
[1]S. Shasida and T. Kenjo, An Introduction to Ultrasonic Motors. Oxford, U.K.: Oxford Science, 1993. [2]S. Ueha and Y. Tomikawa, Ultrasonic Motors: Theory and Applications. Oxford Science Publication. Clarendon Press, 1993. [3]Y. Nakaqawa, A. Saito, and T. Maeno, “Nonlinear dynamic analysis of traveling wavetype ultrasonic motors,” IEEE Trans. on Ultrason., Ferroelectrics, and Freq. Control, Vol. 55, No. 3, pp. 717725, 2008. [4]Y. Chen, Q. L. Liu, and T. Y. Zhou, “A traveling wave ultrasonic motor of high torque,” Ultrasonics, Vol. 44, No, 1, pp. e581e584, 2006. [5]J. Qu, F. Sun, and C. Zhao, “Performance evaluation of traveling wave ultrasonic motor based on a model with viscoelastic friction layer on stator,” Ultrasonics, Vol. 45, No. 14, pp. 2231, 2006. [6]S. Pirrotta, R. Sinatra, and A. Meschini, “A novel simulation model for ring type ultrasonic motor,” Meccanica, Vol. 42, No. 2, pp. 127139, 2007. [7]L. J. Lim, J. S. Lee, and S. H. Kang, “The design and characteristics of ring type linear ultrasonic motor for XY stage,” J. of Electroceramics, Vol. 17, No. 24, pp. 557560, 2006. [8]W. S. Chen and S. J. Shi, “A bidirectional standing wave ultrasonic linear motor based on langevin bending transducer,” Ferroelectrics, Vol. 350, No. 1, pp. 102110, 2007. [9]N. K. C. Ng, T. Li, J. Ma, and F. Y. C. Boey, “Behavior of piezoelectric ultrasonic tubular transducers in relation to tube geometry,” J. of Electroceramics, Vol. 16, No. 4, pp. 307311, 2006. [10]Y. Yi, W. Seemann, R. Gausmann, and J. Zhong, “Development and analysis of a longitudinal and torsional type ultrasonic motor with two stators,” Ultrsonics, Vol. 43, No. 8, pp. 629634, 2005. [11]T. G. Park, D. S. Jeong, M. H. Kim, and T. K. Song, “A study on the rotarytype ultrasonic motor using a longitudinaltorsional vibration converter,” Materials Chemistry and Physics, Vol. 98, No. 1, pp. 14, 2006. [12]L. Zhirong, “Linear ultrasonic motor with 2DOF using longitudinal and bending vibration modes,” Trans. on Nanjing Univer. of Aeronautics & Astronautics, Vol. 24, No. 3, pp. 239244, 2007. [13]R. C. Ibrahim, “A novel linear piezoelectric motor with complex vibration modes,” Ferroelectrics, Vol. 338, No. 5, pp. 6572, 2006. [14]T. Hemsel, M. Mracek, J. Twiefel, and P. Vasiljev, “Piezoelectric linear motor concepts based on coupling of longitudinal vibrations,” Ultrasonics, Vol. 44, No. 1, pp. e591e596, 2006. [15]H. F. Li and C. S. Zhao, “An ultrasonic motor driver using a resonant booster,” J. of Electrical Engineering, Vol. 58, No. 2, pp. 109113, 2007. [16]H. Mojallali, R. Amini, R. Amini, R. I. Zamanabadi, and A. A. Jalali, “Systematic experimental based modeling of a rotary piezoelectric ultrasonic motor,” ISA Transaction, Vol. 46, No. 1, pp. 3140, 2007. [17]P. A. Juang and D. W. Gu, “Analysis, measurement and control of a new disctype ultrasonic motor system,” Mechatronics, Vol. 16, No. 1, pp. 112, 2006. [18]J. Guo, S. Gong, H. Guo, X. Liu, and K. Ji, “Force transfer model and characteristics of hybrid transducer type ultrasonic motors,” IEEE Trans. on Ultrason., Ferroelect., Fnq. Control, Vol. 51, No. 4, pp. 387395, 2004. [19]M. Zhu, “Contact analysis and mathematical modeling of traveling wave ultrasonic motors,” IEEE Trans. on Ultrason., Ferroelect., Fnq. Control, Vol. 51, No. 6, pp. 668679, 2004. [20]S. P. Timoshenko and S. Woinowski, Theory of Plates and Shell. London: McGraw Hill, Inc., 1959. [21]Y. Ting, J. S. Huang, F. K. Chuang, and C. C. Li “Dynamic analysis and optimal design of a piezoelectric motor,” IEEE Trans. on Ultrason., Ferroelect., Fnq. Control, Vol. 