跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 20:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳威廷
研究生(外文):Wei-ting Chen
論文名稱:生物可分解聚酯類高分子相容性和作用力之光譜與熱分析
論文名稱(外文):Spectroscopy and Thermal Analyses on Miscibility and Interactions in Blends of Biodegradable Polyesters
指導教授:吳逸謨
指導教授(外文):Eamor M. Woo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:118
中文關鍵詞:相容性UCST生物可分解聚酯類高分子分子間作用力高分子摻合體
外文關鍵詞:intermolecular interactionphase behaviorpolymer blendmiscibilitybiodegradable polyester
相關次數:
  • 被引用被引用:1
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
兩成分摻合包含生物可分解聚酯類、共聚酯類或脂肪族聚酯類高分子如poly(D,L-lactic acid) (PDLLA)、poly(3-hydroxybutyric acid) (PHB)、poly(L-lactic acid) (PLLA)、poly(D-lactic acid) (PDLA)、或poly(butylene adipate)-co-poly(butylene terephthalate) [P(BA-co-BT)]之相行為、相容性及作用力進行探討。並利用微分掃瞄熱卡計(DSC)、穿透式光學(偏光)顯微鏡(POM)、與傅立葉轉換紅外光譜儀(FT-IR)針對摻合體進行光譜與熱分析。另外,也探討化學結構中包含酚基之高分子poly(4-vinyl phenol) (PVPh)與生物可分解聚酯類或共聚酯類高分子進行摻合之相容性。故將分為以下兩部分敘述:

(1) 兩成分生物可分解聚酯類高分子摻合與加入PVPh形成三成分摻合系統
經由相型態以及熱分析,兩成分PDLLA/PHB摻合為部分相容系統。而兩成分PDLLA/PESu摻合系統則發現存有上臨界溶液溫度(upper critical solution temperature;UCST)行為,其在室溫為完全不相容,但經升溫至較高溫度時則轉變為相容,且隨著組成不同而溫度有所改變,最高之clarity point標記為兩成分系統之UCST,其溫度約為268oC。升溫至UCST而達相容狀態之PLAs/PESu摻合系統,可藉由溶劑再溶解方式回到相分離型態。利用升溫至UCST之摻合體冷卻後會呈現準相容狀態之特性,以平衡熔點下降來估算作用力參數(X12),其結果為負值。而PDLLA/PESu在UCST呈相容狀態之相容性也藉由PESu球晶成長速率下降再次佐證。此外若以較低分子量之PLLA或PDLA來取代PDLLA,各自分別與PESu進行摻合(PLA分子量由157,000 g/mol for PDLLA降低至152,000 g/mol for PLLA及124,000 g/mol for PDLA),則此兩組系統之相型態仍呈現和PDLLA/PESu摻合系統相似之UCST行為,且其相轉變溫度隨著PLA分子量的降低而下降,與PLA化學結構中L/D monomer比例含量的變化並無相關。
當加入PVPh而成為PDLLA/PESu/PVPh三成分摻合系統時,發現為完全不相容,僅部分組成存在如同兩成分摻合之UCST相行為,且其相轉變溫度較原先兩成分摻合系統來得低。

(2) PVPh/生物可分解共聚合物P(BA-co-BT)、PBA/PBT與PBA/PBT/PVPh摻合系統
PVPh與新穎生物可分解共聚合物P(BA-co-BT)摻合系統的相型態及Tg對組成相依性亦在本研究中作一深入的討論。DSC單一Tg的現象證明了此系統為一相容的系統,另外POM的結果亦對DSC所提供判定相容的證據作了再一次的佐證;當利用Kwei方程式對P(BA-co-BT)/PVPh之Tg對組成相依性作一描述並與PBA/PVPh和PBT/PVPh的結果相比對下,可發現P(BA-co-BT)/PVPh之q值介於兩系統之間([P(BA-co-BT)]/PVPh的q值為-82;而PBT/PVPh和PBA/PVPh的q值分別為5及-225),此結果意指P(BA-co-BT)/PVPh系統的分子間作用力弱於PBT/PVPh摻合系統。FT-IR光譜則顯現出氫鍵作用力存在於P(BA-co-BT)的羰基團與PVPh的酚基之間。利用IR氫氧吸收帶的分析可估算不同摻合物間其平均氫鍵強度之強弱趨勢為PBT/PVPh > P(BA-co-BT)/PVPh > PBA/PVPh,由於PBA對PVPh間的氫鍵強度小於PBT對PVPh的強度,由此趨勢可確認在P(BA-co-BT)/PVPh摻合物中, PBA鏈段亦對於整體的作用力強度有所供獻。另外,PBA/PBT兩成分系統由POM的觀察結果發現呈現相分離的相型態,而三成分的PBA/PBT/PVPh摻合則為部分相容的系統,其原因在於少量的PVPh較易與PBT形成氫鍵作用力,以致產生delta X效應而導致不相容;而在PVPh含量較多時,則能和PBA或PBT形成強度相似的氫鍵作用力鍵結,使兩分子對間作用力之不對稱性(delta X)因素降至最低而形成相容系統。另外在與和P(BA-co-BT)/PVPh相同組成下之三成分PBA/PBT/PVPh,比較其氫鍵羰基鍵結吸收峰之比例,發現兩組系統之氫鍵鍵結比例十分相似。
Binary blends comprising biodegradable polyesters, copolyesters, or aliphatic polyesters, such as poly(D,L-lactic acid) (PDLLA), poly(3-hydroxybutyric acid) (PHB), poly(ethylene succinate) (PESu), poly(L-lactic acid) (PLLA), and poly(D-lactic acid) (PDLA) homopolymers, or poly(butylene adipate)-co-poly(butylene terephthalate) [P(BA-co-BT)], were characterized to reveal thermodynamic phase behavior, miscibility, and interactions. Characterization and analyses were based on techniques of differential scanning calorimeter (DSC), polarized-light optical microscopy (POM), and Fourier transform infrared spectroscopy (FT-IR). Blends of biodegradable polyesters or copolymers with a phenol-containing