跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 20:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡平賜
研究生(外文):Ping-Szu Tsai
論文名稱:超疏水表面的階層式結構與自潔功能之研究
論文名稱(外文):Hierarchical Structures and Self-Cleaning Functions of Surperhydrophobic Surfaces
指導教授:楊毓民楊毓民引用關係
指導教授(外文):Yu-Min Yang
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:168
中文關鍵詞:階層式結構SiO2粒子薄膜自潔功能超疏水表面抗反射Langmuir-Blodgett沉積表面改質自組裝單分子膜靜電逐層組裝
外文關鍵詞:self-cleaning functionsuperhdyrophopbic surfaceLangmuir-Blodgett(LB) depositionhierarchical structure、antireflectionelectrostatic layer-by-layer(ELbL) assemblyself-assembled monolayer(SAM)surface modificationSiO2 particulate thin film
相關次數:
  • 被引用被引用:10
  • 點閱點閱:1006
  • 評分評分:
  • 下載下載:254
  • 收藏至我的研究室書目清單書目收藏:0
超疏水自潔表面可節省許多物品的清潔維護成本,因此創造具有超疏水性質的表面,極富實用價值。本論文旨在分別運用Langmuir-Blodgett(LB)沉積及靜電逐層組裝技術,在玻璃基板上組裝具有階層式結構的微/奈米及奈米SiO2粒子薄膜,再經由煆燒及表面的疏水修飾,達成製備超疏水自潔表面的目標。此外,以靜電逐層組裝的奈米SiO2粒子薄膜,同時可具備可見光高穿透度的特性。
微/奈米階層式結構的產生,是先將微米級(0.5,1.0,1.5 μm)SiO2粒子,以界面活性劑進行表面改質,接著在氣/液界面上形成粒子單層,之後運用LB沉積技術,建構一至五層的六方緊密堆積SiO2微米粒子薄膜,然後再在其上,以同樣的方法建構另一層SiO2奈米(50 nm)粒子而完成。微/奈米階層式結構的粒子薄膜,經煆燒去除界面活性劑後,再以矽烷進行表面的自組裝單分子層疏水修飾,即可獲得疏水表面。實驗結果顯示水滴在這種表面上的前進接觸角可超過170∘,接觸角遲滯則可小至6∘,與微米單層次結構的疏水表面比較,有很大的超疏水特性提昇。本文亦從兩種尺度的粒子,所造成的表面粗糙度變化的觀點提出理論的解釋。
奈米階層式結構的產生則是利用靜電逐層組裝技術,依序建構聚電解質的接著層,22 nm / 7 nm SiO2混合粒子的本體層及7 nm SiO2粒子的上表層而完成。奈米階層式結構的粒子薄膜,經煆燒去除聚電解質後,也是以矽烷進行表面的自組裝單分子層疏水修飾,獲得疏水表面。實驗結果顯示,適當的奈米粒子混合比例及本體層層數,可以創造出透明且超疏水的表面。其中5個雙層的接著層,20個雙層22 nmSiO2混合粒子比為0.2 – 0.14 的本體層及3個雙層的上表層,所建構成的疏水表面,水滴前進接觸角可達169~171∘,接觸角遲滯只有7~9∘,可見光(400-800 nm)平均穿透度為90.2~91%,已達透明超疏水的標準。
Superhydrophobic self-cleaning surfaces could save a lot of time and cost for maintenance. Therefore, the creation of surfaces with superhydrophobic property would be interesting and attractive. The aim of this paper is to fabricate micro/nano-sized and nano-sized SiO2 particulate thin films with hierarchical structures on glass substrate by using Langmuir-Blodgett(LB) deposition and electrostatic layer-by-layer(ELbL) deposition techniques, respectively. The as-fabricated thin films were then calcined and hydrophobically modified to achieve the goal for fabricating superhydrophobic surfaces. Besides, superhydrophobic nano-sized hierarchically structured SiO2 particulate thin films fabricated by ELbL deposition also showed high transmittance in the visible-light (400-800 nm wavelength) region.
