跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃冠達
研究生(外文):Kuan-Da Huang
論文名稱:電動現象於微/奈米流體上之研究:流場行為、離子傳輸、濃度極化效應之應用
論文名稱(外文):Electrokinetic Phenomena in Micro/Nanofluidics:Flow Field, Ionic Transport, Concentration Polarization Effect and Its Application
指導教授:楊瑞珍楊瑞珍引用關係
指導教授(外文):Ruey-Jen Yang
學位類別:博士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:153
中文關鍵詞:流動電流樣本預集中奈微流體離子耗盡與聚集現象電動學濃度極化
外文關鍵詞:Streaming CurrentSample PreconcentrationConcentration PolarizationNano/MircofluidicsElectrokineticsIonic Depletion and Enrichment Effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
微流體的概念應用於發展具潛力的化學、生物分析裝置是相當備受期待的研究領域。特別在於易於整合電動現象的優勢,使得微流體的應用得以延伸至更多樣性並增添發展的可行性。實驗室晶片便是衍生而出的理想性概念,此概念隨著微流體的發展而受到相當大的重視。微流體系統的優勢在於口袋尺寸的大小、易整合電子迴路、低樣本消耗與使用量、及加快分析速度等。這些優勢宣告了一個可觸及的未來並激勵科學與科技人才逐漸投入此一領域的研究。因此,這本論文所著重的方向也以微流體與電動現象為基礎,針對相關性的主題進行學術性、實用性的研究。整體而言可依照管道尺寸進行分類:微米尺度之流道與奈米尺度之流道兩部分,並分別著重於探討流場特性、離子傳輸行為以及其應用。
論文的第一部分把注意力著重於流體在微米管道下之行為。本文先利用數值模擬方式去探討電驅動所產生的焦耳熱效應對流體的影響、以及探討流體受靜電力與壓力作用下的流場變化。主題一藉由引入關於隨溫度變化之熱導、電導、黏滯係數的理論公式可以模擬出流體內溫度、電場、壓力等變化情況,以便分析流場變化。結果發現凸面速度結構產生於相對高溫的環境中,反之凹面速度則出現在相對低溫的區域內。主題二藉由理論解析方式討論在兩驅動力作用下所造成的迴流現象,並可藉由實驗方式驗證迴流的存在。
論文第二部分的重心在於討論奈米管道內離子傳輸行為與在微米管道內的不同。首先藉由流動電流的量測結果進行討論,由文獻指出流動電流在次微米管道內隨著不同的電解液濃度會造成不同的電流趨勢。本文藉由引入修正濃度模式的概念近似,結果顯示表面電荷密度會與電解液濃度的牽動性變弱,而有造成近似定量的流動電流產生在低濃度狀態。此一方式可合理的估計流動電流在大範圍濃度變化下,並滿足兩項基本模式:化學平衡模式與定表面電荷模式。此外,本文製作微米與奈米尺度結合之管道將研究延伸至濃度極化現象,其中包含離子耗盡與離子聚集兩個主要效應。實驗結果顯示離子耗盡區會造成電場增幅現象而產生巨大的電驅動力,進而引起渦旋結構。另外當外加電壓的增加,離子耗盡區內的溶液帶電層的延伸與擴散層的縮減現象也經由實驗證明。最後,利用濃度耗盡與電場增幅現象設計出一種新式的樣本濃度預集中流體裝置。本文利用正電螢光溶液–若丹明6G當作預集中樣本以及視覺化指標。經由電性量測結果,耗盡區發生於奈米管道的高電位端之離子濃度並造成60倍低於原電解液濃度之耗盡效應。當施於一反向電場,原離子耗盡區受到高濃度樣本的作用,而造成離子堆疊的結果產生。此一堆疊結果,可經由操控電壓的設計,達成堆疊樣本被傳送到單一管道或是多重管道。
Microfluidics with the effect of electrokinetic phenomena is replete with many potential possibilities for the development of convenient devices for chemical and biological analyses. Accordingly, Lab-on-Chip (LOC) has been proposed integrate multiple microfluidic systems into a single chip that includes several benefits, such as the pocket sized chip, easy integration into electrical circuitry, low sample consumption, and high-speed analysis. The concept of Lab-on-Chip has been attracted by many researchers and has prompted rapid development of science and technology. Given this, this thesis is focused on microfluidics and associated electrokinetic phenomena. The scope of this thesis, which is classified according to the channel dimension: micro- and nano- sized channels, covers the fluidic behavior, ionic transport, and its applications, respectively.
