(3.238.36.32) 您好!臺灣時間:2021/02/27 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張晏徵
研究生(外文):Yen-cheng Chang
論文名稱:貼附式壓電材料懸臂樑具焦電效應之振動分析
論文名稱(外文):Dynamics of Timoshenko Beam Surface Mounted With Piezoelectric Material Inculding Pyroelectric Effect
指導教授:王榮泰
指導教授(外文):Rong-tai Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:110
中文關鍵詞:有限元素法回授控制制振荷密頓定理邊界條件壓電材料模態法Newmark 法動態模擬Gain 值模態頻率Lagrange 方程式控制方程式
外文關鍵詞:actuatorfeedbackgainsensorpiezoelectricpyroelectricfinite elementmodal frequenciestemperature distributionvibration suppression
相關次數:
  • 被引用被引用:1
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文目的為探討貼附式壓電材料懸臂樑之動態響應,而以有限元素法為動態模擬的基底,並以模態法來驗證有限元素法之可行性;再以有限元素方式做回授控制,分析此一結構在回授控制的制振效果。

此結構中的第一和第三跨距為單層的鋁材,第二跨距為三層的壓電三明治複合層樑,其中上下層為壓電材料、中間層為鋁材所構成。

我們利用結構的應力、應變場與連續位移條件推出應變能&動能方程式,再以Hamilton’s Principle求得governing equations & boundary conditions。

在模態法方面,利用governing equations求得壓電層樑之運動方程式,再利用boundary conditions找出各跨距左右端點之關係,進而計算出模態頻率。

在有限元素法方面,則使用靜態結構方程式推導出其位移場之通解,藉由應變能項與動能項計算出結構的勁度矩陣和質量矩陣,建立出有限元素模型,再利用堆疊方式經Lagrange’s equation 解出系統的模態頻率,並選取不同數目之元素來堆疊此結構,將結果與模態法之結果相較,以此確認有限元素法之可行性。

