跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡惠菁
研究生(外文):Hui-ching Tsai
論文名稱:自動旋轉料架在最佳動態撿貨方式下之期望撿貨時間模式
論文名稱(外文):Expected travel time model for the optimal order picking sequence in an automated carousel system
指導教授:李賢得李賢得引用關係
指導教授(外文):Shine-Der Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工業與資訊管理學系碩博士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:54
中文關鍵詞:訂單撿貨自動旋轉料架自動倉儲系統期望撿貨時間
外文關鍵詞:Order pickingCarouselAutomatic warehousing systemExpected travel time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自動旋轉料架為自動倉儲系統的一種,在中小型商品之物流與製造作業上應用十分廣泛,在此系統中物件存放於儲存箱中,並形成環狀或近橢圓型排列,撿貨員作業位置為固定,等待料架以逆時針或順時針旋轉,將物件旋轉至撿貨員面前,以便撿取。與其它自動倉儲系統比較,自動旋轉料架之撿貨員位置為固定,物件為自動或機械化移動至撿貨員面前;而其他系統則是物件儲存位置固定,由撿貨員移動撿選訂單物件。
本研究探討一個等速率自動旋轉料架之訂單撿貨系統,撿貨員位於旋轉料架一個固定位置,根據訂單需要撿取物件,一次只能撿選一個訂單,即當訂單內的物件全部撿選完畢時,才能開始撿選另外一個訂單。本研究探討當一個訂單內包含多個物件下之最佳期望撿貨時間,即以最佳撿貨方式下完成一個訂單撿貨之期望時間,一個訂單撿貨時間之計算是以撿貨員在開始撿該訂單時所站的位置即為撿貨起始點,當撿完該訂單之最後一個物件為終點,亦即為下一個訂單之撿貨起始點。
本研究依據文獻之動態最佳撿貨方法與最近撿貨期望時間分析,根據最小擴展區間是否小於或者大於1/2圈,分別分析在不同撿貨數目下其最佳動態撿貨順序,據以建立最佳動態撿貨方式下之期望撿貨時間模式,分析在一個訂單內包含多個物件時之最佳期望撿貨時間。依據所建之數學模式,本研究以模擬方法比較理論連續模式之期望撿貨時間與實際離散料架的平均撿貨時間兩者之誤差,實驗參數包含不同料架大小(或不同儲存箱個數)與不同物件個數,計算在不同訂單大小下,每一個訂單在最佳撿貨方式下之平均撿貨時間,實驗發現當料架越大、物件個數越多,實際離散料架之平均撿貨時間與理論模式的期望撿貨時間之誤差越小,模擬結果發現最大誤差值為2.67%,最小誤差值為0.12%,平均誤差值為1.18%,故理論期望模式可應用於評估撿貨員之工作績效或料架規劃設計。
We consider the expected travel time model for the optimal dynamic order picking problem in a closed loop carousel convey. In this order picking system that is very popular for the small to medium sized items, the carousel rotates clockwise orcounterclockwise, and the item travels to the picker for the retrieval. This allows the picker to perform other tasks such as pack, label, process other items, when the carousel rotates. The concurrency of activity enables great retrieval and throughput performance.
The carousel order picking system is used to process a sequence of orders from customers in a dynamic fashion. Each order includes one or several items to be picked from the carousel storage or bins. The sequence among the items within an order is to be determined to minimize the total order processing cost or time. Based on the dominance condition of the optimal picking sequence, the expected travel time model to pick an order with several items is developed.
Computational experiments are performed to compare the performance of the expected travel time model with the simulation model, where the continuous model is used for devising the expected travel time, while a discrete number of storage bins is used in the simulation model. It has been shown that the model performs very well with average percentage deviation being 1.18%. It is also observed that the performance of the continuous model improves the number of bins increases.
中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究範圍與限制 2
1.4 研究方法 3
1.5 研究架構及流程 3
第二章 文獻回顧 5
2.1 自動倉儲系統 5
2.2 動態訂單撿貨 6
2.3 期望撿貨時間模式 8
第三章 最佳動態撿貨方式下之期望撿貨時間模式建構 10
3.1 動態撿貨問題描述 10
3.2 撿選兩物件之期望撿貨時間模式 12
3.3 最佳動態撿貨方式下之一般化期望撿貨時間模式 22
第四章 實驗結果與分析 36
4.1 模擬演算法的步驟 36
4.2 實驗與結果分析 37
第五章 結論與未來研究方向 43
5.1 研究結果 43
5.2 未來研究方向 43
參考文獻 45
附錄一 演算實驗之C程式碼 48
附錄二 撿貨物件為3之期望撿貨時間 53
中文部份:
郭彥均,自動旋轉料架的訂單撿貨問題之研究,成功大學工業管理研究所,中華民國八十六年六月。