50, No. 6, pp. 601613, 2003. [22]J. Maas and H. Grotstollen, “Avenged model of inverterfed ultrasonic motors,” in Proc. IEEE conf. on Power Elect. Specialists Conf. PESC '97, Vol. 1, pp. 740746, 1997. [23]J. Maas, S. Thomas, and F. Norbert, “Modelbased control for ultrasonic motors,”' IEEE/ASME Trans. on Mechatronics, Vol. 5, No. 2, pp. 165180, 2000 [24]Y. F. Peng and C. M. Lin, “Adaptive recurrent cerebellar model articulation controller for linear ultrasonic motor with optimal learning rates,” Neurocomputing, Vol. 70, No. 1618, pp. 26262637, 2007. [25]F. J. Lin, P. H. Shieh, Y. C. Hung, “An intelligent control for linear ultrasonic motor using interval type2 fuzzy neural network,” IET Proc. –Electric Power Appl., Vol. 2, No. 1, pp. 3241, 2008. [26]E. Balaguer, A. Palomares, E. Sorib, and J. D. M. Guerrero, “Predicting service request in support centers based on nonlinear dynamics, ARMA modeling and neural networks,” Expert Systems with Appl., Vol. 34, No. 1, pp. 665672, 2008. [27]C. Hua and X. Guan, “Output feedback stabilization for timedelay nonlinear interconnected systems using neural networks,” IEEE Trans. on Neural Networks, Vol. 19, No. 4, pp. 673688, 2008. [28]S. P. Moustakidis, G. A. Rovithakis, and J. B. Theocharis, “An adaptive neurofuzzy tracking control for multiinput nonlinear dynamic systems,” Automatica, Vol. 44, No. 5, pp. 14181425, 2008. [29]M. T. Hagan, H. B. Demuth, and O. D. Jesus, “An introduction to the use of neural networks in control systems,” Inter. J. of Robust and Nonlinear Control, Vol. 12, No. 11, pp. 959981, 2002. [30]J. Y. Goulermas, X. J. Zeng, P. Liatsis, and J. F. Ralph, “Generalized regression neural networks with multiplebandwidth sharing and hybrid optimization,” IEEE Trans. on Sys., man, and Cyber., Vol. 37, No. 6, pp. 14341445, 2007. [31]Z. Q. Zhao and D. S. Huang, “A mended hybrid learning algorithm for radial basis function neural networks to improve generalization capability,” Applied Mathematical Modelling, Vol. 31, No.7, pp. 12711281, 2007. [32]T. Senjyu, S. Yokoda, and K. Uezato, “A study on high efficiency drive of ultrasonic motors,” Electric Power Components and Systems, Vol. 29, No. 3, pp. 179189, 2001. [33]J. Xu, E. Grant, A. I. Kingon, J. M. Wilson,and P. D. Franzon, “Drive circuit for a mode conversion rotary ultrasonic motor,” in Proc. IEEE 31st Industrial Electronics Society conf., pp.15881592, 2005. [34]G. Bal and E. Bekiroglu, “Servo speed control of traveling wave ultrasonic motor using digital signal processor,” Sens. Actuators A, Vol. 109, No. 3, pp. 212–219, 2004. [35]C. Y. Yen, F. L. Wen, and M. Ouyang, “Nonlinear positioning compensator of a novel thindisc ultrasonic motor using fuzzy slidingmode control,” Inter. J. of Applied Science and Engineering, Vol. 2, No. 3, pp. 257276, 2004. [36]C. Branas, F. J. Azcondo, and S. Bracho, “Design of LCpCs resonant inverters as a power source for HID lamp ballast applications,” IEEE Trans. on Industry Appl., Vol. 41, No. 6, pp.15841593, 2005. [37]J. S. Chen and I. D. Lin, “Toward the implementation of an ultrasonic motor servo drive using FPGA,” Mechatronics, Vol. 12, No. 4, pp. 511524, 2002. [38]F. J. Lin, R. Y. Duan, and J. C. Yu, “An ultrasonic motor drive using a currentsource parallelresonant inverter with energy feedback,” IEEE Trans. on Power Elect., Vol. 14, No. 1, pp. 3142, 1999. [39]N. Bal and E. Bekiroglu, “A PWM technique for DSP controlled ultrasonic motor drive system,” Electric Power Components and Sys., Vol. 33, No. 1, pp. 2138, 2005. [40]E. Bekiroglu, “Microcontrollerbased full control of