跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 12:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建良
研究生(外文):JIAN-LIANG LIN
論文名稱:使用三維虛擬人臉之辨識系統
論文名稱(外文):Face Recognition by a 3D Morphable Model
指導教授:王榮泰
指導教授(外文):RONG-TAI WANG
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:78
中文關鍵詞:人臉辨識人臉偵測三維人臉
外文關鍵詞:PCA3D faceface detection
相關次數:
  • 被引用被引用:13
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:1
由於近年來人臉辨識已經廣泛被研究,而許多辨識的方法與理論也隨之而產生,但往往大部分的人臉辨識在人臉的角度上有著嚴格的限制,在本論文當中提供了虛擬的人臉系統以供多角度的辨識,只需一張正面的人臉,便可虛擬出不同角度的人臉,同時為了克服單張影像欠缺深度資訊的問題,所以加入了一般統計的方法去判斷臉型大概的深度,以減少在虛擬時誤差的產生,此識別系統主要包含人臉偵測、人臉虛擬以及人臉辨識三個系統。
人臉偵測系統中,利用膚色找到人臉的搜尋區域後,依橢圓樣板演算法,找出人臉的影像,再取得人臉上面各個特徵點資訊,進而模擬出三維的人臉,在擷取各角度的圖形做為判斷人臉的虛擬資料庫,最後以主分量分析(Principal Component Analysis,PCA)確認偵測到的影像是否為資料庫人臉影像。簡言之,本論文前段虛擬人臉系統可與其他的人臉辨識系統結合,並使判斷角度上有更大的彈性。
Face recognition system has been widely developed in recent years. Many methods and theories of recognition also have been created. However, most of face recognition systems involve strict constraints on angles of human faces. In this thesis, it will present a simulation system to provide face recognition from various angles. The system only requires the front side of a face and then , further , to simulate various angles of the face. Moreover, in order to overcome the issue that a single image lacks deeply detailed information, this system will apply statistic method to identify the approximate depth of the face to decrease the occurrence of deviation when simulating. The recognition system mainly includes face testing system, face simulation system and face recognition system.

In face testing system, it will utilize skin tone to find out the search area of faces. By ellipsoidal mask, images of faces can be identified and information of every characteristic can be obtained, further to simulate three-dimensional faces. These images with various angles can be captured to be used as a simulation database for face recognition. Finally, the system ensures whether the obtained images are face images in database by Principal Component Analysis technique. Briefly, this thesis will describe that the face simulation can be combined with other face recognition systems and achieve to higher elasticity in identifying angles.
目錄
中文摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 V
圖目錄 VII
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
1.3文獻探討 2
1.4論文架構 3
1.5研究成果與貢獻 4
第二章人臉偵測 5
2.1人臉選取判斷程序 5
2.1.1色彩分割與色彩空間介紹 6
2.2膚色檢測範圍 9
2.3雜訊移除 12
2.4連接元區域標定程序 14
2.5橢圓臉部搜尋程序 15
2.5.1 Sobel 濾波器邊緣擷取 15
2.5.2橢圓偵測 18
2.6眼睛偵測 20
第三章三維模型建構與選擇 23
3.1繪製一個三維模型 24
3.1.1 3Dmax建模 24
3.2模型移動與縮放 26
3.2.1物體平移(Translation) 26
3.2.2物體縮放(Scale) 27
3.2.3物體旋轉(Rotation) 29
3.3物體的投影 31
3.3.1垂直投影 31
3.3.2透視投影 32
3.4光線原理 36
3.5紋理對應 38
第四章 人臉驗證 40
4.1主成分分析法 40
4.1.1 PCA運算原理 40
4.1.2人臉樣本訓練 43
4.1.3以歐氏距離作為人臉辨識決策方法 46
第五章 實驗結果 47
5.1實驗環境與設備 47
5.2人臉偵測實驗結果 47
5.2.1膚色偵測 47
5.2.2人臉偵測 49
5.3人臉模擬實驗結果 52
5.3.1橢圓偵測與眼睛位置收尋 53
5.3.2虛擬實現 54
5.4人臉部辨識結果與討論 57
5.4.1驗證虛擬人臉資料庫 57
5.4.2即時辨識驗證 61
5.4.3辨識結果討論 63
第六章 結論與未來展望 64
6.1結論 64
6.2未來展望 64
参考文獻 65
[1]. L. Wiskott, Jean M. Fellous And Christoph V. D. Malsburg, “Face recognition
by elastic bunch graph matching,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 19, No. 7, pp. 775-779, 1997.

[2]. T. Vetter and T. Poggio, “Linear object classes and image synthesis from a single
example image,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 19, No. 7, pp. 733-742, 1997.