英文部分:
Ashayeri, J., Gelders, L. F., and Van Wassenhove, L. (1995), “A microcomputer-based optimization model for the design of automated warehouse,”International Journal of
Production Research, Vol. 23, pp. 825-839.

Bozer, Y. A., and White, J. A. (1984), “Travel-time models for automated storage/retrieval systems,” IIE Transactions, Vol. 16, pp. 329-338.

Bartholdi, J. J., and Platzman, L. K. (1986), “Retrieval strategies for a carousel conveyor, ”IIE Transactions, Vol. 18, pp. 166-173.

Brookman, F. (1997), “CVS touts beauty, convenience in bid to build front-end sales,”Stores, pp. 74-79.

Han, M. H., McGinnis, L. F., Shieh, J. S., and White, J. A. (1987), “On sequencing retrievals in an automated storage/ retrieval systems,” IIE Transactions, Vol. 19, pp. 56-66.

Hassini, E., and Vickson, R. G. (2003), “A two-carousel storage location problem,”Computers & Operations Research, Vol. 30, pp. 527-539.

Hwang, H., Song, Y. K., and Kim, K. H. (2004), “The impacts of acceleration/deceleration on travel time models for carousel systems,” Computers & Industrial Engineering, Vol. 46, pp. 253-265.

Jacobs, D. P., Peck, J. C., and Davis, J. S. (2000), “A simple heuristic for maximizing service of carousel storage,” Computers & Operations Research, Vol. 27, pp. 1351-1356.

Karasawa, Y., Nakayama, H., and Dohi, S. (1980), “Trad-off analysis for optimal design of automated warehouse,” International Journal of Systems Science, Vol. 11, pp. 567-576.

Lee, H. F., and Schaefer, S. K. (1996), “Sequencing methods for automated storage and retrieval systems with dedicated storage,”Computer and Industrial engineering, Vol. 32, pp. 351-362.

Lee, S. D., and Kuo, Y. C. (2008), “ Exact and inexact solution procedures for the order picking in an automated carousal conveyor,”International Journal of Production Research, Vol. 46, pp. 4619-4636.

Lin, C. H., and Lu, I. Y. (1999), “The procedure of determining the order picking strategies in distribution center,” International Journal Production Economics, Vol. 60, pp. 301-307.

Litvak, N., and Adan, I. (2001), “The travel time in carousel systems under the nearest item heuristic,” Journal of Applied Probability, Vol. 38, pp. 45-54.

Litvak, N., and Vanzwet, W. R. (2004), “On the minimal travel time needed to collect n items on a circle,” The Annals of Applied Probability, Vol. 14, pp. 881-902.

Litvak, N. (2006), “Optimal picking of large orders in carousel systems,” Operations Research Letters, Vol. 34, pp. 219-227.

Roberts, S. D., and Reed, J. R. (1972), “Optimal warehouse bay configurations,” IIE Transactions, Vol. 4, pp. 178-185.

Rosenblatt, M. J., and Roll, Y. (1984), “ Warehouse design with storage policy considerations,” International Journal of Production Research, Vol. 22, pp. 809-821.

Rosenblatt, M. J., Roll, Y., and Zyser, V. (1993), “A combined optimization and simulation approach for designing automated storage/retrieval systems,” IIE Transactions,Vol. 25, pp. 40-50.

Sarker, B. R. and Babu, P. S. (1995), “Travel time models in automated storage/retrieval systems:a critical review,” International Journal of Production Economics, Vol.40, pp. 173-184.

Trunk, C. (1996), “Scaling new heights with vertical carousels,” Material Handling Engineering, pp. 43-51.

Wisnia, S. E. (1997), “Running to the rescue,”Industrial Distribution, pp. 86-120.

Yeh, D. H. (2002), “A note on a simple heuristic for maximizing service of carousel storage,” Computers & Operations Research, Vol. 29, pp. 1605-1608.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top