polymer, poly(4-vinyl phenol) (PVPh) were also investigated. The result shows that the PDLLA/PHB blend is partially miscible. The binary PDLLA/PESu blend exhibits a UCST behavior, which is immiscible at ambient temperature but can become miscible upon heating to higher temperatures at ~268oC. The blends upon quenching from above UCST could be frozen into a quasi-miscible state, where the Flory-Huggins interaction parameter (X12) was determined to be a negative value (by melting-point-depression technique). The miscibility in PDLLA/PESu blend resulted in significant reduction in spherulite growth rate of PESu in the miscible state. The PLAs/PESu blends at UCST could be reverted back to the original phase-separated morphology, as proven by solvent re-dissolution. Furthermore, blends of PESu with lower molecular weight PLLA or PDLA (Mw of PLLA and PDLA are 152,000 and 124,000 g/mol, respectively), instead of the higher Mw of PDLLA (Mw of PDLLA=157,000 g/mol), are immiscible with UCST phase behavior, which are affected by molecular weights rather than the ratio of L/D monomer in the chemical structure of PLA.
Upon introducing PVPh into the binary PDLLA/PESu to form a ternary blend, the ternary PDLLA/PESu/PVPh blend system displays similar UCST phase behavior for partial compositions (PVPh 50wt% and PESu-rich) as PDLLA/PESu binary blends. The temperatures of homogenization for the PDLLA/PESu/PVPh are lower than that for the PDLLA/PESu blend.
Miscibility with a linear Tg-composition relationship was proven for blend of [P(BA-co-BT)] with PVPh. In comparison to the blends of PBA/PVPh and PBT/PVPh, the Kwei’s Tg model fitting on data for the P(BA-co-BT)/PVPh blend yielded a q value between those for the PBA/PVPh and PBT/PVPh blends (q=5 for PBT/PVPh; -82 for P(BA-co-BT)/PVPh; and -225 for PBA/PVPh blend). The q values suggest that the interaction strength in the P(BA-co-BT)/PVPh blend is not as strong as that in the PBT/PVPh blend. The FT-IR result revealed hydrogen-bonding interactions between the carbonyl groups in P(BA-co-BT) and phenol unit in PVPh. By judging from the wavenumber shifts of hydroxyl IR absorbance band, the H-bonding strength was estimated to be in a decreasing order: PBT/PVPh > P(BA-co-BT)/PVPh > PBA/PVPh. The comparison indicates that the PBA in the copolymer segments tend to defray the interaction in the P(BA-co-BT)/PVPh blends, leading to relatively weaker interaction between PBA and PVPh than that between PBT and PVPh.
The binary PBA/PBT blend was immiscible. Upon further mixing the PVPh into the immiscible binary blends of PBA and PBT, the ternary PBA/PBT/PVPh blends exhibits partial miscibility. The immiscibility in partial compositions of the ternary blends is resulted owing to the delta X effect (Xij-Xik), which may become significant and not negligible. PBA or PBT interacts similarly via H-bonding with the higher content of third component PVPh, leading to balanced interactions with minimal offset among the ternary constituents. The H-bonding interactions in the ternary PBA/PBT/PVPh blend are approximately similar in comparison with the same compositions of the binary P(BA-co-BT)/PVPh blend.
