跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 14:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宛菁
研究生(外文):Wan-jing Chen
論文名稱:生物可分解性共聚酯類高分子與phenoxy或聚乙烯對苯二甲酸酯摻合系統之化學交換反應與相容性
論文名稱(外文):Phase Compatibilization Induced by Chemical Exchange Reactions in Blends of Biodegradable Copolyesters with Poly(hydroxy ether of bisphenol-A) or Poly(ethylene terephthalate)
指導教授:吳逸謨
指導教授(外文):Eamor M. Woo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:109
中文關鍵詞:相容性化學交換反應摻合
外文關鍵詞:blendchemical exchange reactionscompatibilization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
本研究最主要是利用微分掃描熱卡計(DSC)、偏光顯微鏡(POM)、傅利葉紅外線光譜儀(FT-IR)與固態核磁共振儀(solid-state NMR)來觀察探討copolyester/poly(hydroxy ether of bisphenol-A) (copolyester/phenoxy)及copolyester/poly(ethylene terephthalate) (copolyester/PET)摻合系統之相容性。首先對於
copolyester/phenoxy部分,在poly(butylene adipate-co- butylene terephthalate)/phenoxy [P(BA-co-BT)/phenoxy]摻合系統中,利用溶劑摻合方式製備試樣後,經由POM觀察,其相型態呈現均相,且由DSC分析可發現皆為單一的玻璃轉移溫度(Tg),故於不定型態時,P(BA-co-BT)/phenoxy摻合系統為一相容的系統。經Flory-Huggins equation計算可得其分子間作用力參數(χ12)為-0.15。
而在poly(butylene succinate-co-butylene terephthalate)/phenoxy [P(BS-co-BT)/phenoxy]
摻合系統中,利用熔融摻合方式製備P(BS-co-BT)/phenoxy=50/50之摻合體,經由POM觀察相型態及DSC分析熱行為,結果呈現相分離。進一步將摻合體在280oC熱處理不同時間後,其相型態會逐漸變為均相,並由兩個Tg變為單一且狹窄的Tg。而在非恆溫降溫時,其結晶溫度會受循環熱處理時間與循環次數影響。因此推測在高溫熱處理時可能會產生化學反應,使摻合體由相分離轉變為均相。但摻合體未經熱處理與經過280oC熱處理後的NMR圖譜相似,可能是反應產生
的新共聚合物(copolymer)其結構與原本兩高分子結構相似,以致無法證明。
在copolyester/PET部分中,利用熔融摻合與溶劑摻合方式製備
P(BA-co-BT)/PET與P(BS-co-BT)/PET兩摻合系統的摻合試樣。在
P(BA-co-BT)/PET摻合系統中,以熔融摻合製備之所有組成,由POM及DSC的結果證明為一部分相容系統;將摻合試樣於280oC熱處理5分鐘後,會由部分相容變為完全相容的系統,顯示P(BA-co-BT)/PET
摻合體在經過熱處理後,會增加其相的均勻度,而成為完全相容的系統。由溶劑掺合製備之P(BA-co-BT)/PET (50/50)試樣於POM觀察相型態及DSC分析結果為相分離,將摻合體在280oC熱處理不同時間後,可發現由兩個Tg慢慢變為單一且狹窄的Tg。在非恆溫降溫時,其結晶溫度亦會受循環熱處理時間與循環次數影響。因此推測P(BA-co-BT)/PET摻合系統在經過熱處理後可能有化學反應存在,進而改變其相型態。進一步利用FTIR分析,發現隨著熱處理時間的增加,摻合體間會有斷鏈反應(chain scission reaction)發生。而在
P(BS-co-BT)/PET摻合系統中,分別利用熔融摻合製備所有組成之試樣與溶劑摻合製備50/50之試樣,經由POM與DSC觀察結果皆為均相,表示P(BS-co-BT)/PET摻合系統為一相容系統,而不是經由化學反應造成相容的。由結晶動力分析可知P(BS-co-BT)的加入,會降低PET的結晶速率。經Flory-Huggins equation計算可得其分子間作用力參數(χ12)為-0.96。
Compatibilization, transreactions, and miscibility in blends of poly(butylene adipate-co-butylene terephthalate) [P(BA-co-BT)] or poly(butylene succinate-co-butylene
terephthalate) [P(BS-co-BT)] with poly(hydroxy ether of bisphenol-A) (phenoxy) were investigated. Results of the copolyester/phenoxy blends were then compared to blends of P(BA-co-BT) or P(BS-co-BT) with a homopolyester, poly(ethylene terephthalate) (PET). Analyses were based on characterization by using differential scanning calorimetry (DSC), polarized-light microscopy (POM), Fourier transform infrared spectroscopy (FT-IR), and solid-state nuclear magnetic resonance (NMR). Analysis revealed that the P(BA-co-BT)/phenoxy blend exhibited a homogeneous phase and composition-dependent glass transition
temperature (Tg), showing miscibility. Polymer-polymer interaction parameter (χ12) was calculated to be -0.15 for the P(BA-co-BT)/phenoxy blend. These results demonstrate
miscibility in the P(BA-co-BT)/phenoxy blend. However, variation in the copolyester structure easily leads to phase separation in the copolyester/phenoxy blend. For example, P(BS-co-BT)/phenoxy blend (50/50 composition) exhibited immiscible phases with two Tg’s, although
the initially phase-separated blends could merge finally to a homogeneous phase with single Tg upon heating and annealing at 280oC for a period of time (60min). Chemical exchange reactions were likely leading to phase homogenization in the P(BS-co-BT)/phenoxy blend
upon annealing. NMR was performed on samples before and after 280oC-heating; but similarity in bonding did not yield analytical result.