在回授控制方面,用有限元素法為基底,再以Newmark’s scheme對此結構進行動態模擬其制振情況。並探討壓電材料之Gain值、位置、長度&厚度效應對於整體結構的制振效果。
The dynamics of Timoshenko beams surface mounted with piezoelectric materials inculding the pyroelectric effect is studied. The finite element approach is presented. The static responses obtained by the approach is exact the same as those by analytic method. Furthermore, the modal frequencies of the beam obtained by the approach also compare well with those by analytic method.
One layer of piezoelectric layer acts as a sensor and the other layer acts as an actuator via a feedback system. The effects of gain of the feedback system, and the location, length, thickness and temperature distribution of the piezoelectric materials on the vibration suppression of the beam are investigated.
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XI
第一章 緒論 1
§1-1 前言 1
§1-2 文獻回顧 3
§1-3 論文架構 6
第二章 研究架構 7
§2-1 架構流程 7
§2-2 本文基本假設 8
第三章 研究方法及內容 9
§3-1 運動方程式推導 9
§3-1-1 初始設定 9
§3-1-2 Timoshenko Beam之應力 & 應變 11
§3-1-3 應變能( S ) & 動能( T ) 12
§3-1-4 透過Hamilton’s principle獲得governing equations & boundary conditions 14
§3-1-5 governing equations & boundary conditions 16
§3-2 有限元素法分析 19
§3-2-1 靜態平衡方程式 19
§3-2-2 以矩陣形式表示位移函數 20
§3-2-3 以兩端點表示位移場 21
§3-2-4 單位元素之勁度矩陣 & 質量矩陣 22
§3-2-5 單位元素矩陣堆疊 23
§3-2-6 自然振動頻率 23
§3-3 模態法分析 24
§3-3-1 改寫governing equagotions,使雙變數函數拆為兩單變數函數 24
§3-3-2 以矩陣形式表示位移函數 25
§3-3-3 以矩陣形式表示力場函數 26
§3-3-4 位移場&力場組合以跨距兩端點表示 27
§3-3-5 自然振動頻率 29
§3-4 回授控制分析 30
§3-4-1 感測器(Sensor)輸出之電流 31
§3-4-2 制動器(Actuator)與感測器(Sensor)之作用力 31
§3-4-3 回授阻尼矩陣 32
§3-4-4 Newmark’s scheme 33
第四章 案例探討與模擬數據分析 34
§4-1 案例探討有限元素模型 34
§4-1-1 各參數值 35
§4-1-2 有限元素法和模態法之自然頻率比較 35
§4-1-3 位移模態圖 39
§4-2 案例探討回授控制影響 40
§4-2-1 效應推論 40
§4-2-2 解析解與有限元素之相互印證 42
§4-2-3 壓電片位置對感測器應變之影響 43
§4-2-4 壓電片厚度對感測器應變之影響 44
§4-2-5 比較在不同外力影響下之w位移 (改變壓電片位置) 45
§4-2-6 比較在不同外力影響下之w位移(改變壓電片長度 ) 46
§4-2-7 比較在不同外力影響下之w位移(改變壓電片厚度 ) 47
§4-2-8 Gain值效應 48
§4-2-9 壓電材料之位置效應( 效應) 57
§4-2-10 壓電材料之長度效應( 效應) 66
§4-2-11 壓電材料之厚度效應( 效應) 75
第五章 結論與建議 84
§5-1 結論 84
§5-2 建議 86
參考文獻 87
附錄A 91
附錄B 92
自述 96
1.C.Q.Chen, X. M. Wang and Y. P. Shen, "Finite element approach of vibration control using self-sensing piezoelectric actuators." Computers and Structures, Vol.60, No. 3, pp. 505-512, 1996.
2.H. S. Tzou, and G. C. Wang, "Distributed structural dynamics control of flexible manipulators-I. Structural dynamics and viscoelastic actuator. " Computers and Structures, Vol. 35, pp. 669-677, 1990.
3.S. K. Ha, C. Keilers, and F. K. Chang, "Finite element analysis of composite structures containing distributed piezoelectric sensors and actuators. " AIAA Journal, Vol. 30, pp. 772-780, 1992.
4.A. Benjeddou, M. A. Trindade, and R. Ohayon, "New shear Actuated Smart Structure Beam Finite Element." AIAA Journal, Vol. 37, pp. 378-383, 1999.
5.D. H. Robbins and J. N. Reddy, "Analysis of piezoelectrically actuated beams using a layer-wise displacement theory," Computers and Structures 41(2), 265-279 (1991)
6.J. G. Smits, and W. S. Choi, "The Constituent Equations of Piezoelectric Heterogeneous Bimorphs." Ultrasonics, Ferroelectricsc and Frequency Control, IEEE Transactions, Vol. 38, no. 3, pp. 256-270, 1991.
7.J. G. Smits, "Desigen consideration of a Piezoelectric-on-silicon microrobot." Sensor and Actuators, A35, pp. 129-135, 1992.
8.S. Brooks and P. Heyliger, "Static Behavior of Piezoelectric Laminates with Distributed and Patched Actuators," Journal of Intelligent Material Systems and Structures 5(5), 635-646 (1994)
9.G. P. Dube, S. Kapuria, and P. C. Dumir, "Exact piezothermoelastic solution of simply-supported orthotropic flat panel in cylindrical bending." Journal of Intelligent Material Systems and Structures. Vol. 38, no. 11, pp. 1161-1177, 1996.
10.M. D. Sciuva and U. Icardi, "Large deflection of adaptive multilayered Timoshenko beams," Composite structures 31(1), 49-60 (1995)
11.Q. Meng. M. J. Jurgents, and K. Deng, "Modeling of the electromechanical performance of piezoelectric laminated microactuators." Journal of micromechanics and microengineering, Vol. 3, pp. 18-23, 1993.
12.H. J. Ding, and W. Q. Chen, "New state space formulations for transversely isotropic piezoelectricity with applications." Mechanics research communications, Vol. 27, No. 3, pp. 319-326, 2000.
13.Xu K, Noor A. K. , and Tang Y. Y. , "Three-dimensional solutions for free vibrations of initially-stressed thermoelectroelastic multilayered plates." Computer Methods in Applied Mechanics and Engineering, Vol. 141, pp.125-139, 1997.
14.D. A. Saravanos and P. R. Heyliger, "Coupled Layerwise Analysis of Composite Beams with Embedded Piezoelectric Sensors and Actuators," Journal of Intelligent Material Systems and Structures 6(3), 350-363 (1995)
15.Y.-H. Zhou and J. Wang, "Vibration control of piezoelectric beam-type plates with geometrically nonlinear deformation," International Journal of Non-Linear Mechanics 39(6), 909-920 (2004)