[3]. C.Garcia and G.tzirita, “Face detection using quantized skin color region merging and wavelet packet analysis “, IEEE trans . Multimedia , pp.264-277 ,1999.

[4]. C.Garcia,G.simandiris and G.tzirita ,“A feature-based face detector using wavelet
frames”,Proc. of Int. , Workshop on very low bit coding , pp . 71-76 , 2001.

[5]. A.Pentland,B.Moghaddam and T.Starner , ” View-based and modular eigenspaces for face recognition ” , Proc. IEEE Conf. Computer Vision and Pattern Recognition , pp.
84-91,1994.

[6]. E.Osuna,R.Freund and F.Girosi, “ Training support vector machines : an application to
face detection “ , Proc. IEEE Conf. Computer Vision and Pattern Recognition ,
pp. 130-136,1997.

[7]. R.Brunelli and T.Poggio , “ Face recognition : features vs.template” , IEEE Trans.
Pattern Analysis and Machine Intelligence, Vol.15 ,No. 10,pp. 1042-1052, 1993

[8]. Quan YUAN, Wen GAO and Hongxun YAO,” Robust frontal face detection in complex environment “, Pattern Recognition, 2002. Proc. 16th International Conference on , Vol.1 , pp. 25-28 , Aug. 2002.

[9]. Garcia and G.tzirita, “Face detection using quantized skin color region merging and wavelet packet analysis “, IEEE Transactions. Multimedia , 1(3):264-277 ,1999.




[10]. R.Feraud, O.J.Bernier ,J.E.Viallet, and M.collobert, “ A fast and accurate face detection based on neural network” , IEEE Trans. Pattern Analysis and Machine Intelligence,Vol.23 , No.1 , pp.42-53, Jan, 2001.

[11]. H.Wu , Q.Chen, M.Yachida ,” Face detection from color using a fuzzy Pattern match method “ , IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.21 , No.6 ,pp.557-563, June, 1999.

[12]. K. Bowyer, K. Chang, and P. Flynn, “A survey of approaches and challenges in 3D and multi-Modal 3D 2D face recognition,” IEEE Transactions on Computer Vision and Image Understanding, Vol. 101, No. 1, pp. 1-15, 2006.

[13]. K.I. Chang, K.W. Bowyer, and P.J. Flynn, “Multiple nose region matching for 3d face recognition under varying facial expression,”IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, No. 6, pp. 1695–1700, October 2006.

[14]. K.W. Bowyer, K.I. Chang, and P.J. Flynn, “A survey of approaches and challenges in 3d and multi-modal 3d+2d face recognition,” Computer Vision and Image Understanding, Vol.101, No. 1, pp. 1–15, January 2006.

[15]. M. Turk and A. Pentland, “Eigenfaces for recognition,” Jour. Of Cognitive Neuroscience, Vol. 3, pp.71-86, 1991.

[16]. L. Sirovich and M. Kirby, “Low-dimensional procedure for the characterization of human faces,” J. Opt. Soc. Amer.4, pp.519-524, 1987.

[17]. Hua Yu, Jie Yang, “A Direct lda algorithm for high dimensional data with application to face recognition”, Pattern Recognition, pp.2067-2070,Vol.34, 2001

[18]. H. Yu and J. Yang, “A Direct IDA Algorithm for High Dimensonal Data with Application to Sace Recognition,"Pattern Recognition, Vol. 34, pp. 2067-2070, 2001

[19]. C. Wong, D. Kortenkamp, and M. Speich, “A Mobile Robot that Recognizes People,"IEEE Int. Conf. on Tools with Artificial Intelligence, 1995.



[20]. R. C. Gonzalez and R. E. Woods 著,數位影像處理,繆紹綱譯,台灣培生教育出版,台北,民國九十三年。


[21]. C. Garcia, and G.Tziritas. “ Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis.” in IEEE Transactions on Multimedia Vol. 1 , No. 3 , pp. 264-277, 1999.

[22]. A. McAndrew 著,數位影像處理,徐曉珮譯,新加坡商湯姆生亞洲私人有限公司台灣分公司,台北,民國九十四年。

[23]. L. G. Shapiro and G. C. Stockman, “Computer Vision,” pp.65-68, Prentice-Hall, NJ, 2001.

[24]. S. Birchfield, “An Elliptical Head Tracker,” Conf. Record of the asilomar Conf. on Signals, Systems & Computers, Vol.2, pp.1710-1714,November 1997.

[25]. S. Birchfield, “Elliptical Head Tracking Using Intensity Gradients and Color Histograms,” Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, pp.232-237, June 1998.

[26].冬陽 著,3D遊戲程式設計/基礎篇,寰宇出版社,台北,民國九十二年。

[27].楊宜學,頭部尺寸測量方法與結果,行政院勞委會計畫,計畫編號:IOSH-H222
,1997
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