總目錄
中文摘要 I
英文摘要 III
誌謝 V
總目錄 VI
表目錄 VIII
圖目錄 IX

第一章 簡介 1
第二章 原理 9
2-1 高分子相容性 9
2-2 玻璃轉移行為 12
2-2.1 Fox及Gordon-Taylor模式 12
2-2.2 Kovacs模式 13
2-3 混合物的相分離及其機制 15
2-4 平衡熔點下降 16
第三章 實驗 20
3-1 實驗所用之高分子及試藥 20
3-2 實驗試樣之製備 21
3-3 實驗所用之儀器 22
第四章 結果與討論 24
4-1 生物可分解聚酯類摻合系統之相容性探討 24
4-1.1 PDLLA/PHB摻合系統之相容性探討 24
4-1.2 PDLLA/PESu摻合系統之相容性探討 25
4-2 PLLA or PDLA/PESu摻合系統之相容性及分子量效應之探討 48
4-2.1 PLLA/PESu摻合系統之相容性探討 48
4-2.2 PDLA/PESu摻合系統之相容性探討 51
4-2.3 PLA分子量對相圖之影響 54
4-3 PDLLA/PESu/PVPh三成分摻合系統之相容性探討 73
4-3.1 兩成分PDLLA/PESu (THF)及三成分 PDLLA/PESu/PVPh摻合系統相型態 73
4-3.2 PDLLA/PESu/PVPh摻合系統作用力之FT-IR圖譜分析 74
4-4 P(BA-co-BT)/PVPh摻合系統之相容性探討 81
4-4.1 P(BA-co-BT)/PVPh相型態與熱性質分析 81
4-4.2 P(BA-co-BT)/PVPh摻合系統作用力之FT-IR圖譜分析 82
4-5 PBA/PBT兩成分及PBA/PBT/PVPh三成分摻合系統之相容性探討 89
4-5.1 PBA/PBT兩成分摻合系統之相型態 89
4-5.2 PBA/PBT/PVPh三成分摻合系統相型態與熱性質分析 89
4-5.3 PBA/PBT/PVPh摻合系統作用力之FT-IR圖譜分析 90
第五章 結論 111

參考文獻 113
自述

表目錄
Table 4-1.1 The physical constants used in Flory-Huggins equation 32
Table 4-4.1 Wavenumber shift (delta V) of OH stretching region in three blends comprising PVPh 84
Table 4-5.1 Curve-fitted parameters of carbonyl IR peaks for ternary PBA/PBT/PVPh blends 94
Table 4-5.2 Curve-fitted parameters of carbonyl IR peaks for binary P(BA-co-BT)/PVPh and ternary PBA/PBT/PVPh blends 95
Table 4-5.3 Curve-fitted parameters of carbonyl IR peaks for binary PBAPVPh and PBT/PVPh blends 96


圖目錄
Figure 1-1.1 Thermal properties of PLA with L-form percentage of lactide units. 6
Figure 1-1.2 Cloud points in the ternary PVAc/PMMA/PVPh blends and binary PVAc/PMMA blends. 7
Figure 1-1.3 Clarity points in the ternary PPO/P4MS/PS, binary PS/P4MS and binary PPO/P4MS blends. 8
Figure 2-3.1 Phase diagram for a polymer blend illustrating an upper critical solution temperature (UCST) and a lower critical solution temperature (LCST). 18
Figure 2-3.2 Spinodal and Binodal curves in a phase diagram. 19
Figure 4-1.1 OM micrographs of PDLLA/PHB blend above Tm of polyester indicating partial miscibility and phase separation domain. 33
Figure 4-1.2 DSC traces for quenched PDLLA/PHB blends of different compositions (in wt. ratio), as indicated. 34
Figure 4-1.3 OM graphs for as cast PDLLA/PESu = 50/50 (wt%) blends from phase separation to homogeneous phase. 35
Figure 4-1.4 DSC thermograms for PDLLA/PESu blend of different compositions: 2nd scan quenched after heating to 150oC. 36
Figure 4-1.5 DSC traces for the (A) PDLLA, (B) PLLA, and (C) PDLA/PESu blends of composition 70/30 (wt%). 37
Figure 4-1.6 DSC thermograms for PDLLA/PESu blend of different compositions: 2nd scan quenched after heating above UCST. 38
Figure 4-1.7 OM graphs for re-cast PDLLA/PESu = 80/20 (wt%) blends from phase separation to homogeneous phase. 39
Figure 4-1.8 Tg vs. composition relationships for (A) PDLLA, (B) PLLA, and PDLA/PESu blends. 40
Figure 4-1.9 FT-IR spectra in carbonyl-stretching region for PDLLA/PESu blends: (A) quenched from melt and (B) quenched from UCST. 41
Figure 4-1.10 FT-IR spectra in carbonyl-stretching region for PDLLA/PESu blends: (A) measured at 150oC and (B) measured at UCST. 42
Figure 4-1.11 DSC traces of PDLLA/PESu blends with different compositions: (A) 0/100, (B) 10/90, (C) 20/80, and (D) 40/60, melt-crystallized at various Tc’s as indicated. 43
Figure 4-1.12 Extrapolation performed using Pa, P1, and P3 peaks, respectively, (different symbols used) in blends of several different compositions (A~D). 44
Figure 4-1.13 (A)Hoffmann-Weeks plots for PDLLA/PESu blends (0/100, 10/90, 20/80, 30/70, and 40/60) melt-crystallized at various Tc; (B) estimation of interaction parameter of PDLLA/PESu blends by melting point depression. 45
