跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 23:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹宏基
研究生(外文):Hung-Chi Chan
論文名稱:含損傷內涵時間黏塑性理論對Sn/3.9Ag/0.6Cu銲錫不同應變率下疲勞初始壽命預估
論文名稱(外文):Prediction of Fatigue Initiation Life with Strain Rate Effect for Sn/3.9Ag/0.6Cu Solder Using the Damage Coupled Endochronic Viscoplasticity Theory
指導教授:李超飛
指導教授(外文):C. F. Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:102
中文關鍵詞:Sn/3.9Ag/0.6Cu內涵損傷演化方程式Ramp timeCoffin-Manson修正式含損傷內涵時間黏塑性理論疲勞初始壽命Frequency Coffin-Manson修正式臨界循環損傷因子
外文關鍵詞:Frequency Modified Coffin-MansonFatigue initiation lifeEndochronic viscoplasticity with damageModified Coffin-Manson relationshipCritical cyclic damageRamp timeEvolution equation of intrinsic damageSn/3.9Ag/0.6Cusolder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文依Wei等人對Sn/3.9Ag/0.6Cu銲錫材料於溫度 之不同應變率之循環穩態應力-應變遲滯曲線實驗數據來定義內涵時間黏塑性理論之材料參數及應變率敏感函數 。
本文對循環損傷因子以循環最大應力的下降率來定義,並由定應變振幅 - 曲線實驗數據及Percolation理論來決定臨界循環損傷因子 。以含損傷內涵時間黏塑性理論,模擬Sn/3.9Ag/0.6Cu銲錫於定應變範圍0.8%之循環損傷之應力-應變滯遲曲線,與實驗在各損傷因子之應力振幅值皆相當接近。並利用Lee and Chen所提議之內涵損傷演化方程式,配合Zeng等人對Sn/3.8Ag/0.7Cu銲錫材料於298 下應變率 、 之 曲線,藉以推導出Sn/3.9Ag/0.6Cu銲錫材料單軸拉伸下循環損傷與非彈性應變範圍之關係式,並依此建立 關係式;在定義之 下,經由Coffin-Mason修正式計算,所得之值能有效的預測該銲錫於不同應變率下之疲勞初始壽命,進一步比較發現Frequency Modified Conffin-Manson之斜率能有效預測在定應變範圍0.8%下預測值之走勢。
In this paper, the kernel function 、material parameter 、 and the strain rate sensitive function in the Endochronic viscoplasticity were established by using Sn/3.9Ag/0.6Cu experimental cyclically steady hysteresis loops of Wei et. al., in the fixed temperature298K and strain rate( 、 、 、 ).
To define the cyclic damage factor, the reducing rate of maximum cyclic stress was used. The critical cyclic damage could be found by combining experimental vs. data and the Percolation theory. The Endochronic viscoplasticity with damage was used to simulate Sn/3.9Ag/0.6Cu cyclic stress-strain hysteresis loops with damage under strain range 0.8% provided by Wei et. al. in temperature 298K. The results were in very good agreement with stress amplitude data. Employed the evolution equation of intrinsic damage proposed by Lee and Chen and the computed cyclic stress-inelastic strain relation, according to this can established the relational equation ;modified Coffin-Manson relationship( ) was derived and used to predict the data of different strain rate fatigue initiation life very effectively,further compare slope of frequency modified Coffin-Manson and prediction data can find the slope similar the tendency of prediction data at fixed strain range=0.8%.
目 錄
摘要…………………………………………………………………………I
Abstract ……………………………………………………………………II
誌謝…………………………………………………………………………III
目錄…………………………………………………………………………IV
表目錄…………………………………………………………………….VIII
圖目錄………………………………………………………………………IX
符號索引………………………………………………………………….IXV
第一章 緒論 ………………………………………………………………1
1-1 前言…………………………………………………………1
1-2 研究動機……………………………………………………2
1-3 文獻回顧……………………………………………………3
1-3-1 內涵時間黏塑性理論於銲錫之應用………………………3
1-3-2 無鉛銲錫材料實驗文獻回顧………………………………4
第二章 含損傷內涵時間黏塑性理論 ……………………………………6
2-1 內涵時間黏塑性理論………………………………………6
2-2 增量式內涵時間黏塑性本構方程式………………………11
2-2-1 增量式本構方程式於單軸拉伸之應用……………………11
2-3 內涵損傷下演化方程式……………………………………14
2-3-1 單軸拉伸下循環損傷與非彈性應變範圍之關係式………16
2-4 含損傷之增量式內涵時間黏塑性本構方程式……………19
2-4-1 單軸拉伸下之含損傷增量式內涵時間黏塑性本構方程式20
第三章 Sn/3.9Ag/0.6Cu銲錫循環穩態下內涵時間黏塑性理論之應用…21
3-1 本章介紹……………………………………………………21
3-2 Sn/3.9Ag/0.6Cu銲錫在室溫下核心函數之決定………….21
3-2-1 在 下材料參數 、 及 之決定……………21
3-2-2 以指數遞減函數近似核心函數 ………………………22
3-3 循環穩態下Sn/3.9Ag/0.6Cu銲錫內涵時間黏塑性理論於定溫、定應變振幅不同應變率下之應用……………………23