Hierarchically structured micro/nano-sized thin films were prepared by using Langmuir-Blodgett(LB) particles thin film deposition strategy to deposite one to five sublayers with hexagonally close-packed micro-sized (0.5, 1.0, 1.5 μm) SiO2 particles which were modified by surfactants and formed a monolayer on the air/water interface, and then to deposite another layer of nano-sized (50 nm) SiO2 particles thin films over sublayers thin films of micro-sized particles by the same LB strategy. After removing organic surfactants by calcining, superhydrophobic surfaces with hierarchical structure were obtained by following hydrophobic modification with alkylsilane. The experimental data of water contact angle on these hierarchically structured superhydrophobic surfaces showed that the advancing contact angle is above 170∘, hysteresis is as low as 6∘and compared with the hydrophobicity of micro-sized structured hydrophobic surfaces, the enhanced superhydrphobic effect of hierarchically structured is conspicuous. An theoretical explanation of superhydrophobicity based on the surface roughness introduced by two-scale particles is also proposed.
Hierarchically structured nano-sized thin films were achieved by using electrostatic layer-by-layer assembly strategy to deposite polyelectrolyte adhesion-layers, 22 nm/7 nm mixing-sized nanoparticles body-layers and 7nm nanoparticles top-layers by sequence. Hierarchically structured nano-sized superhdyrophobic thin films were also obtained after sintering and surface hydrophobic modification. The experimental results revealed that transparent and superhydrophobic surface could be created by tuning the proportion of 22nm/7nm mixing-sized nanoparticles and the bilayer number of body-layer. Among these thin films, superhydrophobic and transparent thin films with water advancing contact angle values of 169-171∘, contact angle hysteresis values of 7-9∘and average transmittance values of 90.2%-91% in the visible-light region were exhibited by 5 bilayers of adhesion-layer, 20 bilayers of body-layer with 22 nm volume fration values of 0.2 – 0.14, and 3 layers of top-layer.
摘 要 I
ABSTRACT III
致 謝 V
目 錄 VII
表目錄 XII
圖目錄 XIII
中英文對照表 XX
符號表 XXII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 研究流程圖 4
第二章 文獻回顧 5
2.1 超疏水自潔表面-蓮花效應 5
2.2 超疏水理論 9
2.2.1 溫佐(Wenzel)方程式 10
2.2.2 卡西-巴斯特(Cassie and Baxter)方程式 13
2.2.3 強生-底去理論(Johnson and Dettre, 1963) 14
2.2.4 接觸角遲滯 16
2.2.5 熱力學分析 19
2.3 階層式結構與疏水特性 25
2.4 超疏水表面製備方法 32
2.4.1 先創造粗糙結構的表面然後再疏水改質 32
2.4.2 在疏水材料表面上創造粗糙結構 34
2.4.3 創造具有低液/固接觸面積的規則階層式結構表面 36
2.5 表面疏水改質 38
2.6 抗反射疏水薄膜 41
第三章 實驗 46
3.1藥品 46
3.2儀器設備及裝置 49
3.2.1超音波洗淨機 49
3.2.2 蘭穆爾槽 49
3.2.3 浸鍍機(機械手臂) 50
3.2.4 雷射光散射法粒徑測定儀 51
3.2.5 掃瞄式電子顯微鏡 52
3.2.6 動態接觸角分析儀 53