Figure 4-1.14 Spherulite radii measured as functions of time for neat PESu and PDLLA/PESu blends (10/90 and 530/70) at different Tc: (A) 58oC, (B) 60oC, (C) 63oC, and (D) 65oC. 46
Figure 4-1.15 Spherulite growth rates as functions of Tc (between 58 and 68oC) for neat PESu and PDLLA/PESu blends (10/90 and 30/70). 47
Figure 4-2.1 OM graphs for as cast PLLA/PESu = 50/50 (wt%) blends from phase separation to homogeneous phase. 56
Figure 4-2.2 DSC thermograms for PLLA/PESu blend of different compositions: 2nd scan quenched after heating to 190oC. 57
Figure 4-2.3 DSC thermograms for PLLA/PESu blend of different compositions: 2nd scan quenched after heating above UCST. 58
Figure 4-2.4 OM graphs for re-cast PLLA/PESu = 80/20 (wt%) blends from phase separation to homogeneous phase. 59
Figure 4-2.5 DSC traces of PLLA/PESu blends with different compositions: (A) 100/0, (B) 90/10, (C) 80/20, and (D) 70/30, melt-crystallized at various Tc’s as indicated. 60
Figure 4-2.6 (A)Hoffmann-Weeks plots for PLLA/PESu blends (100/0, 90/10, 80/20, 70/30, and 60/40) melt-crystallized at various Tc; (B) estimation of interaction parameter of PLLA/PESu blends by melting point depression. 61
Figure 4-2.7 Spherulite radii measured as functions of time for neat PLLA and PLLA/PESu blends (90/10 and 70/30) at different Tc: (A) 120oC, (B) 123oC, (C) 125oC, and (D) 128oC. 62
Figure 4-2.8 Spherulite growth rates as functions of Tc (between 120 and 130oC) for neat PLLA and PLLA/PESu blends (90/10 and 70/30). 63
Figure 4-2.9 OM graphs for as cast PDLA/PESu = 50/50 (wt%) blends from phase separation to homogeneous phase. 64
Figure 4-2.10 DSC thermograms for PDLA/PESu blend of different compositions: 2nd scan quenched after heating to 190oC. 65
Figure 4-2.11 DSC thermograms for PDLA/PESu blend of different compositions: 2nd scan quenched after heating above UCST. 66
Figure 4-2.12 OM graphs for re-cast PDLA/PESu = 80/20 (wt%) blends from phase separation to homogeneous phase. 67
Figure 4-2.13 DSC traces of PDLA/PESu blends with different compositions: (A) 100/0, (B) 90/10, (C) 80/20, and (D) 70/30, melt-crystallized at various Tc’s as indicated. 68
Figure 4-2.14 (A)Hoffmann-Weeks plots for PDLA/PESu blends (100/0, 90/10, 80/20, 70/30, and 60/40) melt-crystallized at various Tc; (B) estimation of interaction parameter of PDLA/PESu blends by melting point depression. 69
Figure 4-2.15 Spherulite radii measured as functions of time for neat PDLA and PDLA/PESu blends (90/10 and 70/30) at different Tc: (A) 120oC, (B) 123oC, (C) 125oC, and (D) 128oC. 70
Figure 4-2.16 Spherulite growth rates as functions of Tc (between 120 and 130oC) for neat PDLA and PDLA/PESu blends (90/10 and 70/30). 71
Figure 4-2.17 Phase diagram with clarity temperature and UCST for PLAs/PESu blends of different molecular weight PLAs. 72
Figure 4-3.1 OM graphs for as cast (THF) PDLLA/PESu = 50/50 (wt%) blends from phase separation to homogeneous phase. 76
Figure 4-3.2 Phase diagram with clarity temperature and UCST for PDLLA/PESu blends by using different solvents. 77
Figure 4-3.3 OM results for the ternary PDLLA/PESu/PVPh blends and binary PDLLA/PESu blends. 78
Figure 4-3.4 Clarity point curve for binary PDLLA/PESu blends and ternary PDLLA/PESu/PVPh, in which PVPh fractions keep 70wt%. 79
Figure 4-3.5 FT-IR spectra in (A) hydroxyl-stretching and (B) carbonyl-stretching region for PDLLA/PESu/PVPh blends for compositions of PDLLA/PESu/PVPh=x/y/70 (where x+y+70=100). 80
Figure 4-4.1 OM morphologies of P(BA-co-BT)/PVPh blends at different compositions: (A) 90/10, (B) 70/30, (C) 50/50, (D) 30/70, and (E) 10/90 (in wt. ratio). 85
Figure 4-4.2 DSC thermograms for binary P(BA-co-BT)/PVPh blends of different compositions ( in wt. ratio). 86
