annual Meeting, Washington, D.C. (on CD-ROM).
Fwa, T. F., Tan, S. A. and Guwe, Y. K. (1999). “Laboratory Evaluation of Clogging Potential of Porous Asphalt Mixtures,” Transportation Research Record, n 1681, pp. 43-49.
Hansen, J. (1982). “The Delicate Architecture of Cement,” Science, pp. 49-55.
Hinrichsen, J.A., and Heggen, J. (1996). “Minimum Voids in Mineral Aggregate in Hot-Mix Asphalt Based on Gradation and Volumetric Properties,” Transportation Research Record, n 1545, pp. 75-79.
Hossam, F. H., Salim AI-Oraimi, and Ramzi T. (2005). “Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers and Styrene Butadiene Rubber Polymer,” Journal of Materials in Civil Engineering, Vol. 17, pp. 416-422.

Kandhal, P. S., and Hoffman, G. L. (1997). “Evaluation of Steel Slag Fine Aggregate in Hot-Mix Asphalt Mixtures,” Transportation Research Record, n 1583, pp. 28-36.
Kandhal, P. S., and Chakraborty, S. (1996). “Effect of Asphalt Binder Film Thickness on Short and Long Term Aging of Asphalt Paving Mixture,” Transportation Research Record, n 1535, pp. 83-90.
Kandhal, P. S., and Foo, K.Y., and Mallick, R. B. (1998). “Critical Review of Voids in Mineral Aggregate Requirements in Superpave,” Transportation Research Record, n 1609, pp. 21-27.
Kanitpong, K., and Bahia, H.U. (2003). “Role of Adhesion and Thin Film Tackiness of Asphalt Binders in Moisture Damage of HMA,” Journal of Association of Asphalt Paving Technologists, Vol. 72, pp. 502-528.
Koide (1993). “Research on using BOF slag for road construction,” Nakayama Steel Works Technical Report, Osaka, Japan.
Kose, S., Guler, M., Bahia, H.U., and Masad, E. (2000). “Distribution of Strains Within Hot-Mix Asphalt Binders Applying Imaging and Finite-Element Techniques,” Transportation Research Record, n 1728, pp. 21-27.

Lekarp, F., Isacsson, U., and Dawson, A. (2000). “State of the Art. I:Resilient Response of Unbound Aggregates,” Journal of Transportation Engineering January/February, pp. 66-75.
Mo, L.T., Huurman, M., Wu, S.P., and Molenaar, A.A.A. (2007). “Investigation into Stress States in Porous Asphalt Concrete on the Basis of FE-modelling,” Finite Elements in Analysis and Design, Vol. 43, pp. 333-343.
Mohammad, L. N., Negulescu, l. l., Wu, Z., Daranga, C., Daly, W. H., and Abadie, C. (2003). “Investigation of The Use of Recycled Polymer Modified Asphalt Binder in Asphalt Concrete Pavements,” Journal of Association of Asphalt Paving Technologists, Vol. 72, pp. 551-594.
Motz, H., and Geiseler, J. (2001). “Products of Steel Slags as an Opportunity to Save Natutal Resources,” Waste Management, Vol. 21, pp. 285-293.
Noureldin, A. S., and McDaniel, R. S. (1990). “Evaluation of Surface Mixtures of Steel Slag and Asphalt,” Transportation Research Record, n 1269, pp. 133-147.
Nukunya, B., Roque, R., Tia, M., and Birgisson, B. (2001). “Evaluation of VMA and Other Volumetric Properties as Criteria for the Design and Acceptance of Superpave Mixtures,” Journal of Association of Asphalt Paving Technologists, Vol. 70, pp. 38-69.
Ohio Department of Transportation (2002), “Supplemental Specification 874 Ultrathin Bonded Asphalt Concrete,” Ohio.
Radovskiy, B. (2003). “Analytical Formulas for Film Thickness in Compacted Asphalt Mixture,” Transportation Research Record, n 1829, pp. 26-32.
Roberts, F. L., Kandhal, P. S., Ray Brown, E., Lee, D. Y., and Kennedy, T. W. (1996). Hot Mix Asphalt Materials, Mixture Design, and Construction, 2nd edition, Maryland.
Rohde, L., Nunez, W.P., and Ceratti, J.A.P. (2003). “Electric Arc Furnace Steel Slag:Base Material for Low-Volume Roads,” Transportation Research Record, n 1819, pp. 201-207.
Sengoz, B., Agar, E. (2007). “Effect of Asphalt Film Thickness on the Moisture Sensitivity Characteristics of Hot-Mix Asphalt.” Building and Environment, Vol. 42, pp. 3621-3628.
Tarrer, A.R., and Wagh, V. P. (1990). “Innovative Test to Predict the Strength and Type of Aggregate Bonds,”Symposium on Chemistry and Characterization of Asphalts, American Chemical Society, Washington, D.C., pp. 361-369.
Wu, S., Xue, Y., Ye, Q., and Chen, Y. (2007). “Utilization of Steel Slag as Aggregates for Stone Mastic Asphalt (SMA) Mixtures,” Building and Environment, Vol. 42, pp. 2580-2585.
Xue, Y., Wu, S. (2006). “Experimental Investigation of Basic Oxygen Furnace Slag Used as Aggregate in Asphalt Mixture,” Journal of Hazardous Materials, B138, pp. 261-268.
Yan, J., Luis, M., and Ivars, N. (2000). “The Long-Term Acid Neutralizing Capacity of Steel Slag,” Waste Management, Vol. 20, pp. 217-223.
Yoon, H. H., Tarrer, A. R. (1988). “Effect of Aggregate Properties on Stripping,” Transportation Research Record, n 1171, pp. 37-43.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top