3.2.7 靜態接觸角測量儀 55
3.2.8 紫外光-可見光( UV-vis)光譜儀 56
3.2.9 高溫爐 57
3.2.10 Milli-Q超純水系統 57
3.3實驗方法 58
3.3.1玻璃基板的清洗及吹乾使用 58
3.3.2 SiO2粒子LB膜逐層組裝 58
3.3.2.1 SiO2粒子表面疏水改質及分散 58
3.3.2.2 SiO2粒子薄膜製備 58
3.3.3 SiO2粒子/聚電解質靜電逐層組裝 59
3.3.3.1 SiO2粒子溶液配製 59
3.3.3.2 聚電解溶液配製 60
3.3.3.3 靜電逐層組裝SiO2粒子/聚電解質程序 60
3.3.3.4 粒子薄膜煆燒(Calcination) 60
3.3.3.5 粒子薄膜疏水改質 60
第四章 結果與討論 62
4.1 微米單層次結構SiO2粒子LB膜 62
4.1.1 等溫線圖 62
4.1.2 取膜及轉移率 74
4.1.3 顯微觀察及粗糙度分析 76
4.1.4 潤濕性分析 79
4.1.5 穿透度分析 84
4.2 微/奈米階層式結構SiO2粒子LB膜的疏水表面 85
4.2.1 顯微觀察 85
4.2.2 潤濕性分析 92
4.2.3 穿透度分析 97
4.3 階層式微/奈米結構對單層次微米結構疏水表面增強效果 98
4.4 奈米階層式結構SiO2粒子ELbL膜的疏水表面 107
4.4.1 顯微觀察 107
4.4.2 潤濕性分析及穿透度分析 109
第五章 結論與建議 114
5.1 結論 114
5.2 建議 115
參考文獻 116
附錄A. 六方緊密堆積晶體結構 128
附錄B. 蘭穆爾沉積槽操作步驟 130
附錄C. 浸鍍機(機械手臂)操作控制程式 139
附錄D. 動態接觸角分析儀操作步驟 144
附錄E. 著作目錄 153
附錄E1. 155
附錄E2. 161
自述 168
Armstrong, A. J., Mockler, R. C., O’Sullivan, W. J., “Isotherm-Expansion Melting of Two-dimensional Colloidal Monolayers on the Surface of Water,” J. Phys.: Condens. Matter, 1, 1707-1730, 1989.
Balaur, E., Macak, J. Tsuchiya, M., Schmuki, H. P., “Stimuli Responsive Materials: New Avenues Toward Smart Organic Devices,” J. Mater. Chem., 15, 4488–4491, 2005.
Barthlott, W., Neinhuis, C., “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces,” Planta, 202, 1-8, 1997.
Bravo, J., Zhai L., Wu, Z., Cohen, R. E., Rubner, M. F., “Transparent Superhydrophobic Films Based on Silica Nanoparticles,” Langmuir, 23, 7293-7298, 2007.
Busscher, H. J., Stokroos, I., Golverdingen, J. G., Schakenraad, J. M., “Adhesion and Spreading of Human Fibroblasts on Superhydrophobic FEP-Teflon,” Cells Mater., 1, 3, 243–249, 1991.
Callister W. D., “Materials Science and Engineering,” 6th edition, John Wiley & Sons Inc., 2000.
Cao, L., Hu, H. H., Gao, D., “Design and Fabrication of Micro-textures for Inducing a Superhydrophobic Behavior on Hydrophilic Materials,” Langmuir, 23, 8, 4310–4314, 2007.
Cassie, A. B. D., Baxter, S., “Wettability on Porous Surfaces,” Trans. Faraday Soc., 40, 546-551, 1944.
Chen, W., Fadeev, A. Y., Hsieh, M. C., Oner, D., Youngblood, J., McCarthy, T. J., “Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples,” Langmuir, 15, 3395-3399, 1999.
Chen, L. J., Tsai, Y. H., Liu, C. S., Chiou, D. R., Yeh, M. C., “Effect of Water Content in Solvent on the Critical Temperature in the Formation of Self-assembled Hexadecyltrichlorosilane Monolayers on Mica,” Chem. Phys. Lett., 346, 241-245, 2001.
Chen, A. C., Peng, X. S., Koczkur, K., Miller, B., “Super-hydrophobic Tin Oxide Nananoflowers,” Chem. Commun., 17, 1964–1965, 2004.
Choi, C. H., Kim, C. J., “Fabrication of a Dense Array of Tall Nanostructures Over a Large Sample Area with Sidewall Profile and Tip Sharpness Control,” Nanotechnology, 17, 21, 5326–5333, 2006.