Copolyester/polyester blends were further investigated to compare to the coployester/phenoxy blend. Both melt- and solvent-blended samples of P(BA-co-BT)/PET and
P(BS-co-BT)/PET blends were analyzed for discerning factors responsible for heat-induced phase homogenization. The melt-blended P(BA-co-BT)/PET blends showed composition-
dependent Tg only for blends of higher PET contents (PET>80%), indicating partial miscibility. After heating treatment at 280oC for 5 time, DSC revealed a single Tg in the P(BA-co-BT)/PET blend of all compositions. The result indicates that phase homogeneity between P(BA-co-BT) and PET in blend is enhanced with heating. The crystallization
temperature of the blend subjected to cyclic heating/cooling treatment is influenced by
the total annealing time. Some ester-ester transesterification reactions might likely occur
in the P(BA-co-BT) /PET blends. IR results showed that a chain scission reaction did occur in the P(BA-co-BT)/PET (50/50) blend. However, the melt-blended P(BS-co-BT)/ PET blends was found to be miscible in the melt state (or quenched state), whose binary interaction strength was determined to be χ12=-0.96, showing favorable interactions and a single phase homogeneity. Kinetic analysis by DSC shows that the crystallization rates decreases
with the addition of P(BS-co-BT) component. By contrast, solvent-blended P(BS-co-BT)/PET (50/50), with no heat annealing, exhibited a homogeneous phase and single Tg, i.e., miscibility behavior. Miscibility was concluded, as the results of phase behavior for melt-blended
P(BS-co-BT)/PET blend system is in agreement with the phase behavior for the solvent blended ones.
中文摘要 I
英文摘要 III
誌謝 V
總目錄 VI
表目錄 VIII
圖目錄 IX
第一章 簡介 1
第二章 原理 11
§ 2-1 高分子摻合系統混合熱力學 12
§ 2-2玻璃相轉移行為 14
§ 2-3 交酯化反應(transesterification)機制 14
§ 2-4平衡熔點下降 16
§ 2-5 結晶動力理論 18
第三章 實驗 20
§ 3-1 實驗所用的高分子與試藥 20
§ 3-2 實驗試樣之製備 21
§ 3-3 實驗所用之儀器 22
第四章 結果與討論 25
§ 4-1 Copolyester/phenoxy掺合系統 25
§ 4-1-1 P(BA-co-BT)/phenoxy相容性之探討 26
§ 4-1-2 P(BS-co-BT)/phenoxy相容性之探討 38
§ 4-2 Copolyester/PET 摻合系統 57
§ 4-2-1 P(BA-co-BT)/PET 相容性之探討 57
§ 4-2-2 P(BS-co-BT)/PET 相容性之探討 80
第五章 結論 101
參考文獻 104
自述 109
1. R. Ishioka, E. Kitakuni, Y. Ichikawa, in Biopolymers
Polyesters, Vol. 4, Y. Doi, A. Steinbuchel, Eds., Wiley-
VCH: Weinheim, Germany, 2002.
2. P. Gruber, M. O’Brien, in Biopolymers Polyesters, Vol.
4, Y. Doi, A. Steinbuchel, Eds., Wiley-VCH: Weinheim,
Germany, 2002.
3. J. Aatar, K. J. Gruys, in Biopolymers Polyesters, Vol.
4, Y. Doi, A. Steinbuchel, Eds., Wiley-VCH: Weinheim,
Germany, 2002.
4. Du Pont公司的藥品資料庫.
(http://www.dupont.com.tw/020604-c.htm)
5. Ire. Chemical公司的藥品資料庫.
(http://www.irechem.co.kr/)
6. M. Bank, J. Leffingwell, C. Thies, Macromolecules,
1971, 4, 43.