ultrasonic motor with frequency and voltage adjusting”, Sensors and Actuators A, Vol. 141, No. 1, pp. 151159, 2008. [41]K. T. Chau, S. W. Chung, and C. C. Chan, “Neurofuzzy speed tracking control of travelingwave ultrasonic motor drives using direct pulsewidth modulation,” IEEE Trans. on Industry Applications, Vol. 39, No. 4, pp. 10611069, 2003. [42]B. Friedl, Advanced Control System Design. Englewood Cliffs, NJ: PrenticeHall, 1996. [43]H. Shinno, H. Yoshioka, and K. Taniguchi, “A newly developed linear motordriven aerostatic XY planar motion table system for nanomachining,” CIRP Annals– Manufacturing Techno., Vol. 56, No. 1, pp. 369372, 2007. [44]F. L. Lewis, C. T. Abdallah, and D. M. Dawson, Control of Robot Manipulators. New York: Macmillan, 1993. [45]F. L. Lewis, J. Campos, and R. Selmic, NeuroFuzzy Control of Industrial Systems with Actuator Nonlinearities. Philadelphia: Society for Industrial and Applied Mathematics, 2002. [46]J. O. Jang, “Deadzone compensation of an XYpositioning table using fuzzy logic,” IEEE Trans. on Ind. Electron., Vol. 52, No. 6, pp. 16961701, 2005. [47]T. Senjyu, T. Kashiwagi, and K. Uezato, “Position control of ultrasonic motors using MRAC and deadzone compensation with fuzzy inference,” IEEE Trans. on Power Electron., Vol. 17, No, 2, pp. 265272, 2002. [48]T. Knohl and H. Unbehauen, “Adaptive position control of electrohydraulic servo systems using ANN,” Mechatronics, Vol. 10, No.1, pp. 127173, 2000. [49]N. Yadaiah, L. Sivakumar, and B. L. Deekshatulu, “Parameter identification via neural networks with fast convergence,” Math. and Comput. in Simulation, Vol. 51, No. 3, pp. 157167, 2000. [50]R. R. Selmic and F. L. Lewis, “Deadzone compensation in motion control systems using neural networks,” IEEE Trans. Autom. Control, Vol. 45, No. 4, pp. 602613, 2000. [51]E. A. H. Caraballo, F. Rivas, and R. M. A. Hernandez, “Evaluation of a generalized regression artificial neural network for extending cadmium’s working calibration range in graphite furnace atomic absorption spectrometry,” Anal Bioanal. Chem., Vol. 381, pp. 788794, 2005. [52]J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice Hall, 1991. [53]C. S. Liu and H. Peng, “Disturbance observer based tracking control,” J. Dyn. Syst., Meas. Contr., Vol. 122, No. 2, pp. 332335, Jun. 2000. [54]A. V. Roup and D. S. Bernstein, “Adaptive stabilization of a class of nonlinear systems with nonparametric uncertainty,” IEEE Trans. on Autom. Control, Vol. 46, No. 11, pp. 18211825, 2001. [55]A. Hace, K. Jezernik, and A. Sabanovic, “SMC with disturbance observer for a linear belt drive,” IEEE Trans. on Industrial Electron., Vol. 54, No. 6, pp. 34023412, 2007. [56]J. R. Ryoo, T. Y. Doh, and M. J. Chung, “Robust disturbance observer for the trackingfollowing control system of an optical disk drive,” Control Eng. Practice, Vol. 12, No. 5, pp. 557585, 2004. [57]W. H. Chen, D. J. Ballance, P. J. Gawthrop, and J. O’Reilly, “A nonlinear disturbance observer for robotic manipulators,” IEEE Trans. on Ind. Electron., Vol. 47, No. 4, pp. 932938, 2000. [58]R. J. Wai and P. C. Chen, “Robust neuralfuzzynetwork control for robot manipulator including actuator dynamics,” IEEE Trans. on Ind. Electron., Vol. 53, No. 4, pp. 13281349, 2006. [59]C. F. Hsu, “Selforganizing adaptive fuzzy neural control for a class of nonlinear system,” IEEE Trans. on Neural Network, Vol. 18, No. 4, pp. 12321241, 2007. [60]T. Ikeda, Fundamentals of Piezoelectricity. Oxford University Press, 1996. [61]A. Arnau and A. A. Vives, Piezoelectric Trasducers and Application. Berlin, New York: Springer, 2004. [62]W. Mason, Physical Acoustics. Harcourt Brace Jovanovich, Academic Press, 1964. [63]M. Aoyagi, Y. Tomikawa, and T. Takano, “Simplified equivalent circuit of an ultrasonic motor and its applications,” Ultrasonics, Vol. 34, No. 2, pp. 275278, 1996. [64]S. N. Huang, K. K. Tan, and T. H. Lee, “Adaptive neural network algorithm for control design of rigidlink electrically driven robots,” Neurocomputing, Vol. 71, No. 46, pp. 885894, 2008. [65]P. A. Borisov, G. P. Vinogradov, and N. A. Semsenov, “Integration of neural network algorithms, nonlinear dynamics model, and fuzzy logic methods in prediction problems,” J. of Computer and Sys. Sciences, Vol. 47, No. 1, pp. 7277, 2008. [66]R. J. Wai and J. D. Lee, “Adaptive fuzzyneuralnetwork control for maglev transportation system,” IEEE Neural Network, Vol. 19, No. 1, pp. 5470, 2008. [67]K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, “Neural networks for control systems: a survey,” Automatica, Vol. 28, No. 6, pp. 10831112, 1992. [68]L. Rutkowski, “Generalized regression neural networks in timevarying environment,” IEEE Trans. on Neural Network, Vol. 15, No. 3, pp. 576596, 2004. [69]P. Sinqla, K. Subbarao, and J. L. Junkins, “Directiondependent learning approach for radial basis function networks,” IEEE Trans. on Neural Networks, Vol. 18, No.1, pp. 203222, 2007. [70]D. F. Specht, “A general regression neural network,” IEEE Trans. on Neural Networks, Vol. 2, No. 6, pp. 568576, 1991. [71]R. J. Wai and K. H. Su, “Supervisory control for linear piezoelectric ceramic motor drive using genetic algorithm”, IEEE Trans. on Ind. Electronics, Vol. 53, No. 2, pp. 657673, 2006. [72]T. Senjyu, T. Tomohiro, and K. Uezato, “Position control of ultrasonic motors using MRAC with deadzone compensation,” IEEE Trans. on Ind. Electronics, Vol. 48, No. 6, pp. 12781285, 2001. [73]C. Y. Yen, F. L. Wen, and M. Ouyang, “Thindisc piezoceramic ultrasonic motor. Part II: system construction and control,” Ultrasonics, Vol. 41, No. 6, pp. 451463, 2003. [74]S. W Chung and K. T. Chau, “Speed control of travelingwave ultrasonic motors using a practical modeling approach,” Elec. Power Comp. and Systems, Vol. 35, No. 4, pp. 411428, 2007. [75]M. M. Polycarpou, “Learning and convergence analysis of neuraltype structure networks,” IEEE Trans. on Neural Networks, Vol. 3, No. 1, pp. 3950, 1992. [76]Data sheet of ICL8038, intersil user manual, 1998. [77]K. Nay and A. Budak, “A voltagecontrolledresistance with wide dynamic range and low distortion,” IEEE Trans. on Circuits and System, Vol. 30, No. 10, pp. 770772, 1983. [78]R. Senani and D. R. Bhaskar, “A simple configuration for realizing voltage controlled impedance,” IEEE Trans. on Circuits and System, Vol. 39, No. 1, pp. 5259, 1992. [79]E. Berioglu, “Microcontrollerbased full control of ultrasonic motor with frequency and voltage adjusting,” Sensors and Actuator A, Vol. 141, No. 1, pp.151159, 2008. [80]Z. Sun, R. Xing, C. Zhao, and W. Hung, “Fuzzy autotuning PID control of multiple joint robot driven by ultrasonic motors,” Ultrasonics, Vol. 46, No. 4, pp. 303312, 2007. [81]K. Tanaka, M. Oka, A. Uchibori, Y. Iwata, and H. Morioka, “Precise position control of an ultrasonic motor using the PID controller combined with NN,” Electrical Engineering in Jap., Vol. 146, No. 3, pp. 4654, 2004. [82]T. Yoshida, T. Senjyu, M. Nakamura, N. Urasaki, T. Funabashi, and H. Sekine, “Speed sensorless control of ultrasonic motor using neural network,” J. of Power Electronics, Vol. 6, No. 1, pp. 3844, 2006. [83]X. T. Zhao, W. S. Chen, J. K. Liu, M. Hao, and