Erbil, H. Y., Demirel, A. L., Avci, Y., Mert, O., “Transformation of a Simple Plastic into a Superhydrophobic Surface,” Science, 299, 1377-1380, 2003.
Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., Zhu, D., “Super-Hydrophobic Surfaces : From Natural to Articicial,” Adv. Mater., 14, 1857-1860, 2002.
Feng, L., Song, Y., Zhai, J., Liu, B., Xu, J., Jiang, L., Zhu, D., “Creation of Superhydrophobic Surface from an Amphilic Polymer,” Angew. Chem. Int. Ed., 42, 800-802, 2003.
Feng, X., Jiang, L., “Design and Creation of Superwetting/Aniwetting Surfaces,” Adv. Mater., 18, 3063-3078, 2006.
Gao, L. C., McCarthy, T. J., “Nanoscale Surface Patterns from 103 Single Molecule Helices of Biodegradable Poly(L-lactic acid),” Langmuir, 22, 14, 5969–5973, 2006.
Ghezzi, F., Earnshaw, J. C., Finnis, M., McCluney, M. J., “Pattern Formation in Colloidal Monolayers at the Air–Water Interface,” J. Colloid Interface Sci., 238, 433-446, 2001.
Han, J. T., Jang, Y., Lee, D. Y., Park, J. H., Song, S.-H., Ban, D.-Y., “Fabrication of a Bionic Superhydrophobic Metal Surface by Sulfur-induced Morphological Development,” J. Mater. Chem., 15, 3089–3092, 2005.
Hosono, E., Fujihara, S., Honma, I., Zhou, H., “Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process,” J. Am. Chem. Soc., 127, 39, 13458–13459, 2005.
Hurd, A. J., Schaeffer, D. W., “Diffusion-limited Aggregation in Two Dimensions,” Phys. Rev. Lett., 54, 1039-1042, 1985.
Ishizaki, T., Saito, N., Inoue, Y., Bekke, M., Takai, O., “Fabrication and Characterization of Ultra-Water-Repellent Alumina–Silica Composite films,” J. Phys. D, 40, 1, 192–197, 2007.
Jesionowski, T., Krysztafkiewicz, A., “Influence of Silane Coupling Agents on Surface Properties of Precipitated Silicas,” Appl. Surf. Sci., 172, 18-32, 2001.
Jiang, L., Zhao, Y., Zhai, J., “A Lotus-leaf-like Superhydrophobic Surface : A Porous Microsphere/Nanofiber Composite Film Prepared by Electrodynamics,” Angew. Chem. Int. Ed., 43, 4338-4341, 2004.
Jin, M., Feng, X., Xi, J., Zhai, J., Cho, K., Feng, L., Jing, L., “Super-Hydrophobic PDMS Surface with Ultra-Low Adhesive Force,” Marcromol. Rapid Commun., 26, 1805-1809, 2005a.
Jin, M., Feng, X., Feng, L., Sun, T., Zhai, J., Li, T., Jiang, L., “Superhydrophobic Aligned Polystrene Nanotube Films with High Adhesive Force,” Adv. Mater., 17, 1977–1981, 2005b.
Johnson, J. R. E., Dettre, R. H., “Contact Angle, Wettability and Adhesion, Advances in Chemistry Series,” Adv. Chem. Ser., 43, 112, 1963.
Kawai A., Nagata, H., "Wetting Behavior of Liquid on Geometrical Rough Surface Formed by Photolithograpy," Jpn. J. Appl. Phys., 33, 1283-1285, 1994.
Kurth, D. G., Lechmann, P., Lesser, C., “Engineering the Surface Chemical Properties of Semiconductor Nanoparticles : Surfactant- Encapsulated CdTe-Clusters,” Chem. Commun., 949-950, 2000.
Lafuma, A., Quere, D., “Superhydrophobic States,” Nat. Mater., 2, 457-460, 2003.
Lee, Y. L., Du, Z. C., Lin, W. X., Yang, Y. M., “Monolayer Behavior of Silica Particles at Air/water Interface: A Comparison between Chemical and Physical Modifications of Surface,” J. Colloid Interface Sci., 296, 233-241, 2006.