Figure 4-4.3 Tg-composition relationship for PBT/PVPh, P(BA-co-BT)/PVPh, and PBA/PVPh blends with fitting results of Kwei equation. 87
Figure 4-4.4 FT-IR spectra in (A) hydroxyl-stretching and (B) carbonyl-stretching region for P(BA-co-BT)/PVPh blends at different compositions (in wt. ratio). 88
Figure 4-5.1 OM results of PBA/PBT blends with different weight fractions in the molten amorphous state: (A) 80/20, (B) 56/44, and (C) 20/80. 97
Figure 4-5.2 OM morphologies of PBA/PBT/PVPh blends (0.56x/0.44x/y) at different compositions: (A) 50.4/39.6/10, (B) 44.8/35.2/20, (C) 39.2/30.8/30, (D) 33.6/26.4/40, (E) 28/22/50, (F) 16.8/13.2/70, and (G) 5.6/4.4/90 (in wt. ratio), indicating partial miscibility and phase separation domain. 98
Figure 4-5.3 DSC traces for quenched PBA/PBT/PVPh ternary blends for different compositions of PBA/PBT/PVPh=0.56x/0.44x/y. 99
Figure 4-5.4 OM morphologies of PBA/PBT/PVPh blends (x/y/40) at different compositions: (A) 10/50/40, (B) 20/40/40, (C) 30/30/40, (D) 40/20/40, and (E) 50/10/40 (in wt. ratio). 100
Figure 4-5.5 DSC traces for quenched PBA/PBT/PVPh ternary blends for different compositions of PBA/PBT/PVPh=x/y/40 (where x+y+40=100). 101
Figure 4-5.6 OM results for the ternary PBA/PBT/PVPh blends. 102
Figure 4-5.7 Tg-composition relationships for: (A) Series-I: 0.56x/0.44x/y, (B) Series-II: x/y/40, and (C) experimental Tg vs. calculated Tg as fitted by the Fox equation for ternary PBA/PBT/PVPh blends. 103
Figure 4-5.8 FT-IR spectra in hydroxyl-stretching region for PBA/PBT/PVPh blends for different compositions of PBA/PBT/PVPh=0.56x/0.44x/y. 104
Figure 4-5.9 FT-IR spectra in hydroxyl-stretching region for PBA/PBT/PVPh blends for different compositions of PBA/PBT/PVPh=x/y/40 (where x+y+40=100). 105
Figure 4-5.10 FT-IR spectra in carbonyl-stretching region by curve-fitting for PBA/PBT/PVPh blends for different compositions of PBA/PBT/PVPh=0.56x/0.44x/y. 106
Figure 4-5.11 FT-IR spectra in hydroxyl-stretching region by curve-fittting for PBA/PBT/PVPh blends for different compositions of PBA/PBT/PVPh=x/y/40 (where x+y+40=100). 107
Figure 4-5.12 FT-IR spectra in carbonyl-stretching region by curve-fitting for PBA/PVPh blends at different compositions: (A) 20/80, (B) 50/50, and (C) 80/20 (in wt. ratio). 108
Figure 4-5.13 FT-IR spectra in carbonyl-stretching region by curve-fitting for PBT/PVPh blends at different compositions: (A) 20/80, (B) 40/60, (C) 60/40, and (D) 80/20 (in wt. ratio). 109
Figure 4-5.14 fbC=O-composition relationships for the PBT/PVPh, P(BA-co-BT)/PVPh, and PBA/PVPh blends with the curve-fitting results of equation 4-5.4. 110
1.Huang, Y. Y.; Chen, H. L.; Hashimoto, T. Macromolecules, 36, 764, 2003.

2.Zhang, X. H.; Wang, Z. G.; Muthukumar M.; Han, C. C. Macromol. Rapid Commun., 26, 1285, 2005.
3.Andrienko, D.; Leon, S.; Delle Site, L.; Kremer, K. Macromolecules, 38, 5810, 2005.
4.Zhou, N.; Lodge, T. P.; Bates, F. S. J. Phys. Chem. B, 110, 3979, 2006.

5.Ho, R. M.; Chang, C. C.; Chung, Y. W.; Chiang, Y. W.; Wu, J. Y. Polymer, 44, 1459, 2003.
6.Hsu, J. Y.; Nandan, B.; Chen, M. C.; Chiu, F. C.; Chen, H. L. Polymer, 46, 11837, 2005.
7.He, A. H.; Han, C. C.; Yang, G. S. Polymer, 24, 8231, 2004.
8.Kim, Y. J.; Uyama, H.; Kobayashi, S. Macromolecules, 36, 5058, 2003.
9.Van Casteren, I. A.; Van Trier, R. A. M.; Goossens, J. G. P.; Meijer, H. E. H.; Lemstra, P. J. J. Polym. Sci. Part B Polym. Phy., 42, 2137, 2004.
10.Anantawaraskul, S.; Soares, J. B. P.; Wood-Adams, P. M. Macromol. Chem. Phys., 205, 771, 2004.
11.Bank, M.; Leffingwell, J.; Thies, C. Macromolecules, 6, 43, 1971.
12.Nishimoto, M.; Keskkula, H.; Paul, D. R. Polymer, 32, 272, 1991.