In the first part of this thesis, we concentrate on the fluidic behavior in microchannel and perform a series of numerical simulations to investigate both the influence of the Joule-heating effect and the interaction between the electrostatic force and hydrodynamic pressure force. In studying the former effect, we simulate the variation of a flow field by including temperature dependent fluidic parameters, such as thermal conductivity, electrical conductivity, and viscosity of fluid. Results show that a convex velocity profile is induced in a relative high temperature region, whereas a concave velocity profile appears in a relative low temperature region. The latter effect is investigated in a basic model to analyze the formation of flow recirculation and a nozzle-like acceleration effect under the interaction between two kinds of driving forces in a straight microchannel. The existence of the recirculation structure is also validated by experiments where the hydrodynamic force is counterbalanced by the electrostatic force generated from a pair of plated electrodes onto the surface of the microchannel.
The second part of this thesis focuses on distinguishing the difference between ionic transport observed in nanochannels and that observed in microchannel. First, this study focuses on experimental mesaurements regarding streaming current. Several studies in literature have pointed out that the streaming current has different tendencies in nanochannels when the concentration of buffer solution is dense and in a diluted concentration. In this thesis, by using a modified concentration approach, the results reveal that the surface charge density is insensitive to the buffer concentration as the electrical double layer is overlapped and a nearly constant streaming current is predicted. Secondly, the development of a hybrid micro-/nano-channel is utilized to investigate the concentration polarization effect which contains the ionic depletion and ionic enrichment effect. Results show that the low conductivity within the depletion zone induces a rapid electroosmotic flow, which in turn prompts the generation of vortex flow structures within the depletion zone. Both the lengthening of the depletion bulk charge layer and decrease in length of the diffusion layer, as the applied voltage is increased, are shown in this study. Finally, these results are utilized to design a novel fluidic concentrator via an ionic depletion effect and the field-amplified effect. Using Rhodamine 6G dye for visualization purposes, we show that an ionic depletion region can be induced on the anodic side of the nano-channel. It is seen that the electrical conductivity of this region is around 60 times lower than that of the buffer through an appropriate manipulation of the external potentials applied to the reservoirs of the device. Furthermore, via an appropriate time-based switching of the external electrical potentials, the sample species can be concentrated with a concentration factor close to the conductivity ratio within one minute.
Abstract I
摘要 III
致謝 V
Contents VII
List of Figures X
Abbreviation XVI
Nomenclature XVII

Chapter 1 Introduction 1
1.1 Micro/nanofluidics 1
1.2 Electrical double layer, EDL 3
1.2.1 Surface charge density & surface potential 5
1.2.2 Ionic distribution and potential in EDL 6
1.2.3 Overlapped double layers 9
1.3 Electroosmosis and other electrokinetic phenomena 11
1.3.1 Electroosmosis – equilibrium double layer 11
1.3.2 Electroosmosis – nonequilibrium double layer 14
1.3.3 Other electrokinetic phenomena 15
1.4 Microscale flow and ionic transport 16
1.4.1 Microscale flow analysis 16
1.4.2 External forces on fluids 16
1.4.3 Energy equation and source of Joule-heating 17
1.4.4 Charged species transport 18
1.5 Scope and overview of the thesis 19
Chapter 2 Methodologies 21
2.1 Numerical sections 21
2.1.1 Joule-heating effect in electroosmotic flow 21
2.1.2 Pressure-driven flow act on the electroosmotic flow 26
2.2 Experimental sections 28
2.2.1 Micro fluidic device comprising bared electrodes 28
2.2.2 Micro/Nano fluidic device for ionic depletion and enrichment effect 31