Li, W., Amirfazli, A., “A Thermodynamic Approach for Determining the Ccontact Angle Hysteresis for Superhydrophobic Surfaces,” J. Colloid Interface Sci., 292, 195–201, 2005.
Li, W., Amirfazli, A., “Microtextured Superhydrophobic Surfaces: A Thermodynamic Analysis,” Adv. Colloid Interface Sci., 132, 51-68, 2007.
Li, W., Amirfazli, A., “Hierarchical Structures for Natural Superhydrophobic Surfaces,” Soft Matter., 4, 462-466, 2008a.
Li, Y., Zheng, M., Ma, L., Zhong, M., Shen, W., “Fabrication of Hierarchical ZnO Architectures and Their Superhydrophobic Surfaces with Strong Adhesive Force,” Inorg. Chem., 47, 8, 3140-3143, 2008b.
Liu, Y. Y., Wang, R. H., Lu, H. F., Li, L., Kong, Y. Y., Qiand, K. H., Xin, J. H., “Artificial Lotus Leaf Structures from Assembling Carbon Nanotubes and Their Applications in Hydrophobic Textiles,” J. Mater. Chem., 17, 11, 1071–1078, 2007.
Martines. E, Seunarine, K., Morgan, H., Gadegaard, N., Wilknson, C. D.W., Riehle, M. O., “Superhydrophobicity and Superhydrophilicity of Regular Nanopatterns,” Nano Lett., 5, 10, 2097-2103, 2005.
Marmur, A., “The Lotus Effect: Superhydrophobicity and Metastability,” Langmuir, 20, 3517-3519, 2004.
Martı´nez-Lo´pez, F., Cabrerizo-Vı´lchez, M. A., Hidalgo-AÄ lvarez, R., “Colloidal Interaction at the Air–Liquid Interface,” J. Colloid Interface Sci., 232, 303-310, 2000.
McGovern, M. E., Kallury, K. M. R., Thompson, M., “Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane,” Langmuir, 10, 3607-3614, 1994.
Michielsen, S., Lee, H. J., “Design of a Superhydrophobic Surface Using Woven Structures,” Langmuir, 23, 11, 6004–6010, 2007.
Minot, M. J., “Single-layer, Gradient Refractive Index Antireflection Films Effective From 0.35 to 2.5μ,” J. Opt. Soc. Am., 66, 515-519, 1976.
Morra, M., Occhiello, E., Garbassi, F., “Contact Angle Hysteresis in Oxygen Plasma Treated Poly( tetrafluoroethylene),” Langmuir, 5, 872-876, 1989.
Nakae, H., Inui, R., Hirata, Y., Saito, H., “Effects of Surface Roughness on Wettability,” Acta. Mater., 46, 2313-2318, 1998.
Nakajima, A., Hashimoto, K., Watanabe, T., “Transparent Superhydrophobic Thin Films with Self-cleaning Properties,” Langmuir, 16, 7044-7047, 2000.
Neinhuis, C., Barthlott, W., “Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces,” Ann. Botany, 79, 667-677, 1997.
Nosonovsky, M., Bhushan, B., “Stochastic Model for Metastable Wetting of Roughness-Induced Superhydrophobic Surfaces,” Microsyst. Technol., 12 ,231-237, 2006a.
Nosonovsky, M., Bhushan, B., “Wetting of Rough Three-Dimensional Superhydrophobic Surfaces,” Microsyst. Technol., 12, 273-281, 2006b.
Nosonovsky, M., Bhushan, B., “Hierarchical Roughness Optimization for Biominetic Superhudrophobic Surfaces,” Ultramicroscopy, 107, 969-979, 2007.
Oliver, J. F., Huh, C., Mason, S. G., “Resistance to Spreading of Liquids by Sharp Edges,” J. Colloid Interface Sci., 59, 568-581, 1977.