13.Walsh, D. J.; Higgins, J. S.; Maconndchie, A. “Polymer Blends and Mixtures”, Mijhoff Publishers, Boston, 1985.
14.Landry, C. J. T.; Yang, H.; Machell, J. S. Polymer, 32, 44, 1991.
15.Coleman, M. M.; Moskala, E. J. Polymer, 24, 251, 1983.
16.Varnell, D. F.; Moskala, E. J.; Painter, P. C.; Coleman, M. M. Polym. Eng. Sci. Phy. Ed., 23, 658, 1983.
17.Eisenberg, A.; Hara, M. Polym. Eng. Sci., 24, 1306, 1984.
18.Aubin, M.; Bedard, Y.; Morrissette, M. F.; Prud`homme, R. E. J. Polym. Sci. Phys. Ed., 21, 233, 1983.
19.Rodriguez-Parada, J. M.; Percec, V. Marcomolecules, 19, 55, 1986.
20.Lu, J. M.; Qiu, Z. B.; Yang, W. T. Polymer, 48, 4196, 2007.
21.Urayama, H.; Kanamori, T.; Kimura, Y. Macromol. Mater. Eng., 286, 705, 2001.
22.Urayama, H.; Moon, S. I.; Kimura, Y. Macromol. Mater. Eng., 288, 137, 2003.
23.Jorda, R.; Wilkes, G. L. Polym. Bull., 20, 479, 1988.
24.Tsuji, H.; Ikada, Y. Macromolecules, 25, 5719, 1992.
25.Tsuji, H.; Ikada, Y. J. Appl. Polym. Sci., 58, 1793, 1995.
26.Tsuji, H.; Ikada, Y. Polymer, 37, 595, 1996.
27.Tsuji, H.; Ikada, Y. J. Appl. Polym. Sci., 63, 855, 1997.
28.Tsuji, H.; Ikada, Y. Polymer, 40, 6699, 1999.
29.Yamane, H.; Sasai, K. Polymer, 44, 2569, 2003.
30.Tsuji, H.; Fukui, I. Polymer, 44, 2891, 2003.
31.Urayama, H.; Kanamori, T.; Fukushima, K.; Kimura, Y. Polymer, 44, 5635, 2003.
32.Blümm, E.; Owen, A. J. Polymer, 36, 4077, 1995.
33.Focarete, M. L.; Scandola, M.; Dobrzynski, P.; Kowalczuk, M. Macromolecules, 35, 8472, 2002.
34.Nijenhuis, A. J.; Colstee, E.; Grijpma, D. W.; Pennings, A. J. Polymer, 37, 5849, 1996.
35.Ferreira, B. M. P.; Zavaglia, C. A. C.; Duek, E. A. R. J.Appl. Polym. Sci., 86, 2898, 2002.
36.Tsuji, H.; Ikada, Y. J.Appl. Polym. Sci., 67, 405, 1998.
37.Tsuji, H.; Ishizaka, T. Int. J. Biol. Macromol., 29, 83, 2001.
38.Kuwabara, K.; Gan, Z.; Nakamura, T.; Abe, H.; Doi, Y. Biomacromolecules, 3, 390, 2002.
39.Cranston, E.; Kawada, J.; Raymond, S.; Morin, F. G.; Marchessault, R. H. Biomacromolecules, 4, 995, 2003.
40.Gan, Z.; Kuwabara, K.; Yamamoto, M.; Abe, H.; Doi, Y. Polym. Degrad. Stab., 83, 289, 2004.
41.Jiang, L.; Wolcott, M. P.; Zhang, J. Biomacromolecules, 7, 199, 2006.
42.Saeki, S.; Cowie, J. M. G.; McEwen, I. J. Polymer, 24, 60, 1983.
43.Cowie, J. M. G.; McEwen, I. J. Polymer, 26, 1662, 1985.
44.Widmaier, J. M.; Mignard, G. Eur. Polym. J., 23,989, 1987.
45.Lin, J. L.; Roe, R. J. Macromolecules, 20, 2168, 1987.
46.Schneider, H. A.; Dilger, P. Polym. Bull., 21, 265, 1989.
47.Rameau, A.; Gallot, Y.; Farnoux, P. M. B. Polymer, 30, 386, 1989.
48.Callaghan, T. A.; Paul, D. R. Macromolecules, 26, 2439, 1993.
49.Kuo, S. W.; Liu, W. P.; Chang F. C. Macromol. Chem. Phys., 206, 2307, 2005.
50.Scott, R. L. J. Chem. Phys., 17, 279, 1949.
51.Tompa, H. Trans. Faraday Soc., 45, 1140, 1949.
52.Kwei, T. K.; Frisch, H. L.; Radigan, W.; Vogel, S. Macromolecules, 10, 157, 1977.
53.Pomposo, J. A.; Cortazar, M.; Calahorra, E. Macromolecules, 27, 252, 1994.
54.Goh, S. H.; Siow, K. S. Thermochim. Acta, 105, 191, 1986.
