[1] R. Feynman, “There is plenty of room at the bottom,” Journal of Microelectromechanical Systems, Vol. 1, pp. 60-66, 1992.
[2] R. Feynman, “Infinitesimal machinery,” Journal of Microelectromechanical Systems, Vol. 2, pp. 4-14, 1993.
[3] M. Madou, “Fundamentals of microfabrication,” CRC Press, New York,
1997.
[4] N. Maluf, “An introduction to microelectromechanical systems engineering,” Artech House, Boston, 2000.
[5] A. T. Woolley, K. Q. Lao, A. N. Glazer, and R. A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection,” Analytical Chemistry, Vol. 70, pp. 684-688, 1998.
[6] Y. H. Chang, G. B. Lee, F. C. Huang, Y. Y. Chen, and J. L. Lin, “Integrated polymerase chain reaction chips utilizing digital microfluidics,” Biomedical Microdevices, Vol. 8, pp. 215-225, 2006.
[7] K. Seiler, D. J. Harrison, and A. Manz, “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems,” Journal of Chromatography, Vol. 593, pp. 253-258, 1992.
[8] M. Butler, “Animal cell culture & technology,” BIOS Scientific Publishers, 2004.
[9] M. E. Kempner, and R. A. Felder, “A review of cell culture automation,” Journal of the Association for Laboratory Automation, Vol. 7, pp. 56-62, 2002.
[10] R. Gómez, R. Bashir, A. Sarikaya, M. R. Ladisch, J. Sturgis, J. P. Robinson, T. Geng, A. K. Bhunia, H. L. Apple, and S. Wereley, “Microfluidic biochip for impedance spectroscopy of biological species,” Biomedical Microdevices, Vol. 3, pp. 201-209, 2001.
[11] R. Gómez, R. Bashir, and A. K. Bhunia, “Microscale electronic detection of bacterial metabolism,” Sensors and Actuators B, Vol. 86, pp. 198-208, 2002.
[12] G. M. Walker, M. S. Ozers, and D. J. Beebe, ”Insect cell culture in microfluidic channels,” Biomedical Microdevices, Vol. 4, pp. 161-166, 2002.
[13] S. Raty, J. A. Davis, D. J. Beebe, S. L. Rodriguez-Zas, and M. B. Wheeler, “Culture in microchannels enhances in vitro embryonic development of preimplantation mouse embryos,” Theriogenology, Vol. 55, pp. 241, 2001.
[14] D. Beebe, M. Wheeler, H. Zeringue, E. Walters, and S. Raty, “Microfluidic technology for assisted reproduction,” Theriogenology, Vol. 57, pp. 125-135, 2002.
[15] H. Moriguchi, Y. Wakamoto, Y. Sugio, K. Takahashi, I. Inoue, and K. Yasudam, “An agar-microchamber cell-cultivation system: flexible change of microchamber shapes during cultivation by photo- thermal etching,” Lab on a Chip, Vol. 2, pp. 125-130, 2002.
[16] K. Kojima, H. Moriguchi, A. Hattori, T. Kaneko, and K. Yasuda, “Two-dimensional network formation of cardiac myocytes in agar microculture chip with 1480 nm infrared laser photo-thermal etching,” Lab on a Chip, Vol. 3, pp. 292-296, 2003.
[17] W. J. Chang, D. Akin, M. Sedlak, M. R. Ladisch, and R. Bashir, “Poly(dimethylsiloxane) (PDMS) and silicon hybrid biochip for bacterial culture,” Biomedical Microdevices, Vol. 5, pp. 281-290, 2003.
[18] A. M. Taylor, M. Blurton-Jones, S. W. Rhee, D. H. Cribbs, C. W. Cotman, and N. L. Jeon, “A microfluidic culture platform for CNS axonal injury, regeneration and transport,” Nature Methods, Vol. 2, pp. 599-605, 2005.
[19] M. J. Powers, K. Domansky, M. R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K. E. Wack, D. B. Stolz, R. Kamm, and L. G. Griffith, “A microfabricated array bioreactor for perfused 3D liver culture,” Biotechnology and Bioengineering, Vol. 78, pp. 257-269, 2002.