Onda, T., Shibuichi, S., Satoh, N., Tsujii, K., “Super-Water-Repellent Fractal Surfaces,” Langmuir, 12, 9, 2125-2127, 1996.
Oner, D., McCarthy, T. J., “Ultrahydrophobic Surfaces - Effects of Topography Length Scales on Wettability,” Langmuir, 16, 7777-7782, 2000.
Parker, D., US Pat., 2, 386, 259, 1945.
Parker, A. R., Lawrence, C. R., “Water Capture by a Desert Beetle,” Nature, 414, 33-34, 2001.
Parkin, I.P., Palgrave, R.G., “Self-Cleaning Coatings,” J. Mater. Chem., 15, 1689-1695, 2005.
Patankar, N. A., “Mimicking the Lotus Effect: Influence of Double Roughness Structure and Slender Pillars,” Langmuir, 20, 8209-8213, 2004.
Pieranski, P., “Two-Dimensional Interfacial Colloidal Crystals ,” Phys. Rev. Lett., 45, 569-572, 1980.
Plueddeman, E. P., “Silane Coupling Agents” Plenum Press: New York, 1991.
Roach, P., Schirtcliffe, N. J., Newton, M. I., “Progress in Superhydrophobic Surface Development,” Soft Matter, 4, 224-240, 2008.
Robinson, D. J., Earnshaw, J. C., “Initiation of Aggregation in Colloidal Particle Monolayers,” Langmuir, 9, 1436-1438, 1993.
Shi, F., Song, Y. Y., Niu, H., Xia, X. H., Wang, Z. Q., Zhang, X., “Facile Method To Fabricate a Large-Scale Superhydrophobic Surface by Galvanic Cell Reaction,” Chem. Mater., 18, 5, 1365–1368, 2006.
Shibuichi, S., Onda, T., Satoh, N., Tsujii., K., “Super Water-Repellent Surfaces Resulting From Fractal Structure,” J. Phys. Chem., 100, 19512-19517, 1996.
Shiu, J. Y., Kuo, C. W., Chen, P., Mou, C. Y., “Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography,” Chem. Mater., 16, 561-564, 2004.
Soeno, T., Inokuchi, K., Shiratori, S., “Ultra-Water-Repellent Surface : Fabrication of Complicated Structure of SiO2 Nanopraticles by Electrostatic Self-assembled Films,” Appl. Surf. Sci., 237, 543-547, 2004.
Sun, J., Stirner, T., “Molecular Dynamics Simulation of the Surface Pressure of Colloidal Monolayers,” Langmuir, 17, 10, 3103-3108, 2001.
Szekeres, M., Kamalin, O., Schoonheydt, R. A., Wostyn, K., Clays, K., Persoons, A., Dekany, I. J., “Ordering and Optical Properties of Monolayers and Multilayers of Silica Spheres Deposited by the Langmuir-Blodgett method,” J. Mater. Chem., 12, 3268-3274, 2002.
Szekeres, M., Kamalin, O., Grobet, P. G., Schoonheydt, R. A., Wostyn, K., Clays, K., Persoons, A., Dekany, I., “Two-Dimensional Ordering of Stober Silica Particles at the Air/Water Interface,” Colloids Surf. A, 227, 77-83, 2003.
Takeshita, N., Paradis, L. A., Oner, D., McCarthy, T. J., Chen, W., “Simultaneous Tailoring of Surface Topography and Chemical Structure for Controlled Wettability,” Langmuir, 20, 8131-8136, 2004.
Vallant, T., Kattner, J., Brunner, H., Hoffmann, H., “Investigation of the Formation and Structure of Self-Assembled Alkylsiloxane Monolayers on Silicon Using in Situ Attenuated Total Reflection Infrared Spectroscopy,” Langmuir, 15, 5339-5346, 1999.
Vansant, E. F., Van Der Voort, P., Vrancken, K. C., “Characterization and Chemical Modification of the Silica Surface,” Elsevier: Amsterdam, 1995.
Wagner, T., Neinhuis, C., Barthlott, W., “Wettability and Contaminability of Insect Wings as a Function of Their Surface Sculpture,” Acta Zool., 77, 213-225, 1996.