55.Min, E. E.; Chiou, J. S.; Barlow, J. W.; Paul, D. R. Polymer, 28, 172, 1987.
56.Guo, Q. P. Eur. Polym. J., 32, 1409, 1996.
57.Kuo, S. W.; Chan, S. C.; Wu, H. D.; Chang, F. C. Macromolecules, 38, 4729, 2005.
58.Goh, S. H.; Ni, X. Polymer, 40, 5733, 1999.
59.Yau, S. N.; Woo, E. M. Macromol. Rapid. Commun., 17, 615, 1996.
60.Woo, E. M.; Tseng, Y. C. Macromol. Chem. Phys., 201, 1877, 2000.
61.Lee, S. C.; Woo, E. M. J. Polym. Sci. Part B Polym. Phy., 40, 747, 2002.
62.Liu, H. L.; Li, S. H.; Woo, E. M. J. Polym. Sci. Part B Polym. Phy., 44, 1147, 2006.
63.Chang, L. L.; Woo, E. M. Macromol. Chem. Phys., 202, 636, 2001.
64.Chang, L. L., Woo, E. M.; Liu, H. L. Polymer, 45, 6909, 2004.
65.Su, C. C.; Lin, J. H.; Woo, E. M. Polym. Int., 52, 1209, 2003.
66.Chou, I. C.; Wu, P. L.; Woo, E. M. Colloid Polym. Sci., 280, 410, 2002.

67.Woo, E. M.; Chou, I. C.; Lee, L. T. Polymer, 43, 4225, 2002.
68.Brannock, G. R.; Paul, D. R. Macromolecules, 23, 5240, 1990.
69.Pomposo, J. A.; Calahorra, E.; Eguiazabal, I.; Cortazar, M. Macromolecules, 26, 2104, 1993.
70.Jo, W. H.; Kwon, Y. K.; Kwon, I. H. Macromolecules, 24, 4708, 1991.
71.Vanneste, M.; Groeninckx, G. Polymer, 35, 1051, 1994.
72.Jeong, H. K.; Rooney, M. D.; David, J.; MacKnight, W. J.; Karasz, F. E.; Kajiyama, T. Polymer, 41, 6671, 2000.
73.Hosokawa, M.; Akiyama, S. Polym. J., 31, 13, 1999.
74.Moskala, E. J.; Varnell, D. F.; Coleman, C. C. Polymer, 26, 228, 1985.
75.Qin, C.; Pires, A. T. N.; Belfiore, L. A. Polym. Commun., 31, 177, 1990.
76.Goh, S. H.; Siow, K. S. Polym. Bull., 17, 453, 1987.
77.Belfiore, L. A.; Pires, A. T.; Qic C. Macromolecules, 24, 666, 1991.
78.Moskala, E. J.; Howe, S. E.; Painter, P. C., Coleman, M. M. Macromolecules, 17, 1671, 1984.
79.Belfiore, L. A.; Qin, C.; Ueda, E.; Pires, A. T. N. J. Polym. Sci. Part B Polym. Phys., 31, 409, 1993.
80.Qiu, Z. B.; Fujinami, S.; Komura, M.; Nakajima, K.; Ikehara, T.; Nishi, T. Polymer, 45, 4515, 2004.
81.Xing, P.; Dong, L.; An, Y.; Feng, Z.; Avella, M.; Martuscelli, E. Macromolecules, 30, 2726, 1997.
82.Belfiore, L. A.; Qin, C.; Ueda, E.; Pires, A. T. N. J. Polym. Sci. Polym. Phy. Ed., 31, 409, 1993.
83.Lee, L. T.; Woo, E. M. Polym. Int., 53, 1813, 2004.
84.Landry, C. J. T.; Massa, D. J.; Teegarden, D. M.; Landry, M. R.; Henrichs, P. M.; Colby, R. H,; Long, T. E. Macromolecules, 26, 6299, 1993.
85.Zhang, L. L.; Goh, S. H.; Lee, S. Y. J. Appl. Polym. Sci., 70, 811, 1998.
86.Meaurio, E.; Zuza, E.; Sarasua, J. R. Macromolecules, 38, 9221, 2005.
87.Zhang, Z. H.; Mo, Z. S.; Zhang, H. F.; Zhang, Y.; Na, T. H.; An, Y. X.; Wang, X. H.; Zhao, X. J. J. Polym. Sci. Part B Polym. Phy., 40, 1957, 2002.
88.Huang, H. L.; Goh, S. H.; Wee, A. T. S. Polymer, 43, 2861, 2002.
89.Lee, H. F.; Kuo, S. W.; Huang, C. F.; Lu, J. S.; Chan, S. C.; Wang, C. F.; Chang, F. C. Macromolecules, 39, 5458, 2006.
90.Lee, L. T.; Woo, E. M.; Hou, S. S.; Förster, S. Polymer, 47, 8350, 2006.
91.Urzua, M.; Leiva, A.; Alegria, L.; Gargallo, L.; Radic, D. Int. J. Polym. Mater., 56, 687, 2007.