[20] F. Lemaire, C. A. Mandon, J. Reboud, A. Papine, J. Angulo, H. Pointu, C. Diaz-Latoud, C. Lajaunie, F. Chatelain, A. P. Arrigo, and B. Schaack, “Toxicity assays in nanodrops combining bioassay and morphometric endpoints,” Toxicology Letters, Vol. 172, pp. 93-94, 2007.
[21] K. Bhadriraju and C. S. Chen, “Engineering cellular microenvironments to improve cell-based drug testing,” Drug Discovery Today, Vol. 11, pp. 612-620, 2002.
[22] T. H. Park, and M. L. Shuler, “Integration of cell culture and microfabrication technology,” Biotechnology Progress, Vol. 19, pp. 243-253, 2005.
[23] E. L. LeCluyse, “Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation,” European Journal of Pharmaceutical Sciences, Vol. 13, pp. 343-368, 2001.
[24] T. Ma, S. T. Yang, and D.A. Kniss, “Development of an in vitro human placenta model by the cultivation of human trophoblasts in a fiber-based bioreactor system,” Tissue Engineering, Vol. 5, pp. 91-102, 1999.
[25] H. Mirzadeh, F. Shokrolashi, and M. Daliri, “Effect of silicon rubber crosslink density in fibroblast cell behavior in vitro,” Journal of Biomedical Materials Research, Vol. 67A, pp. 727-732, 2003.
[26] J. N. Lee, X. Jiang, D. Ryan, and G. M. Whitesides, “Compatibility of mammalian cells on surfaces of polydimethylsiloxane,” Langmuir, Vol. 20, pp. 11684-11691, 2004.
[27] S. G. Charati, and S. A. Sterm, “Diffusion of gases in silicone polymers: molecular dynamic simulations,” Macromolecules, Vol. 31, pp. 5529-5535, 1998.
[28] J. R. Anderson, D. T. Chiu, J. C. McDonald, R. J. Jackman, O. Cherniavskaya, H. Wu, S. Whitesides, and G. M. Whitesides, “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Analytical Chemistry, Vol. 72, pp. 3158-3164, 2000.
[29] M. H. Wu, J. P. G. Urban, Z. Cui, and Z. F. Cui, “Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture,” Biomedical Microdevices, Vol. 8, pp. 331-340, 2006.
[30] P. J. Hung, P. J. Lee, P. Sabounchi, N. Aghdam, R. Lin, and L. P. Lee, “A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in high throughput mammalian cell culture array,” Lab on a Chip, Vol. 5, pp. 44-48, 2004.
[31] W. Gu, X. Zhu, N. Futai, B. S. Cho, and S. Takayama, “Computerized microfluidic cell culture using elastomeric channels and braille displays,” Proceedings of the National Academy of Sciences, Vol. 9, pp. 15861-15866, 2004.
[32] B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab on a Chip, Vol. 5, pp. 401-406, 2005.
[33] A. Paguirigan, and D. J. Beebe, “Gelatin based microfluidic devices for cell culture,” Lab on a Chip, Vol. 6, pp. 407-413, 2006.
[34] D. D. Carlo, L. Y. Wu, and L. P. Lee, “Dynamic single cell culture array,” Lab on a Chip, Vol. 6, pp. 1445-1449, 2006.
[35] M. H. Wu, J. P. G. Urban, Z. F. Cui, Z. Cui, and X. Xu, “Effect of extracellular pH on matrix synthesis by chondrocytes in 3D agarose gel,” Biotechnology Progress, Vol. 23, pp. 430-434, 2007.
[36] M. Sittinger, O. Schultz, G. Keyszer, W. W. Minuth, and G. R. Burmester, “Artificial tissues in perfusion culture,” The International Journal of Artificial Organs, Vol. 20, pp. 57-62, 1997.
[37] J. T. Borenstein, H. Terai, K. R. King, E. J. Weinberg, M. R. Kaazempur-Mofrad, and J. P. Vacanti, “Microfabrication technology for vascularized tissue engineering,” Biomedical Microdevices, Vol. 4, pp. 167-175, 2002.
[38] A. Tourovskaia, X. Figueroa-Masot, and A. Folch, “Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies,” Lab on a Chip, Vol. 5, pp. 14-19, 2005.