2.2.3 Nanochannel-based concentrator 33
Chapter 3 Non-Uniform Driven Force and External Pressure Force Apply to Electroosmotic Flow 37
3.1 Introduction 37
3.2 Field variations induced by Joule-heating effect 41
3.2.1 Temperature field 42
3.2.2 Electrical potential field 44
3.2.3 Flow field variation 46
3.3 Opposing electroosmotic flow and pressure-driven flows 48
3.3.1 Theoretical analysis 48
3.3.2 Velocity distribution between two electrodes 50
3.3.3 Micro-vortices 53
3.4 Conclusion 55
Chapter 4 Electrokinetic Behavior in Nanofluidics 57
4.1 Introduction 57
4.2 Methods and modified model 59
4.2.1 Classical theories 59
4.2.2 Concentration Variation in Nanochannels 60
4.3 Results and discussions 64
4.3.1 Streaming current in nanochannels 64
4.3.2 Streaming potential in nanochannels 67
4.3.3 Electroviscous effect in nanochannels 69
4.4 Conclusions 71
Chapter 5 Concentration Polarization in Nanofluidics and its Applications 73
5.1 Introduction 73
5.2 Concentration polarization 75
5.2.1 Mechanism of concentration polarization effect 75
5.2.2 Ionic depletion-enrichment effect 78
5.3 Concentration distribution and flow field within DP/ER region 82
5.3.1 Concentration distribution in depletion zone 82
5.3.2 Flow field in depletion/enrichment zone 85
5.4 Depletion effect applied to fluidic concentrator 90
5.4.1 Resistance of nanochannel and depletion region measurement 93
5.4.2 Two-step sample stacking operation 97
5.4.3 Voltage manipulation schemes for controlling depletion region and sample switching 103
5.5 Conclusions 106
Chapter 6 Summary and Proposed Future Work 107
6.1 Overview of accomplishments 107
6.1.1 Non-uniform driven forces and external pressure forces acting opon electroosmotic flow 107
6.1.2 Electrokinetic behavior in nanofluidics 108
6.1.3 Concentration polarization in nanofluidics and its applications 108
6.2 Proposed extensions of current work 109
6.2.1 Energy conversion in microsystems – streaming current in nanofluidics 109
6.2.2 Fundamental research in concentration polarization in nanofluidics 111
6.2.3 Applications of concentration polarization in nanofluidics 113
References 117
Curriculum Vitae 125
Ajdari, A. (1995). Elctroosmosis on inhomogeneously charged surfaces. Physical Review Letters 75, 755-758.
Ajdari, A. (1996). Generation of transverse fluid currents and forces by an electric field: Electroosmosis on charge-modulated and undulated surfaces. Physical Review E 53, 4996-5005.
Ajdari, A. (2002). Transverse electrokinetic and microfluidic effects in micropatterned channels: Lubrication analysis for slab geometries. Physical Review E 65, 016301.
Anderson, J. L., and Idol, W. K. (1985). Electroosmosis through pores with nonuniformly charged walls. Chemical Engineering Communications 38, 93-106.
Astorga-Wells, J., and Swerdlow, H. (2003). Fluidic preconcentrator device for capillary electrophoresis of proteins. Analytical Chemistry 75, 5207-5212.
Babeshko, V. A., Zabolotskii, V. I., Korzhenko, N. M., Seidov, R. R., and Urtenov, M. K. (1998). Decomposition of non-one-dimensional system of Nernst-Plank-Poisson equations. Doklady Akademii Nauk 361, 45-46.
Barker, S. L. R., Ross, D., Tarlov, M. J., Gaitan, M., and Locascio, L. E. (2000). Control of flow direction in microfluidic devices with polyelectrolyte multilayers. Analytical Chemistry 72, 5925-5929.
Bazant, M. Z., and Squires, T. M. (2004). Induced-charge electrokinetic phenomena: Theory and microfluidic applications. Physical Review Letters 92, 066101.
Bazant, M. Z., and Ben, Y. X. (2006). Theoretical prediction of fast 3D AC electroosmotic pumps. Lab on a Chip 6, 1455-1461.
Behrens, S. H., and Grier, D. G. (2001). The charge of glass and silica surfaces. Journal of Chemical Physics 115, 6716-6721.
Bello, M. S., and Righetti, P. G. (1992). Unsteady heat-transfer in capillary zone electrophoresis .1. Amathematical-model. Journal of Chromatography 606, 95-102.
Ben, Y., and Chang, H. C. (2002). Nonlinear Smoluchowski slip velocity and micro-vortex generation. Journal of Fluid Mechanics 461, 229-238.
Bharadwaj, R., and Santiago, J. G. (2005). Dynamics of field-amplified sample stacking. Journal of Fluid Mechanics 543, 57-92.