92.Stoelting, J.; Karasz, F. E.; MacKnight, W. J. Polym. Eng. Sci., 10, 133, 1970.
93.Flory, P. J. J. Am. Chem. Soc., 86, 1833, 1965.
94.Flory, P. J. Discuss Faraday Soc., 49, 7, 1970.
95.Flory, P. J. “Principles of Polymer Chemistry”, Cornell University Press, Ithaca, New York, 1953.
96.Woo, E. M.; Barlow, J. W.; Paul, D. R. J Appl Polym Sci 1984, 29, 3837.
97.Harris, J. E.; Goh, S. H.; Paul, D. R.; Barlow, J. W. J. Appl. Polym. Sci., 27, 839, 1982.
98.Aubin, M.; Prud’homme, R. E. Macromolecules, 13, 365, 1980.
99.Zeman, L.; Patterson, D. Macromolecules, 5, 513, 1972.
100.Patterson, D. Polym. Eng. Sci., 22, 64, 1982.
101.Su, A. C.; Fried, J. R. Polym. Eng. Sci.,27, 1657, 1987.
102.Sperling, L. H. “Introduction to Physical Polymer Science 2nd ed.”, John Wiley & Sons, Inc., New York, 1992.
103.Hudson, S. D.; Davies, D. D.; Lovinger, A. J. Macromolecules, 25, 1759, 1992.
104.Kovacs, A. J. Adv. Polym. Sci., 3, 394, 1963.
105.Yau, S. N.; Woo, E. M. Macromolecules, 30, 3626, 1997.
106.Chen, H. L. Macromolecules, 28, 2845, 1995.
107.Aubin, M.; Prud`homme, R. E. Macromolecules, 21, 2945, 1988.
108.Aubin, M.; Prud`homme, R. E. Polym. Eng. Sci., 28, 1355, 1988.
109.Jutier, J. J.; Lemieux, E.; Prud`homme, R. E. J. Polym. Sci. Part B Polym. Phys., 26, 1313, 1988.
110.Pedrosa, P.; Pomposo, J. A.; Calahorra, E.; Cortazar, M. Macromolecules, 27, 102, 1994.
111.Cheung, Y. W.; Stein, R. S. Macromolecules, 27, 2512, 1994.
112.Olabishi, O.; Robeson, L. M.; Shaw, M. T. “Polymer-Polymer Miscibility”, Academic Press Inc., New York, 1979.
113.Woo, E. M.; Hou, S. S.; Huang, D. H.; Lee, L. T. Polymer, 46, 7425, 2005.
114.Woo, E. M.; Chiang, C. P. Polymer, 45, 8415, 2004.
115.Kuo, Y. H.; Woo, E. M.; Kuo, T. Y. Polym. J., 33, 920, 2001.
116.Sperling, L. H. “Introduction to Physical Polymer Science 3th ed.”, John Wiley & Sons, Inc., New York, 2001.
117.Braun, G.; Kovacs, A. J. “In Physics of Non-Crystalline Solids”, Prins, J. A. Ed., North-Holland, Amsterdam, 1965.
118.Minakov, A. A.; Mordvintsev, D. A.; Schick, C. Polymer, 45, 3755, 2004.
119.Papageorgiou, G. Z.; Bikiaris, D. N. Polymer, 46, 12081, 2005.
120.Papageorgiou, G. Z.; Bikiaris, D. N. J. Polym. Sci. Part B Polym. Phys., 44, 584, 2006.
121.Di`Lorenzo, M. L. Prog. Polym. Sci., 28, 663, 2003.
122.Alfonso, G. C.; Russel, T. P. Macromolecules, 19, 1143, 1986.
123.Martuscelli, E.; Silvestre, C.; Gismondi, C. Makromol. Chem., 186, 2161, 1985.
124.Amelino, L.; Martuscelli, E.; Sellitti, C.; Silvestre, C. Polymer, 31, 1051, 1990.
125.Martuscelli, E.; Sellitti, C.; Silvestre, C. Makromol. Chem. Rapid Commun., 6, 125, 1985.
126.Liu, L. Z.; Chu, B.; Penning, J. P.; Manley, R. S. J. Macromol. Sci. Phys. B, 37, 485, 1998.
127.Fischer, E. W.; Sterzel, H. J.; Wegner, G. Kolloid-Zeitschrift And Zeitschrift Fur Polymere, 251, 980, 1973.
128.Di`Lorenzo, M. L. J. Appl. Polym. Sci., 100, 3145, 2006.
129.Kwei, T. K. J. Polym. Sci. Polym. Lett. Ed., 22, 307, 1984.
130.Kuo, S. W.; Chang, F. C. Macromolecules, 34, 5224, 2001.
131.Gordon, M.; Taylor J. S. J. Appl. Chem., 2, 493, 1952.
132.Zhang, H.; Bhagwagar, D. E.; Graf, J. F.; Painter, P. C.; Coleman, M. M. Polymer, 35, 5379, 1994.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