7. M. Nishimoto, H. Keskkula, D. R. Paul, Polymer, 1991,
32, 272.
8. D. J. Walsh, J. S. Higgins, A. Maconndchie, Polymer
Blends and Mixtures, Mijhoff Publishers, Boston, 1985.
9. C. J. T. Landry, H. Yang, J. S. Machell, Polymer, 1991,
32, 44.
10. M. M. Coleman, E. J. Moskala, Polymer, 1983, 24, 251.
11. D. F. Varnell, E. J. Moskala, P. C. Painter, M. M.
Coleman, Polym. Eng. Sci., 1983, 23, 658.
12. A. Eisenberg, M. Hara, Polym. Eng. Sci., 1984, 24,
1306.
13. M. Aubin, Y. Bedard, M. F. Morrissette, R. E.
Prudhomme, J. Polym. Sci. Phys. Ed., 1983, 21, 233.
14. J. M. Rodriguez-Parada, V. Percec, Macromolecules,
1986, 19, 55.
15. P. Godard, J. M. Dekoninck, V. Devlesaver, J. Devaux,
J. Polym. Sci., Polym. Chem. Ed., 1986, 24, 3301.
16. P. Godard, J. M. Dekoninck, V. Devlesaver, J. Devaux,
J. Polym. Sci., Polym. Chem. Ed., 1986, 24, 3315.
17. S. R. Murff, J. W. Barlow, D. R. Paul, J. Appl. Polym.
Sci., 1984, 29, 3231.
18. J. Devaux, P. Godard, J. P. Mercier, J. Polym. Sci.,
Polym. Phys. Ed., 1982, 20, 1881.
19. J. Devaux, P. Godard, J. P. Mercier, J. Polym. Sci.,
Polym. Phys. Ed., 1982, 20, 1901.
20. D. C. Wahrmund, D. R. Paul, J. W. Barlow, J. Appl.
Polym. Sci., 1978, 22, 2155.
21. J. Devaux, P. Godard, J. P. Mercier, Polym. Eng. Sci.,
1982, 22, 229.
22. B. D. Hanrahan, S. R. Angeli, J. Runt, Polym. Bull.,
1985, 14, 399.
23. I. Hopfe, G. Pompe, K. J. Eichhorn, L. Hauβler, J.
Molecl. Structure, 1995, 349, 443.
24. G. Pompe, L. Hauβler, Polymer , 1997, 35, 2161.
25. D. H. Huang, E. M. Woo, Colliod Polym. Sci., 2003,
284, 843.
26. Y. K. Chang, J. H. Youk, W. H. Jo, J. Appl. Polym.
Sci., 1999, 73, 1853.
27. H. W. Jun, S. H. Chae, S. S. Park, Polymer, 1999, 40,
1473.
28. M. E. Stewart, A. J. Cox, D. M. Naylor, Polymer, 1993,
34, 4060.
29. K. H. Yoon, S. C. Lee, H. Park, Polymer, 1997, 38,
6079.
30. T. D. Patcheak, S. A. Jabarin, Polymer, 2001, 42, 8975.
31. G. D. Choi, S. H. Kim, W. H. Jo, M. S. Rhim, J. Appl.
Polym. Sci., 1995, 55, 561.
32. A. M. Kenwright, S. K. Peace, Polymer, 1999, 40, 5851.
33. S. Collins, A. M. Kenwright, R. W. Richards,
Macromoleculs, 2000, 33, 2974.
34. A. M. Kenwright, S. K. Peace, R. W. Richards, Polymer,
1999, 40, 2035.
35. G. Montaudo, C. Puglisi, Macromolecules, 1998, 31, 650.
36. E. J. Moskala, D. F. Varnell, M. M. Coleman, Polymer,
1985, 26, 228.
37. J. W. Barlow, D. R. Paul, Ann. Rev. Mater. Sci., 1981,
11, 299.
38. J. E. Harris, S. H. Goh, D. R. Paul, J. W. Barlow, J.
Appl. Polym. Sci., 1982, 27, 839.
39. L. M. Robeson, A. B. Furtek, J. Appl. Polym. Sci.,
1979, 23, 645.
40. J. I. Equiazábal et al., Macromol. Sci. Phys., 1988,
B27(1), 19.
41. J. I. Equiazábal, J. Nazábal, J. Mater. Sci., 1990,
25, 1522.
42. I. González, J. I. Equiazábal, J. Nazábal, J. Appl.
Polym. Sci., 2006, 102, 3246.
43. M. Farmahini-Farahani, S. H. Jafari, H. A. Khonakdar,
A. Yavari, R. Bakhshi, M. Tarameshlou, Macromol.
Mater. Eng., 2007, 292, 1103.