Biddiss, E., Erickson, D., and Li, D. Q. (2004). Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Analytical Chemistry 76, 3208-3213.
Brotherton, C. M., and Davis, R. H. (2004). Electroosmotic flow in channels with step changes in zeta potential and cross section. Journal of Colloid and Interface Science 270, 242-246.
Buch, J. S., Wang, P. C., DeVoe, D. L., and Lee, C. S. (2001). Field-effect flow control in a polydimethylsiloxane-based microfluidic system. Electrophoresis 22, 3902-3907.
Burgreen, D., and Nakache, F. R. (1964). Electrokinetic flow in ultrafine capillary slits. Journal of Physical Chemistry 68, 1084-1091.
Chang, C. C., and Yang, R. J. (2004). Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks. Journal of Micromechanics and Microengineering 14, 550-558.
Chang, C. C., and Yang, R. J. (2006). A particle tracking method for analyzing chaotic electroosmotic flow mixing in 3D microchannels with patterned charged surfaces. Journal of Micromechanics and Microengineering 16, 1453-1462.
Chang, C. C., and Yang, R. J. (2007). Electrokinetic mixing in microfluidic systems. Microfluidics and Nanofluidics 3, 501-525.
Chen, C. H., Lin, H., Lele, S. K., and Santiago, J. G. (2005). Convective and absolute electrokinetic instability with conductivity gradients. Journal of Fluid Mechanics 524, 263-303.
Cheng, L. J., and Guo, L. J. (2007). Rectified ion transport through concentration gradient in homogeneous silica nanochannels. Nano Letters 7, 3165-3171.
Cui, S. T., and Cochran, H. D. (2002). Molecular dynamics simulation of interfacial electrolyte behaviors in nanoscale cylindrical pores. Journal of Chemical Physics 117, 5850-5854.
Daiguji, H., Yang, P. D., and Majumdar, A. (2004a). Ion transport in nanofluidic channels. Nano Letters 4, 137-142.
Daiguji, H., Yang, P. D., Szeri, A. J., and Majumdar, A. (2004b). Electrochemomechanical energy conversion in nanofluidic channels. Nano Letters 4, 2315-2321.
Dukhin, S. S. (1991). Electrokinetic phenomena of the second kind and their applications. Advances in Colloid and Interface Science 35, 173-196.
Dukhin, S. S., and Mishchuk, N. A. (1993). Intensification of electrodialysis based on electroosmosis of the 2nd kind. Journal of Membrane Science 79, 199-210.
Eijkel, J. (2007). Liquid slip in micro- and nanofluidics: recent research and its possible implications. Lab on a Chip 7, 299-301.
Erickson, D., Sinton, D., and Li, D. Q. (2003). Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. Lab on a Chip 3, 141-149.
Ferree, S., and Blanch, H. W. (2003). Electrokinetic stretching of tethered DNA. Biophysical Journal 85, 2539-2546.
Fu, L. M., Yang, R. J., and Lee, G. B. (2003). Electrokinetic focusing injection methods on microfluidic devices. Analytical Chemistry 75, 1905-1910.
Fu, L. M., Yang, R. J., Lin, C. H., Pan, Y. J., and Lee, G. B. (2004). Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection. Analytica Chimica Acta 507, 163-169.
Ghosal, S. (2002). Lubrication theory for electroosmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. Journal of Fluid Mechanics 459, 103-128.
Gobie, W. A., and Ivory, C. F. (1990). Thermal-model of capillary electrophoresis and a method for counteracting thermal band broadening. Journal of Chromatography 516, 191-210.
Gross, R. J., and Osterle, J. F. (1968). Membrane transport characteristic of ultrafine capillaries. Journal of Chemical Physics 49, 228-234.
Grushka, E., Mccormick, R. M., and Kirkland, J. J. (1989). Effect of temperature-gradients on the efficiency of capillary zone electrophoresis separations. Analytical Chemistry 61, 241-246.
Hau, W. L. W., Trau, D. W., Sucher, N. J., Wong, M., and Zohar, Y. (2003). Surface-chemistry technology for microfluidics. Journal of Micromechanics and Microengineering 13, 272-278.
Hayes, M. A., Kheterpal, I., and Ewing, A. G. (1993). Effects of buffer pH on electroosmotic flow-control by an applied radial voltage for capillary zone electrophoresis. Analytical Chemistry 65, 27-31.