第四章 Sn/3.9Ag/0.6Cu銲錫不同應變率下含疲勞損傷循內涵時間黏塑性理論之應用……………………………………………………….26
4-1 本章介紹……………………………………………………26
4-2 不同應變率循環應力-應變關係式之建立…………………27
4-3 Sn/3.9Ag/0.6Cu銲錫含循環損傷內涵時間黏塑性理論計算與討論………………………………………………………30
4-3-1 循環損傷因子之決定………………………………………30
4-3-2 臨界循環損傷因子 之決定…………………….………31
4-3-3 Sn/3.9Ag/0.6Cu於應變率 、 下Damage Power Law參數之決定……………………………………………32
4-3-4 Sn/3.9Ag/0.6Cu於 =0.6%、0.8%、1.0%,Ramp time 1s 和40s下 之決定…………………………………………36
4-3-5 與 及 關係式之建立………………………………….37
4-3-6 Sn/3.9Ag/0.6Cu於室溫、定應變範圍0.8% 含損傷下之計算結果與討論…………………………………38
第五章 Sn/3.9Ag/0.6Cu銲錫於不同應變率下疲勞初始壽命之預估……39
5-1 本章介紹…………………………………………………….39
5-2 利用Coffin-Mason修正式於不同應變率下對疲勞初始壽命
其預估能力之討論………………………………………….39
5-2-1 定應變率 下疲勞初始壽命之預測……………40
5-2-2 變應變範圍Ramp time 1s 和40s下之疲勞初始壽命之預
測……………………………………………………………40
5-2-3 於定應變範圍0.8%Ramp time 1s、5s、40s及300s下疲勞初始壽命之預測………………………………………………41
第六章 結論及未來方向………………………………………………….44
6-1 結論……………………………………………………………44
6-2 未來方向………………………………………………………46
附表…………………………………………………………………………47
附圖…………………………………………………………………………56
參考文獻………………………………………………………………….100
自述……………………………………………………………………….102
[1]Lee, C. F. and Shieh, T. J., “Theory of Endochronic Cyclic Viscoplasticity of Eutectic Tin/Lead Solder Alloy,” J. of Mech.,Vol. 22, No.3, pp.181-191, 2006.
[2]Lee, C. F. and Chen, Y. C., “Thermodynamic Formulation of Endochronic Cyclic Viscoplasticity with Damage-Application to Eutectic Sn/Pb Solder Alloy,” Journal of Mechanics., Vol. 23, No.4, pp.433-443, 2007.
[3]Lee, C. F. and Lee, Z. H., “Prediction Fatigue Life of Sn/3.8Ag/0.7Cu solder Using Endochronic Cyclic Damage-Coupled Viscoplastic Theory,” will be Published in the J. of Mechanics., Sept.,2008
[4]李泰廣,“Sn/3.5Ag/0.75Cu銲點試片在循環比例位移路徑下含循環損傷內涵時間黏塑性理論之應用”,成功大學工程科學系碩士畢業論文,2007.
[5]Wei, Y., Lau, K. J., Vianco, P., and Fang, H. E., “Behavior of Lead-Free Solder under Thermomechanical Loading,” ASME J. Electronic Packaging., Vol. 126, pp. 367-373, 2004.
[6]Zeng, Q., Wang, Z., Xian, A., and Shang, J., “Low Cycle Fatigue Behavior of Sn-3.8Ag-0.7Cu Lead-Free Solder,” Chinese J. Material Research., Vol. 18, pp. 11-17, 2004.
[7]Zeng, Q., Wang, Z., Xian, A., and Shang, J., “Cyclic softening of the Sn-3.8Ag-0.7Cu Lead-free Solder Alloy with Equiaxed Grain Structure,” Journal Of Electronic Materials., Vol. 34, pp. 62-67, 2005.
[8]Wei, Y., C. L. Chow., Vianco, P., and Fang, E., “Isothermal Fatigue Damage Model for Lead-free Solder,” International J. of Damage Mechanics., Vol. 15,pp.109-120, 2006.
[9]Shang, J. K., Zeng, Q. L., Zhang, L., and Zhu, Q. S., “Mechanical Fatigue of Sn-rich Pb-free Solder Alloys,” J. of Mater. Sci : Mater. in Electron., Vol. 18(1-3), pp. 211-227, 2007.
[10]Valanis, K. C., “A Theory of Viscoplasticity Without a Yield Surface Part І. General Theory,” Archives of Mechanics, pp.517-533, 1971.
[11]Valanis, K. C., “Fundamental Consequences of a New Intrinsic Time Measure : Plasticity as a Limit of The Endochronic Theory,” Archives of Mechanics, Vol. 32, pp.171-191, 1980.
[12]Lee, C.F., J.,“Numerical Method of The Incremental Endochronic Plasticity,” The Chinese Journal of Mechanics, Vol.8, No.3, pp.377-396, 1992.
[13]Stolkarts, V., Keer, L. M., and Fine, M. E., “Damage Evolution Governed by Microcrack Nucleation with Application to the Fatigue of 63Sn-37Pb Solder,” J. Mech. Phys. Solids Packaging, Vol. 47, pp.2451-2468, 1999.
[14]Qian, Z., Abhijit, D., and Peter, H., “Viscoplastic Constitutive Properties and Energy-Partitioning Model of Lead-Free Sn/3.9Ag/0.6Cu,” Electronic Components and Technology Conference, pp.1862-1868, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