W. R. Dianji, “Neural network controller based on modified BP algorithm for ultrasonic motor,” Small &Special Electrical Machine, Vol. 35, No. 3, pp. 3538, 2007. [84]L. Huafeng, Z. Chunsheng, and G. Chenglin, “Precise position control of ultrasonic motor using fuzzy control with deadzone compensation,” J. of Electrical Engineering, Vol. 56, No. 12, pp. 4952, 2005. [85]T. Senjyu , T. Kashiwagi, and K. Uezato, “Position control of ultrasonic motors using MRAC with deadzone compensation,” IEEE Trans. on Industrial Electro., Vol. 48, No. 6, pp. 1278–1285, 2001. [86]X. S. Wang, C. Y. Su, and H. Hong, “Robust adaptive control of a class of nonlinear systems with unknown deadzone,” Automatica, Vol. 40, No. 3, pp. 407413, 2004. [87]M. C. Turner, “Actuator deadzone compensation: theoretical verification of an intuitive control strategy,” IEE Proc. –Control Theory Appl., Vol. 153, No.1, pp. 5968, 2006. [88]W. Zhonghua, Y. Bo, C. Lin, and Z. Shusheng, “Robust adaptive deadzone compensation of DC servo system,” IEE Proc. –Control Theory Appl., Vol. 153, No. 6, 2006. [89]R. R. Selmic and F. L. Lewis, “Deadzone compensation in motion control Systems using neural networks,” IEEE Trans. on Automatic Control, Vol. 45 No. 4, pp. 602613, 2000. [90]A. Taware and G. Tao, “An adptive deadzone inverse controller for systems with sandwiched deadzones,” Int. J. Control, Vol.76, No. 8, pp. 755769, 2003. [91]J. O. Jang, “Deadzone compensation of an XYpositioning table using fuzzy logic,” IEEE Trans. on Ind. Electron., Vol. 52, No. 6, pp. 16961701, 2005. [92]W. Gao and R. R Selmic, “Neural network control of a class of nonlinear systems with actuator saturation,” IEEE Trans. on Neural Networks, Vol. 17, No. 1, pp. 147156, 2006. [93]J. A. Farrell and M. M. Polycarpou, “Adaptive approximation based control: unifying neural, fuzzy and traditional adaptive approximation approaches,” IEEE Trans. on Neural Networks, Vol. 19, No. 4, pp. 731–732, Mar. 2008. [94]S. W. Wang, D. L. Yu, J. B. Gomm, G. F. Page, and S. S. Douglas, “Adaptive neural network model based predictive control for airfuel ratio of SI engines,” Engineering Appl. of Artificial Intelligence, Vol. 19, No. 2, pp. 189200, 2006. [95]J. Zhou, M. J. Er, and J. M. Zurada, “Adaptive neural network control of uncertain nonlinear systems with nonsmooth actuator nonlinearities,” Neurocomputing, Vol. 70, No. 46, pp. 10621070, 2007. [96]F. J. Lin, H. J. Shieh, P. K. Huang, and P. H. Shieh, “An adaptive recurrent radial basis function network tracking controller for a twodimensional piezopositioning stage,” IEEE Trans. on Ultrason., Ferro., and Freq. Control, Vol. 55, No. 1, pp. 183197, 2008. [97]Y. Song and Y. Ren, “A predictive model of nonlinear system based on generalized regression neural network,” in Proc. IEEE conf. Neural Net. and Brain, Vol. 3, pp. 20092012, 2005. [98]M. Yilmaz and H. M. Ertunc, “The prediction of mechanical behavior for steel wires and cord materirals using neural networks,” Materials and Design, Vol. 28, No. 2, pp. 599608, 2007. [99]H. B. Celikoglu, “Application of radial basis function and generalized regression neural networks in nonlinear utility function specification for travel mode choice modeling,” Math. and Computer Modelling, Vol. 44, No. 78, pp. 640658, 2006. [100]L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood Cliffs, NJ: PrenticeHall, 1994. [101]T. C. Chen, C. H. Yu, C. J. Chen, and M. C. Tsai, “Neurofuzzy speed control of travelingwave type ultrasonic motor drive using frequency and phase modulation,” ISA Transactions, Vol. 47, No. 3, pp. 325338, 2008.