Hayes, M. A. (1999). Extension of external voltage control of electroosmosis to high-pH buffers. Analytical Chemistry 71, 3793-3798.
Herr, A. E., Molho, J. I., Santiago, J. G., Mungal, M. G., Kenny, T. W., and Garguilo, M. G. (2000). Electroosmotic capillary flow with nonuniform zeta potential. Analytical Chemistry 72, 1053-1057.
Hoffmann, K. A. (1993). Computational Fluid Dynamics for Engineers. Engineering Education System, Wichita, KS, USA.
Hofmann, O., Che, D. P., Cruickshank, K. A., and Muller, U. R. (1999). Adaptation of capillary isoelectric focusing to microchannels on a glass chip. Analytical Chemistry 71, 678-686.
Huang, K. D., and Yang, R. J. (2006). Numerical modeling of the Joule heating effect on electrokinetic flow focusing. Electrophoresis 27, 1957-1966.
Huang, K. D., and Yang, R. J. (2007). Electrokinetic behaviour of overlapped electric double layers in nanofluidic channels. Nanotechnology 18, 115701.
Huang, K. D., Yang, S. C., Haung, Z. X., and Yang, R. J. (2008). Particle handling in straight microfluidic channels via opposing electroosmotic and pressure-driven flows. Microfluidics and Nanofluidics (in press, doi: 10.1007/s10404-007-0241-9).
Huang, K. D., and Yang, R. J. (2008). Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel. Microfluidics and Nanofluidics (in press, doi: 10.1007/s10404-008-0281-9).
Hunter, R. J. (1981). Zeta Potential in Colliod Science: Principles and Applications. Academic Press, New York.
Jacobson, S. C., and Ramsey, J. M. (1995). Microchip electrophoresis with sample stacking. Electrophoresis 16, 481-486.
Jin, X. Z., Joseph, S., Gatimu, E. N., Bohn, P. W., and Aluru, N. R. (2007). Induced electrokinetic transport in micro-nanofluidic interconnect devices. Langmuir 23, 13209-13222.
Joly, L., Ybert, C., Trizac, E., and Bocquet, L. (2006). Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics. Journal of Chemical Physics 125, 204716.
Jung, B., Bharadwaj, R., and Santiago, J. G. (2003). Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis. Electrophoresis 24, 3476-3483.
Kaniansky, D., Masar, M., Bielcikova, J., Ivanyi, F., Eisenbeiss, F., Stanislawski, B., Grass, B., Neyer, A., and Johnck, M. (2000). Capillary electrophoresis separations on a planar chip with the column-coupling configuration of the separation channels. Analytical Chemistry 72, 3596-3604.
Karnik, R., Fan, R., Yue, M., Li, D. Y., Yang, P. D., and Majumdar, A. (2005). Electrostatic control of ions and molecules in nanofluidic transistors. Nano Letters 5, 943-948.
Khandurina, J., Jacobson, S. C., Waters, L. C., Foote, R. S., and Ramsey, J. M. (1999). Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Analytical Chemistry 71, 1815-1819.
Kim, S. J., Wang, Y. C., Lee, J. H., Jang, H., and Han, J. (2007). Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Physical Review Letters 99, 044501.
Kim, S. M., Burns, M. A., and Hasselbrink, E. F. (2006). Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Analytical Chemistry 78, 4779-4785.
Kirby, B. J., and Hasselbrink, E. F. (2004a). Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis 25, 203-213.
Kirby, B. J., and Hasselbrink, E. F. (2004b). Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25, 187-202.
Kuo, T. C., Cannon, D. M., Shannon, M. A., Bohn, P. W., and Sweedler, J. V. (2003). Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sensors and Actuators a-Physical 102, 223-233.
Kwak, H. S., and Hasselbrink, E. F. (2005). Timescales for relaxation to Boltzmann equilibrium in nanopores. Journal of Colloid and Interface Science 284, 753-758.
Lastochkin, D., Zhou, R. H., Wang, P., Ben, Y. X., and Chang, H. C. (2004). Electrokinetic micropump and micromixer design based on ac faradaic polarization. Journal of Applied Physics 96, 1730-1733.
Lee, C. S., Mcmanigill, D., Wu, C. T., and Patel, B. (1991). Factors affecting direct control of electroosmosis using an external electric-field in capillary electrophoresis. Analytical Chemistry 63, 1519-1523.