[39] M. Stangegaard, S. Petronis, A. M. Jørgensen, C. B. V. Christensen and M. Dufva, “A biocompatible micro cell culture chamber (μCCC) for the culturing and on-line monitoring of eukaryote cells,” Lab on a Chip, Vol. 6, pp. 1045-1051, 2006.
[40] H. Kaji, M. Nishizawa, and T. Matsue, “Localized chemical stimulation to micropatterned cells using multiple laminar fluid flows,” Lab on a Chip, Vol. 3, pp. 208-211, 2003.
[41] A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, “The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors,” Biotechnology Progress, Vol. 20, pp. 338-345, 2004.
[42] B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab on a Chip, Vol. 5, pp. 401-406, 2005.
[43] F. K. Balagaddé, L. You, C. L. Hansen, F. H. Arnold, and S. R. Quake, “Long-term monitoring of bacteria undergoing programmed population control in a microchemostat,” Science, Vol. 309, pp. 137-140, 2005.
[44] C. W. Huang, S. B. Huang, and G. B. Lee, “A microfluidic system for automatic cell culturing,” Sensors and Actuators B: Chemical, Vol. 17, pp. 1266-1274, 2007.
[45] S. B. Huang, M. H. Wu, Z. F. Cui, Z. Cui, and G. B. Lee, “A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance,” Journal of Micromechanics and Microengineering, Vol. 18, 045008 (12pp), 2008.
[46] Y. N. Yang, F. C. Huang, and G. B. Lee, “A new pneumatic micropump with a high pumping rate and a high back pressure,” International Conference on Advanced Manufacture, Tainan, 2007.
[47] D. J. Laser, and J. G. Santiago, “A review of micropumps,” Journal of Micromechanics and Microengineering, Vol. 14, pp. 35-64, 2004.
[48] P. Wang, Z. L. Chen, and H. C. Chang, “A new electro-osmotic pump based on silica monoliths,” Sensors and Actuators B: Chemical, Vol. 113, pp. 500-509, 2006.
[49] N. T. Nguyen, and T. Q. Truong, “A fully polymeric micropump with piezoelectric actuator,” Sensors and Actuators B: Chemical, Vol. 97, pp. 137-143, 2004.
[50] C. G. Cooney, and B. C. Towe, “A thermopneumatic dispensing micropump,” Sensors and Actuators A: Physical, Vol. 116, pp. 519-524, 2004.
[51] T. Bourouina, A. Bosseboeuf, and J. Grandchamp, “Design and simulation of an electrostatic micropump for drug-delivery applications,” Journal of Micromechanics and Microengineering, Vol. 7, pp. 186-188, 1997.
[52] S. Santra, P. Hollaway, and C. D. Batich, “Fabrication and testing of a magnetically actuated micropump,” Sensors and Actuators B: Chemical, Vol. 87, pp. 358-364, 2002.
[53] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, Vol. 288, pp. 113-116, 2000.
[54] C. H. Wang, and G. B. Lee, “Automatic bio-sampling chips integrated with micro-pumps and micro-valve for disease detection,” Biosensors and Bioelectronics, Vol. 21, pp. 419-425, 2005.
[55] C. H. Wang, and G. B. Lee, “Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 341-348, 2006.
[56] M.A.Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, Vol. 288, pp. 113-116, 2000.
[57] B. Bae, N. Kim, H. Kee, S. H. Kim, Y. Lee, S. Lee, and K. Park, “Feasibility test of an electromagnetically driven valve actuator for glaucoma treatment,” Journal of Microelectromechanical Systems, Vol. 11, pp. 344-542, 2002.
[58] J. S. Go, and S. Shoji, “A disposable, dead volume-free and leak-free in-plane PDMS microvalve,” Sensors and Actuators A: Physical, Vol. 114, pp. 438-444, 2004.
[59] J. H. Kim, K. H. Na, C. J. Kang, D. Jeon, and Y. S. Kim, “A disposable thermopneumatic-actuated microvalve stacked with PDMS layers and ITO-coated glass,” Microelectronic Engineering, Vol. 73-74, pp. 864-869, 2004.