16.X. D. Zhang and C. T. Sun, "Formulation of an adaptive sandwich beam," Smart Materials and Structures 5(6), 814-823 (1996)
17.C. N. Della and D. Shu, "Vibration of beams with piezoelectric inclusions," International Journal of Solids and Structures 44(7-8), 2509-2522 (2007)
18.J. G. Smits, and A. Ballato, "Dynamic admittance matrix of cantilever bimorphs." Journal of Microelectromech System, Vol. 3, No. 3, pp. 105-112, 1994.
19.Jing H. Hung, and Heng-I Yu, "Dynamic electromechanical response of piezoelectric plates as sensors or actuators." Materials Letters, Vol. 45, pp. 70-80, 2000.
20.J. G. Smits, W. S. Choi, and A.Ballato, "Resonance and antiresonance of symmetric and asymmetric piezoelectric flexors." Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 44, No. 2, pp. 250-258, 1997.
21.J. Pan, C. H. Hansen, and S. D. Snyder, "A study of response of a simple supported beam to excitation by a piezoelectric actuator." Jounal of Intelligent Material Systems and Structures, Vol. 3, pp. 120-130, 1992.
22.M. C. Ray, K. M. Rao, and B. Samanta, "Exact solution for static analysis of an intelligent structure under cylindrical bending." Computer and Structures, Vol. 47, No. 6, pp.1031-1042, 1993.
23.H. Abramovich, and A. Livshits, "Dynamic behavior of cross-plylaminated beams with piezoelectric layers." Computer Structures, Vol. 25, pp. 371-379, 1993.
24.C. K. Lee, "Piezoelectric laminates: theory and experiments for distributed sensors and actuators," Intelligent Structural Systems 77-167 (1992)
25.G. S. Agens, "Development of a model for simultaneous active and passive piezoelectric vibration suppression." Journal of Intelligent Material Systems and Structures, Vol. 6, pp. 482-487, 1995.
26.A. Baz, "Boundary control of beams using active constrained layer damping." Transaction of the ASME, Journal of Vibration and Acoustics, Vol. 119, pp. 166-172, 1997.
27.H. S. Tzou, and C. I. Tseng, "Distributed vibration contral and Identification of Coupled Elastic/Piezoelectric System: Finite Element Formulatino and Application." Mechanical Systems and Signal Processing, Vol. 5, No. 3, pp. 215-231, 1991.
28.J. A. Rongong, J. R. Wright, R. J. Wynne and G. R. Tomlinson, "Modelling of a hybrid constrained layer/piezoceramic approach to active damping," Journal of vibration and acoustics 119(1), 120-130 (1997)
29.S. H. Chen, Z. D. Wang and X. H. Liu, "Active Vibration Control and Suppression for Intelligent Structures," Journal of Sound and Vibration 200, 167-177 (1997)
30.I. Y. Shen, "A variational formulation, a work-energy relation and damping mechanisms of active constrained layer treatments," Journal of vibration and acoustics 119(2), 192-199 (1997)
31.Y. K. Kang, H. C. Pack, W. Hwang, and K. S. Han, "Optimum placement of piezoelectric sensor/actuator for vibration control of laminated beams." AIAA Journal, Vol. 30, No. 3, pp. 347-357, 1992.
32.Y. Nam, J. Joh, M. Sasaki and H. Yamada, "Vibration suppression of a piezoelectric beam using a self-sensing algorithm," in ICMIT 2005: Information Systems and Signal Processing, pp. 60412Y-60416, SPIE (2005).
33.B. J. G. Vautier and S. O. R. Moheimani, "Avoiding hysteresis in vibration control using piezoelectric laminates," in Decision and Control, Proceedings. 42nd IEEE Conference on, pp. 269-274 Vol.261 (2003).
34.S. Narayanana, V. Balamuruganb,* "Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators", Journal of Sound and Vibration 262, 529–562 (2003)
35.Jian Ping Jiang*, Dong Xu Li, "A new finite element model for piezothermoelastic
composite beam", Journal of Sound and Vibration 306, 849–864 (2007)
36.K. Chandrashekhara and R. Tenneti, "Thermally induced vibration suppression of laminated plates with piezoelectric sensors and actuators" , Smart Material and Structures 4, pp. 281-290 (1995)
37.X. Q. Peng, K. Y. Lam and G. R. Liu, "Active Vibration Control of Composite Beams with Piezoelectrics: A Finite Element Model with Third Order Theory," Journal of Sound and Vibration 209, 635-650 (1998)
38.S. M. Yang and Y. J. Lee, "Interaction of structure vibration and piezoelectric actuation," Smart Materials and Structures 3(4), 494-500 (1994)
39.Rajesh Duggirala and Amit Lal, "A Hybrid PZT-Silicon Microvalve",Journal of Microelectromechanical Systems, Vol. 14. No. 3, June 2005.
40.S. Raja, R. Sreedeep and G. Prathap, "Bending Behavior of Hybrid-Actuated Piezoelectric Sandwich Beams," Journal of Intelligent Material Systems and Structures 15(8), 611-619 (2004)
41.H. Antes , "Dynamic analyses of plane frames by integral equations for bars and Timoshenko beams ", Journal of Sound and Vibration 276, pp. 807-836, (2004)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