Lee, G. B., Fu, L. M., Lin, C. H., Lee, C. Y., and Yang, R. J. (2004). Dispersion control in microfluidic chips by localized zeta potential variation using the field effect. Electrophoresis 25, 1879-1887.
Lee, J. H., Chung, S., Kim, S. J., and Han, J. Y. (2007). Poly(dimethylsiloxane)-based protein preconcentration using a nanogap generated by junction gap breakdown. Analytical Chemistry 79, 6868-6873.
Lyklema, J. (2003). Electrokinetics after Smoluchowski. Colloids and Surfaces a-Physicochemical and Engineering Aspects 222, 5-14.
Manz, A., Graber, N., and Widmer, H. M. (1990). Miniaturized total chemical-analysis systems - a novel concept for chemical censing. Sensors and Actuators B-Chemical 1, 244-248.
Melcher, J. R. (1981). Continuum Electromechanics. MIT Press, Cambridge.
Mishchuk, N. A., and Dukhin, S. S. (1990). Space-charge of a conducting particle in the over-limit current regime. Colloid Journal of the Ussr 52, 427-431.
Mishchuk, N. A. (1999). The role of water dissociation in concentration polarisation of disperse particles. Colloids and Surfaces A 159, 467-475.
Pan, Y. J., Lin, J. J., Luo, W. J., and Yang, R. J. (2006). Sample flow switching techniques on microfluidic chips. Biosensors & Bioelectronics 21, 1644-1648.
Park, S. R., and Swerdlow, H. (2003). Concentration of DNA in a flowing stream for high-sensitivity capillary electrophoresis. Analytical Chemistry 75, 4467-4474.
Park, S. Y., Russo, C. J., Branton, D., and Stone, H. A. (2006). Eddies in a bottleneck: An arbitrary Debye length theory for capillary electroosmosis. Journal of Colloid and Interface Science 297, 832-839.
Pennathur, S., and Santiago, J. G. (2005). Electrokinetic transport in nanochannels. 1. Theory. Analytical Chemistry 77, 6772-6781.
Plecis, A., Schoch, R. B., and Renaud, P. (2005). Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Letters 5, 1147-1155.
Porras, S. P., Marziali, E., Gas, B., and Kenndler, E. (2003). Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis. Electrophoresis 24, 1553-1564.
Probstein, R. F. (1994). Physicochemical hydrodynamics: an Introduction (2nd ed.). John Wiley and Sons, New York.
Pu, Q. S., Yun, J. S., Temkin, H., and Liu, S. R. (2004). Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Letters 4, 1099-1103.
Qu, W. L., and Li, D. Q. (2000). A model for overlapped EDL fields. Journal of Colloid and Interface Science 224, 397-407.
Ramos, A., Morgan, H., Green, N. G., and Castellanos, A. (1998). Ac electrokinetics: a review of forces in microelectrode structures. Journal of Physics D-Applied Physics 31, 2338-2353.
Ramos, A., Morgan, H., Green, N. G., and Castellanos, A. (1999). AC electric-field-induced fluid flow in microelectrodes. Journal of Colloid and Interface Science 217, 420-422.
Ross, D., and Locascio, L. E. (2002). Microfluidic temperature gradient focusing. Analytical Chemistry 74, 2556-2564.
Rubinstein, I., and Shtilman, L. (1979). Voltage against current curves of cation-exchange membranes. Journal of the Chemical Society-Faraday Transactions Ii 75, 231-246.
Salimi-Moosavi, H., Jiang, Y. T., Lester, L., McKinnon, G., and Harrison, D. J. (2000). A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices. Electrophoresis 21, 1291-1299.
Schoch, R. B., van Lintel, H., and Renaud, P. (2005). Effect of the surface charge on ion transport through nanoslits. Physics of Fluids 17, 100604.
Shackman, J. G., and Ross, D. (2007). Counter-flow gradient electrofocusing. Electrophoresis 28, 556-571.
Shaw, D. J. (1980). Introduction to Colloid and Surface Chemistry. Butterworths, London.
Shultz-Lockyear, L. L., Colyer, C. L., Fan, Z. H., Roy, K. I., and Harrison, D. J. (1999). Effects of injector geometry and sample matrix on injection and sample loading in integrated capillary electrophoresis devices. Electrophoresis 20, 529-538.