[60] C. R. Tamanaha, L. J. Whitman, and R. J. Colton, “Hydric macro-micro fluidics system for a chip-based biosensor,” Journal of Micromechanics and Microengineering, Vol. 12, pp. 7-17, 2002.
[61] C. Yamahata, F. Lacharme, Y. Burri, and M. A. M. Gijs, “A ball valve micropump in glass fabricated by powder blasting,” Sensors and Actuators B: Chemical, Vol. 110, pp. 1-7, 2005.
[62] T. Pan, S. J. McDonald, E. M. Kai, and B. Ziaie, “A magnetically driven PDMS micropump with ball check-valves,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 1021-1026, 2005.
[63] W. H. Grover, A. M. Skelley, C. N. Liu, E. T. Lagally, and R. A. Mathies, “Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices,” Sensors and Actuators B: Chemical, Vol. 89, pp. 315-323, 2003.
[64] E. T. Lagally, J. R. Scherer, R. G. Blazej, N. M. Toriello, B. A. Diep, M. Ramchandani, G. F. Sensabaugh, L. W. Riley, and R. A. Mathies, “Integrated portable genetic analysis microsystem for pathogen/infectious disease detection,” Analytical Chemistry, Vol. 76, pp. 3162-3170, 2004.
[65] M. Kanai, H. Abe, T. Munaka, Y. Fujiyama, D. Uchida, A. Yamayoshi, H. Nakanishi, A. Murakamid, and S. Shoji, “Micro chamber for cellar analysis integrated with negligible dead volume sample injector,” Sensors and Actuators A: Physical, Vol. 114, pp. 29-34, 2004.
[66] V. Studer, R. Jameson, E. Pellereau, A. Pepin, and Y. Chen, “A microfluidic mammalian cell sorter based on fluorescence detection,” Microelectronic Engineering, Vol. 73-74, pp. 852-857, 2004.
[67] Y. C. Wang, M. H. Choi, and J. Han, “Two-dimensional protein separation with advanced sample and buffer isolation using microfluidic valves,” Analytical Chemistry, Vol. 76, pp. 4426-4431, 2004.
[68] S. Timoshenko, and S. Woinowsky-Krieger, ”Theory of plates and shells,” McGraw-Hill, New York, 1959.
[69] A. D. Kerr, and H. Alexander, “An application of the extended Kantorovich method to the stress analysis of a clamped rectangular plate,” Acta Mechanica, Vol. 6, pp. 180-196, 1968.
[70] 謝宗閔, “使用微機電系統技術進行微小型聚合酵素連鎖反應系統之研製,” 國立成功大學電機工程學系碩士論文, 2003.[71] 李正中, “薄膜光學與鍍膜技術,” 藝軒圖書出版社, 2001.
[72] B. E. Slentz, N. A. Penner, and F. E. Regnier, “Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization,” Journal of Chromatography A, Vol. 948, pp. 225–233, 2002.
[73] 戴健軒, “細胞分離及細胞核萃取之自動化晶片平台,” 國立成功大學工程科學系碩士論文, 2005.
[74] Data sheet for NANOTM SU8 negative tone photoresists, formulations 50 & 100, released by MICRO-CHEM. corp.
[75] Data sheet for NANOTM SU8 negative tone photoresists, formulations 2-25, released by MICRO-CHEM. corp.
[76] R. D. Anderson, and N. A. Berger, “Mutagenicity and carcinogenicity of topoisomerase-interactive agents,” Mutation Research, Vol. 309, pp. 109-142, 1994.
[77] R. Olinsji, P. Jaruga, M. Foksinski, K. Bialkowski, and J. Tujakowski, “Epirubicin-induced oxidative DNA damage and evidence for its repair in lymphocytes of cancer patients who are undergoing chemotherapy,” Molecular Pharmacology, Vol. 52, pp. 882-885, 1997.
[78] X. Y. Wu, H. J. Liu, J. Q. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. F. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nature Biotechnology, Vol. 21, pp. 41-46, 2003.
[79] J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nature Biotechnology, Vol. 21, pp. 47-51, 2003.
[80] T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, Vol. 65, pp. 55-63, 1983.