跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張仁宇
研究生(外文):Ren-Yu Chang
論文名稱:奈米結構材料在生化分離及生醫感測上之應用
論文名稱(外文):Applications of Nanostructured Materials in Bioseparation and Biosensors
指導教授:陳東煌陳東煌引用關係
指導教授(外文):Dong-Hwang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:92
中文關鍵詞:芸香素感測循環伏安法分離吸附牛血清蛋白磁性載體奈米
外文關鍵詞:cyclic voltammetrybovine serum albuminrutindetectionmagneticnanoadsorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係有關以磺酸化磁性奈米粒子吸附分離牛血清蛋白及以奈米結構碳電極偵測水溶液中芸香素的研究。關於磺酸化磁性奈米粒子的製備,係先以化學共沉法合成出Fe3O4磁性奈米粒子,並將聚丙烯酸共價鍵結於Fe3O4粒子上,進一步以胺基苯磺酸修飾,即可得磺酸化之磁性奈米粒子。其平均直徑為13.5nm、平均水力直徑為21nm、且保有Fe3O4的尖晶石結構與超順磁性,等電點則約為2.45。以磺酸化磁性奈米粒子及螯合銅或鐵離子之磺酸化磁性奈米粒子吸附牛血清蛋白,其行為皆符合擬二階動力吸附,且吸附量受溶液pH值影響很大,最大吸附量發生在牛血清蛋白的等電點(pH4.70),在此pH值下,螯合鐵離子的磺酸化磁性粒子具有最佳的吸附能力,且其吸附行為符合Langmuir恆溫吸附模式。pH值較高時,則以螯合銅離子的磺酸化磁性奈米粒子具有較佳的吸附能力。此外,藉由提高溶液pH值,可輕易的將牛血清蛋白由磁性粒子上脫附下來,且此磁性奈米粒子在經牛血清蛋白數次的吸附/脫附後,其吸附能力仍無明顯的減退。關於水溶液中之芸香素的偵測,發現使用奈米結構之碳電極,可大幅提高電化學偵測的靈敏度。電流值隨著芸香素濃度的增加而增加,且當芸香素濃度介於1×10-4~1×10-7M時,電流值與芸香素濃度呈線性關係,偵測極限約為9.07×10-8M。
This thesis concerns the use of sulfonated magnetic nanoparticles for the adsorption of bovine serum albumin (BSA) and the use of nanostructured carbon electrode for the detection of rutin in aqueous solution. For the preparation of sulfonated magnetic nanoparticles, Fe3O4 magnetic nanoparticles were synthesized by coprecipitation method first, then covalently bound with polyacrylic acid, and finally sulfonated with sulfanilic acid. The resultant sulfonated magnetic nanoparticles have a mean diameter of 13.5nm and a mean hydrodynamic diameter of 21nm, remaining the spinel structure and superparamagnetic property of Fe3O4 nanoparticles. Their isoelectric point was 2.45. The adsorption behaviors of BSA by the sulfonated magnetic nanoparticles without and with Cu(II) or Fe(III) ions chelation were all found to obey the pseudo-second-order equation. The adsorption capacity depended strongly on the solution pH and the maximum adsorption capacity was observed at the isoelectric point of BSA (pH 4.7). At this pH value, Fe(III)-chelated magnetic nanoparticles showed the highest adsorption capacity and the adsorption followed the Langmuir isotherm model. On the other hand, Cu(II)-chelated magnetic nanoparticles exhibited the higher adsorption capacity at higher pH. In addition, the desorption of BSA could be achieved by increasing the solution pH. Also, the magnetic nanoparticles could be reused for the adsorption/desorption of BSA several times without significant decrease in the adsorption capability. For the detection of rutin in aqueous solution, it was found that the use of nanostructured carbon electrode could significantly raise the sensitivity of electrochemical detection. The peak current increased with increasing the concentration of rutin in aqueous solution. A linear relationship was obtained when the rutin concentration was in the range of 1×10-4 - 1×10-7M. The detection limit was about 9.07×10-8M.