Song, S., Singh, A. K., and Kirby, B. J. (2004). Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. Analytical Chemistry 76, 4589-4592.
Squires, T. M., and Bazant, M. Z. (2004). Induced-charge electroosmosis. Journal of Fluid Mechanics 509, 217-252.
Stein, D., Kruithof, M., and Dekker, C. (2004). Surface-charge-governed ion transport in nanofluidic channels. Physical Review Letters 93, 035901.
Stokes, R. J., and Evans, D. F. (1997). Fundamentals of Interfacial Engineering. Wiley-Vch, Inc., New York.
Stratton, J. A. (1941). Electromagnetic Theory. McGraw-Hill, New York.
Stroock, A. D., Weck, M., Chiu, D. T., Huck, W. T. S., Kenis, P. J. A., Ismagilov, R. F., and Whitesides, G. M. (2000). Patterning electroosmotic flow with patterned surface charge. Physical Review Letters 84, 3314-3317.
Swinney, K., and Bornhop, D. J. (2002). Quantification and evaluation of Joule heating in on-chip capillary electrophoresis. Electrophoresis 23, 613-620.
Takhistov, P., Duginova, K., and Chang, H. C. (2003). Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions. Journal of Colloid and Interface Science 263, 133-143.
Tang, G. Y., Yang, C., Chai, C. K., and Gong, H. Q. (2004). Numerical analysis of the thermal effect on electroosmotic flow and electrokinetic mass transport in microchannels. Analytica Chimica Acta 507, 27-37.
Tessier, F., and Slater, G. W. (2006). Effective Debye length in closed nanoscopic systems: A competition between two length scales. Electrophoresis 27, 686-693.
Thompson, A. P. (2003). Nonequilibrium molecular dynamics simulation of electroosmotic flow in a charged nanopore. Journal of Chemical Physics 119, 7503-7511.
Urbanski, J. P., Thorsen, T., Levitan, J. A., and Bazant, M. Z. (2006). Fast AC electroosmotic micropumps with nonplanar electrodes. Applied Physics Letters 89, 143508.
van der Heyden, F. H. J., Stein, D., and Dekker, C. (2005). Streaming currents in a single nanofluidic channel. Physical Review Letters 95, 116104.
van der Heyden, F. H. J., Bonthuis, D. J., Stein, D., Meyer, C., and Dekker, C. (2006). Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Letters 6, 2232-2237.
van der Heyden, F. H. J., Bonthuis, D. J., Stein, D., Meyer, C., and Dekker, C. (2007). Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Letters 7, 1022-1025.
Wang, Y. C., Stevens, A. L., and Han, J. Y. (2005). Million-fold preconcentration of proteins and peptides by nanofluidic filter. Analytical Chemistry 77, 4293-4299.
White, F. M. (1991). Viscous Fluid Flow (2nd ed.). McGraw-Hill, Singapore.
Wu, J. (2006). Biased AC electroosmosis for on-chip bioparticle processing. IEEE Transactions on Nanotechnology 5, 84-89.
Xuan, X. C., Sinton, D., and Li, D. Q. (2004a). Thermal end effects on electroosmotic flow in a capillary. International Journal of Heat and Mass Transfer 47, 3145-3157.
Xuan, X. C., Xu, B., Sinton, D., and Li, D. Q. (2004b). Electroosmotic flow with Joule heating effects. Lab on a Chip 4, 230-236.
Yamada, M., Nakashima, M., and Seki, M. (2004). Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Analytical Chemistry 76, 5465-5471.
Yang, J., Lu, F. Z., Kostiuk, L. W., and Kwok, D. Y. (2003). Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. Journal of Micromechanics and Microengineering 13, 963-970.
Yang, R. J., Fu, L. M., and Hwang, C. C. (2001). Electroosmotic entry flow in a microchannel. Journal of Colloid and Interface Science 244, 173-179.
Yang, R. J., Tseng, T. I., and Chang, C. C. (2005). End effects on electroosmotic flows in microchannels. Journal of Micromechanics and Microengineering 15, 254-262.
Yang, X. L., and Zhang, G. G. (2007). Simulating the structure and effect of the electrical double layer at nanometre electrodes. Nanotechnology 18, 335201.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top