44. R. W. Seymour, B. E. Zehner, J. Polym. Sci. Polym.
Phys. Ed., 1980, 18, 2299.
45. D. R. Paul, S. Newman, Eds., Polymer Blends, Academic,
New York, 1978, Vols. I and II.
46. J. I. Eguiazabal, J. J. Iruin, Mater. Chem. Phys.,
1987, 18, 147.
47. M. Cortazar, M. Gaztelumendi, J. Iruin, Eur. Polym.
J., 1994, 30, 901.
48. G. S. Kim, J. K. Lee, M. J. Choi, K. H. Lee, J. Polym.
Sci. Part B: Polym. Phys., 2008, 46, 223.
49. L. Mondragon, M. Gaztelumendi, J. Nazabal, Polym. Eng.
Sci., 1986, 26, 1478.
50. L. Mondragon, M. Gaztelumendi, J. Nazabal, Polym. Eng.
Sci., 1988, 28, 1127.
51. W. H. Christiansen, D. R. Paul, J. W. Barlow, J. Appl.
Polym. Sci., 1987, 34, 537.
52. X. Yang, P. C. Painter, M. M. Coleman, Macromolecules,
1992, 25, 4996.
53. S. Zheng, Q. Guo, Y. Mi, C. M. Chan, J. Appl. Polym.
Sci., 1999, 73, 1181.
54. P. L. Wu, E. M. Woo, J. Polym. Sci. Phys. Ed., 2002,
40, 1571.
55. C. M. Chu, PhD thesis, Princeton University,
Princeton, N.J., 1976.
56. S. Fakirov, M. Evstatiev, P. Petrovich, Macromolcules,
1993, 26, 5219.
57. A. Escala, R. S. Stein, Adv. Chem. Ser., 1979, 176,
455.
58. H. M. Li, A. H. Wong, MMI Press Syrnp. Ser., Harwood
Academic, New York, 1982, 2, 395.
59. N. Avramova, Polymer, 1995, 36, 801.
60. Y. Yu, K. J. Choi, Polym. Eng. Sci., 1997, 37, 91.
61. S. N. Garg, A. Misra, Macromol. Rapid Commun., 1981,
2, 241.
62. S. P. Mishra, B. L. Deopura, Makromol. Chem., 1985,
186, 641.
63. J. Font, J. Muntasell, E. Cesari, Mater. Res. Bull.,
1999, 34, 157.
64. D. Ma, G. Zhang, X. Luo, J. Polym. Sci. Chem. Ed.,
1998, 39, 2961.
65. K. Y. Lim, B. C. Kim, K. J. Yoon, J. Appl. Polym.
Sci., 2003, 88, 131.
66. K. Y. Lim, B. C. Kim, K. J. Yoon, J. Polym. Sci. Phys.
Ed., 2002, 40, 2552.
67. R. J. Young, P. A. Lovell, Introduction to Polymer,
Chapman & Hall, 1991.
68. D. R. Paul, S. Newman, Polymer Blend, Academic Press
Inc., 1987.
69. L. H. Sperling, “Introduction to Physical Polymer
Science”, John Wiley & Sons, 1992.
70. T. G. Fox, S. Loshaek, J. Polym. Sci., 1955, 15, 371.
71. T. G. Fox, Bull. Am. Phys. Soc., 1956, 1, 23.
72. M. Gordon, S. J. Taylor, J. Appl. Chem., 1952, 2, 493.
73. A. M. Kotliar, J. Polym. Sci., Macromol. Rev., 1981,
16, 367.
74. R. S. Porter, L. H. Wang, Polymer, 1992, 33, 2019.
75. M. F. Cheung, K. R. Carduner, A. Golovoy, H. Van Oene,
J. Appl. Polym. Sci., 1990, B29, 171.
76. J. I. Equiázaval, M. Coratazar, J. J. Iruin, J. Appl.
Polym. Sci., 1991, 42, 489.
77. J. D. Hoffman, J. J. Weeks, J. Res. Natl. Bur. Stand.
(US), 1962, A66, 13.
78. P. J. Flory, Principles of Polymer Chemistry, Cornell
University Press: Ithaca, 1953.
79. M. Avrami, J. Chem. Phys., 1941, 9, 177.
80. J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer
Handbook, 4th Ed., Wiley-Interscience: New York, 1999.
81. D. P. R. Kint, A. Alla, E. Deloret, J. L. Campos, S.
Muñoz-Guerra, Polymer, 2003, 44, 1321.
82. L. T. Lee, M. S. thesis, Department of Chemical
Engineering, National Cheng Kung University, Tainan,
Taiwan, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