Wagterveld, R. M., Berendsen, C. W., Bouaidat, J. Jonsmann, S. J., “Ultralow Hysteresis Superhydrophobic Surfaces by Excimer Laser Modification of SU-8,” Langmuir, 22, 26, 10904–10908, 2006.
Wang, C. F., Chiou, S. F., Ko, F. H., Chou, C. T., Lin, H. C., Huang, C. F., Chang, F. C., “Fabrication of Biomimetic Super-Amphiphobic Surfaces Through Plasma Modification of Benzoxazine Films,” Macromol. Rapid Commun., 27, 333-337, 2006.
Wang, T., Hu , X., Dong, S., “A General Route to Transform Normal Hhydrophilic Cloths into Superhydrophobic Surfaces,” Chem. Commun., 1849–1851, 2007.
Wenzel, R. N., “Resistance of Solid Surfaces to Wetting by Water,” Ind. Eng. Chem., 28, 988-994, 1936.
Xiu, Y., Zhu, L., Hess, D. W., Wong, C. P., “Biomimetic Creation of Hierarchical Surface Structures by Combining Colloidal Self-Assembly and Au Sputter Deposition,” Langmuir, 22, 9676-9681, 2006.
Yoldas, B. E., “Investigations of porous Oxides as an Antireflective Coating for Glass Surfaces,” Appl. Opt., 19, 1425-1429, 1980.
Yoshimitsu, Z., Nakajima, A., Watanabe, T. Hashimoto, K., “Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets,” Langmuir, 18, 15, 5818–5822, 2002.
Zhai, L., Cebeci, F. C., Cohen, R. E., Rubner, M. F., “Stable Superhydrophobic Coating from Polyelectrolyte Multilayers,” Nano Lett., 4, 1349-1353, 2004.
Zhang, J., Kwok, D. Y., “Contact Line and Contact Angle Dynamics in Superhydrophobic Channels,” Langmuir, 22, 4998-5004, 2006.
Zhang, X., Shi, F., Yu, X., Liu, H., Fu, Y., Wabg, Z., Jiang, L., Li, X., “Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters : Toward Super-Hydrophobic Surface,” J. Am. Chem. Soc., 126, 3064-3065, 2004.
Zhang, X. T., Sato, O., Taguchi, M., Einaga, Y., Murakami, T., Fujishima, A., “Self-Cleaning Particle Coating with Antireflection Properties,” Chem. Mater., 17, 696-700, 2005.
Zhao, N., Xu, J., Xie, Q., Weng, L., Guo, X., Zhang, X., Shi, L., “Fabrication of Biomimetic Superhydrophobic Coating with a Micro-Nano-Binary Structure,” Macromol. Rapid Commun., 26, 1075-1080, 2005.
Zhu, L., Xiu, Y., Xu, J., Tamirisa, P. A., Hess, D. W., Wong, C. P., 2005, Superhydrobicity on Two-Tier Rough Surfaces Fabricated by Controlled Growth of Alighned Carbon Nanotube Arrays Coated with Fluorocarbon,” Langmuir, 21, 12208-11212, 2005.
丁嘉仁, 許沁如, 聶雅玉, 張哲瑋, “次波長結構抗反射膜片發展現況,” 機械工業, 282, 71-74, 2006.
張貴錢, “有機高分子與矽氧烷化合物製備超疏水及高透光性薄膜之研究,” 國立中央大學化學工程與材料工程所博士論文, 2006.
張德威,”抗反射及親疏水效應和一維奈米玻璃結構之互動分析與驗證,”臺灣大學工程科學及海洋工程學研究所碩士論文,2006.
張鑑祥, 楊毓民, “分子層級的薄膜表面型態控制-逐層組裝技術,” 化工技術, 12, 9,135-144, 2004.
蘇愷翎, “二氧化矽奈米粒子薄膜之製備及其抗反射/超親水/超疏水特性之探討,” 國立成功大學化學工程學系碩士論文, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top