中文摘要……………………………………………………………… Ⅰ
Abstract……………………………………………………………… Ⅱ
致謝…………………………………………………………………… Ⅲ
總目錄………………………………………………………………… Ⅳ
圖目錄………………………………………………………………… Ⅵ
表目錄………………………………………………………………… Ⅸ
符號說明……………………………………………………………… Ⅹ


第一章 緒論
1-1 奈米材料與奈米科技…………………………………… 1
1-1-1 簡介…………………………………………… 1
1-1-2 奈米材料的特性……………………………… 1
1-1-3 奈米材料的製備……………………………… 8
1-1-4 奈米材料的表面修飾………………………… 8
1-1-5 奈米材料的應用……………………………… 12
1-2 磁性載體技術…………………………………………… 13
1-2-1 簡介…………………………………………… 13
1-2-2 磁性載體的製備與應用……………………… 13
1-3 生物感測技術…………………………………………… 16
1-3-1 感測器簡介…………………………………… 16
1-3-2 生物感測器簡介……………………………… 17
1-4 研究動機………………………………………………… 22

第二章 磁性奈米粒子在蛋白質吸附分離之研究
2-1 前言……………………………………………………… 24
2-2 基礎理論………………………………………………… 26
2-2-1 磁性理論……………………………………… 26
2-2-2 吸附理論……………………………………… 32
2-3 實驗方法………………………………………………… 39
2-3-1 藥品、材料與儀器…………………………… 39
2-3-2 分析方法……………………………………… 41
2-3-3 實驗方法……………………………………… 42
2-4 材料特性………………………………………………… 46
2-4-1 粒徑大小與粒子型態………………………… 46
2-4-2 晶相結構……………………………………… 46
2-4-3 界面電位與等電點…………………………… 46
2-4-4 磺酸化機制…………………………………… 49
2-4-5 磁性…………………………………………… 49
2-4-6 吸附金屬離子………………………………… 49
2-5 吸附牛血清蛋白的結果與討論………………………… 52
2-5-1 吸附平衡時間及動力學模式探討…………… 52
2-5-2 pH值效應……………………………………… 53
2-5-3 恆溫吸附模式………………………………… 56
2-5-4 BSA脫附實驗…………………………………… 56
2-5-5 磁性奈米吸附劑的重複使用………………… 56

第三章 以奈米結構碳電極感測芸香素之研究
3-1 前言……………………………………………………… 59
3-2 基礎理論………………………………………………… 62
3-2-1 循環伏安法…………………………………… 62
3-3 實驗方法………………………………………………… 72
3-3-1 藥品、材料與儀器…………………………… 72
3-3-2 分析方法……………………………………… 73
3-3-3 實驗方法……………………………………… 74
3-4 網版印刷電極的性質…………………………………… 75
3-4-1 網版印刷電極的預處理……………………… 75
3-4-2 網版印刷電極的表面結構…………………… 75
3-4-3 網版印刷電極預處理對偵測芸香素的影響… 75
3-5 芸香素的偵測…………………………………………… 79
3-5-1 芸香素的電化學反應………………………… 79
3-5-2 pH值的影響…………………………………… 79
3-5-3 掃瞄速度的影響……………………………… 79
3-5-4 芸香素濃度的影響…………………………… 80

第四章 結論……………………………………………………… 85

參考文獻…………………………………………………………… 87
1.丁志明,奈米科技:基礎、應用與實作,臺北:高立 (2005)。
2.王崇人,科學發展,354期 (2002)。
3.張安華,實用奈米技術,臺北:新文京開發 (2005)。
4.莊萬發,超微粒子應用理論,臺南:復漢 (1998)。
5.I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nature Material, 4, 435 (2005).
6.K. J. Klabinde, Nanoscale materials in Chemistry, John Wiley & Sons (2004).
7.龔建華,你不可不知的奈米科技,臺北:世茂 (2002)。
8.尹邦耀,奈米時代,臺北:五南 (2002)。
9.張立德,牟季美,奈米材料與奈米結構,臺中:滄海 (2002)。
10.連昭晴,鐵/金核殼型磁性複合奈米粒子之製備與應用,國立成功大學化學工程研究所碩士論文(2004)。
11.Y. Wang, A. Yu, F. Caruso, “Nanoporous polyelectrolyte spheres prepared by sequentially coating sacrificial mesoporous silica spheres,” Angew. Chem. Int. Ed., 44, 2888 (2005).
12.S. Jeong, K. Woo, D. Kim, S. Lim, J. S. Kim, H. Shin, Y. Xia, J. Moon, ”Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing,” Adv. Funct. Mater., 18, 679 (2008).
13.W. B. Tan, N. Huang, Y. Zhang,“Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications,” J. Colloid Interface Sci., 310, 464 (2007).
14.J. H. Lee, Y. W. Jun, S. I. Yeon, J. S. Shin, J. Cheon, ”Dual-mode nanoparticles probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma,” Angew. Chem. Int. Ed., 45, 8160 (2006).
15.張松文,以氧化鐵磁性奈米粒子分離伴刀豆球蛋白之研究,國立成功大學化學工程研究所碩士論文(2007)。
16.R. He, X. You, J. Shao, F. Gao, B. Pan, D. Cui, ”Core shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation,” Nanotechnology, 18, 315601 (2007).
17.S. Y. Mak, D. H. Chen, ”Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles,” Dye and Pigments, 61, 93 (2004).
18.N. Shamim, L. Hong, K. Hidajat, M. S. Uddin, ” Thermosensitive polymer-coated magnetic nanoparticles : Adsorption and desorption of Bovine Serum Albumin,” J. Colloid Interface Sci., 304, 1 (2006).
19.G. Reiss, H. Brueckl, A. Huetten, J. Schotter, M. Brzeska, M. Panhorst, D. Sudfeld, ”Magnetoresistive sensors and magnetic nanoparticles for biotechnology,” J. Mater. Res., 20, 3294 (2005).
20.S. Yu, G. M. Chow, ”Carboxyl group (–CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-application,” J. Mater. Chem., 14, 2781 (2004).
21.W. Gopel, J. Hesse, J. N. Zemel, Sensors, WCH Weingeim (1993).
22.徐章,高級感測器技術的發展理念,量測資訊,35期,1 (1993)。
23.P. P. Janata, Principles of chemical sensors, New York (1989).
24.B. R. Eggins, Chemical sensors and biosensors, John Wiley & Sons(2002).
25.Christopher M. A. Brett, Ana Maria Oliveira Brett, Electrochemistry :principles, methods, and applications, Oxford science, New York (1993).
26.隋安莉,科學發展,359期 (2002)。
27.N. E. Kadi, N. Taulier, J. Y. Le Huẻrou, M. Gindre, “Unfolding and Refolding of Bovine Serum Albumin at Acid pH: Ultrasound and Structural Studies,” Biophysical Journal, 91, 3397 (2006).
28.Z. Song, S. Hou, “Sensitive determination of sub-nanogram amounts of rutin by its inhibition on chemiluminescence with immobilized reagents,” Talanta, 57, 59 (2002).
29.J. B. He, Y. Wang, N. Deng, Z. G. Zha, X. Q. Lin, “Cyclic voltammograms obtained from the optical signals: Study of the successive electro-oxidations of rutin,” Electrochimica Acta, 52, 6665 (2007).
30.M. Franzreb, M. Siemann-Herzberg, T. J. Hobley, O. R. T. Thomas, “Protein purification using magnetic adsorbent particles,” Appl Microbiol Biotechnol, 70, 505 (2006).
31.張揚狀,表面被覆幾丁聚醣之多功能磁性奈米載體的製備與應用,國立成功大學化學工程學系博士論文 (2005)。
32.馬振基,奈米材料科技-原理與應用,臺北:全華 (2004)。
33.M. A. Willard, L. K. Kurihara, E. E. Carpenter, S. Calvin, and V. G. Harris, Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers (2004).
34.L. C. Cullity, Introduction to Magnetic Materials, California:Addison-Wesley (1972).
35.廖敏宏,磁性奈米載體在生物觸媒和生化分離之應用,國立成功大學化學工程研究所博士論文(2002)。
36.W. M. Saslow, Electricity, Magnetism, and Light, Netherlands:Elsevier (2002).
37.K. J. Laidler, J. H. Meiser, and B. C. Sanctuary, Physical Chemistry, Houghton Mifflin Company College Division (2003).
38.I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” J. Am. Chem. Soc., 40, 1361 (1918).
39.S. Brunauer, P. H. Emmett, E. Teller, “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc., 60, 309 (1938).
40.E. L. V. Harris, Protein Purification Methods:A Practical Approach, Oxford University Press (1989).
41.M. Syvanen and H. K. Schachman, “Donnan Effect as Measured by Sedimentation Equilibrium for the Protein Cytochrome C,” Biopolymers, 17, 943 (1977).
42.S. Akgöl, D. Turkmen, A. Denizli, “Cu(II)-incorporated, histidine-containing, magnetic-metal-complexing beads as specific sorbents for the metal chelate affinity of albumin,” J. Appl. Polym. Sci., 93, 2669 (2004).
43.麥守義,磁性奈米吸附劑的製備與應用,國立成功大學化學工程研究所博士論文(2006)。
44.Z. G. Peng, K. Hidajat, M. S. Uddin,“Adsorption of bovine serum albumin on nanosized magnetic particles,” J. Colloid Interface Sci., 271, 277 (2004).
45.Z. G. Peng, K. Hidajat, M. S. Uddin, ” Conformational change of adsorbed and desorbed bovine serum albumin on nano-sized magnetic particles,” Colloids and Surfaces B: Biointerfaces, 33, 15 (2004).
46.A. K. Bajpai, “Adsorption of bovine serum albumin onto glass powder surfaces coated with polyvinyl alcohol,” J. Appl. Polym. Sci., 78, 933 (2000).
47.M. Hara, M. Fujinaga, T. Kuboi, “Metal binding by citrus dehydrin with histidine-rich domains,” J. Exp. Bot., 56, 2695 (2005).
48.X. Xu, L. Zhang, D. SH. Wu, “Oxygen-dependent Oxidation of Fe(Ⅱ) to Fe(Ⅲ) and Interaction of Fe(Ⅲ) with Bovine Serum Albumin, Leading to a Hysteretic Effect on the Fluorescence of Bovine Serum Albumin,” J. Fluoresc., 18, 193 (2008).
49.N. C. Cook, S. Samman, “Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources,” J. Nutr. Biochem., 7, 66 (1996).
50.JL. He, Y. Yang, X. Yang, YL. Liu, “β-Cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin,” Sensors and Actuators B, 114, 94 (2006).
51.A. R. Malagutti, V. G. Zuin, E. T. G. Cavalheiro, L. H. Mazo,“Determination of Rutin in Green Tea Infusions Using Square-Wave Voltammetry with a RigidCarbon-P olyurethane Composite Electrode,” Electroanalysis, 18, 1028 (2006).
52.XQ. Lin, JB. He, ZG. Zha, “Simultaneous determination of quercetin and rutin at a multi-wall carbon-nanotube paste electrodes by reversing differential pulse voltammetry,” Sensors and Actuators B, 119, 608 (2006).
53.B. Zeng, S. Wei, F. Xiao, F. Zhao, “Voltammetric behavior and determination of rutin at a single-walled carbon nanotubes modified gold electrode,” Sensors and Actuators B, 115, 240 (2006).
54.Y. Wei, G. Wang, M. Li, C. Wang, B. Fang, “Determination of rutin using a CeO2 nanoparticle-modified electrode,” Microchimica Acta, 158, 269 (2007).
55.J. Lipkowski, P. N. Ross, Electrochemistry of Novel Materials, Wiley, New York (1994).
56.K. David, Gosser, Cyclic voltammetry:simulation and analysis of reaction mechanisms, VCH, New York (1993).
57.Allen J. Bard, Larry R. Faulkner, Electrochemical Methods:Fundamentals and Applications, Wiley, New York (1980).
58.J. B. He, Y. Wang, N. Deng, Z. G. Zha, X. Q. Lin, “Cyclic voltammograms obtained from the optical signals: Study of the successive electro-oxidations of rutin,” Electrochimica Acta, 52, 6665 (2007).
59.J. Mocak, A. M. Bond, S. Mitchell, G. Scollary, “A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification:Application to voltammetric and stripping techniques,” Pure and Apploed Chemistry, 69, 297 (1997).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