跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 04:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳政廷
研究生(外文):Zheng-ting Chen
論文名稱:混合有機色素分子共增感對色素增感太陽電池光電轉換效率的影響
論文名稱(外文):Molecular Co-sensitization of Mixed Organic Dyes for Dye-Sensitized Solar Cells
指導教授:楊毓民楊毓民引用關係
指導教授(外文):Yu-min Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:114
中文關鍵詞:抑制漏電流機制微量成份促進效應混合增效分子共增感色素增感太陽電池
外文關鍵詞:dopant effectDye-sensitized Solar Cellmechanism of suppression of leakage currentsyngeristic effectmolecular co-sensitization
相關次數:
  • 被引用被引用:21
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用五種有機色素 — Mercurochrome、Eosin Y、Coumarin 343、Rose bengal及D149 — 作為色素增感太陽電池(Dye-sensitized Solar Cells, DSSCs)的增感劑,並形成四個雙成份混合系統 — Mercurochrome/Rose bengal、Mercurochrome/Coumarin 343、Mercurochrome/Eosin Y、 D149/Mercurochrome — 以分子共增感的方式探討雙成份有機色素在TiO2光電極上的吸附能力與電池在光電轉換效率上的表現。實驗結果顯示雙成份有機色素組成對效率的影響可歸納成三種類型,第一類型是效率較高的色素其吸附能力等於效率較低的色素,組成對效率的圖型應是一條斜直線;第二類型是效率較高的色素其吸附能力大於效率較低的色素,組成對效率的圖型為一上凸曲線;第三類型是效率較高的色素其吸附能力小於效率較低的色素,組成對效率的圖型為一下凹曲線。此外,在第二類型的雙成份混合系統中也發現微量的第二成份色素可以增進具有較強吸附能力且較高效率的第一成份色素的增感能力,共增感之光電轉換效率約有16∼18%的提升;但此一微量成份促進效應與兩種有機色素的吸收波長範圍互補性的關係不大。根據雙成份有機色素混合系統的效率測定、入射光電轉換效率(IPCE)、暗電流(dark current)與電化學交流阻抗圖譜(EIS)等分析,本研究亦提出微量成份促進效應的可能機制-抑制漏電流機制︰微量成份的色素分子會填補於色素單分子層的缺陷位置,光電極表面由雙成份色素共同構成較高的覆蓋率,缺陷位置的數量減少而抑制漏電流的發生,導致光電流與效率的提升。
In this study, five organic dyes — that is, Mercurochrome , Eosin Y, Coumarin 343, Rose Bengal and D149 ─ were employed as sensitizer to dye-sensitized solar cells(DSSCs)and formed four binary systems. Adsorption ability on TiO2 photoelectrode and efficiency of DSSCs were investigated by binary system. The results exhibit influence of binary organic dyes’ composition versus efficiency could generalize in three types. Type I, adsorption ability of dye with higher efficiency is equal dye with lower efficiency and the plot of composition versus efficiency should be a straight line. Type II, adsorption ability of dye with higher efficiency is stronger than dye with lower efficiency and the plot of composition versus efficiency is a concave-down curve.Type III, adsorption ability of dye with higher efficiency is weaker than dye with lower efficiency and the plot of composition versus efficiency is a concave-up curve. Furthermore, minor dye enhance sensitized ability of major dye with stronger adsorption ability and higher efficiency in Type II system and efficiency has 16∼18% enhancement. But this dopant effect has less correlation with adsorption wavelength complementary of binary system. By analysis of efficiency, IPCE, dark current and EIS, this study also presents a possible mechanism of dopant effect-mechanism of suppression of leakage current : Minor dye fill the defect of monolayer to comprise higher coverage together by binary dyes. Suppression of leakage current due to reduce the sites of the defect, and results in enhancement of photocurrent and efficiency.
摘要 Ⅰ
Abstract Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅷ
圖目錄 Ⅸ

第一章 緒論 1
1-1前言 1
1-2 研究動機與目的 3
第二章 實驗原理與文獻回顧 4
2-1 色素增感太陽電池 4
2-1.1色素增感太陽電池之工作原理 4
2-1.2色素增感太陽電池之發展現況 5
2-2 色素增感太陽電池之光電特性測量 11
2-2.1太陽電池之總效率 11
2-2.2光電轉化效率 14
2-3 電化學交流阻抗分析 15
2-3.1 交流阻抗法之原理 15
2-3.2 應用於色素增感太陽電池分析 18
2-4 文獻回顧 19
2-4.1 有機色素與共增感吸附 19
2-4.2 共增感吸附之微量成份促進效應 23
第三章 實驗儀器與方法 27
3-1儀器設備 27
3-1.1 超音波震盪器 27
3-1.2 旋轉塗佈機 27
3-1.3 高溫爐 28
3-1.4 表面輪廓儀 28
3-1.5 掃描式電子顯微鏡 29
3-1.6 X光繞射分析儀 30
3-1.7 紫外光/可見光光譜儀 30
3-1.8 離子濺鍍機 31
3-1.9 太陽光模擬器 31
3-1.10定電位/定電流儀 32
3-1.11光電轉化效率測定系統 33
3-1.12 Mili-Q超純水系統 35
3-2實驗藥品 .36
3-3實驗方法 39
3-3.1 TiO2膠體溶液製備 39
3-3.2 TiO2光電極製備 39
3-3.3色素吸附 41
3-3.4吸附動力學分析 41
3-3.5對電極製備 42
3-3.6電解液製備 42
3-3.7電池組裝 43
3-3.8 IPCE之量測 44
3-3.9總效率之量測 44
第四章 結果與討論 45
4-1 TiO2奈米晶薄膜光電極特性分析 45
4-1.1 TiO2光電極的厚度分析 45
4-1.2 表面型態與TiO2的相態 47
4-2有機色素分子的吸收特性分析 49
4-2.1 Mercurochrome 49
4-2.2 Eosin Y 51
4-2.3 Coumarin 343 53
4-2.4 Rose bengal 55
4-2.5 D149 56
4-2.6 混合有機色素分子共增感和微量添加 57
4-3 雙成份混合有機色素共增感太陽電池的光電特性分析 59
4-3.1 系統(1)─ Mercurochrome與Eosin Y 59
4-3.2 系統(2)─ Mercurochrome與Coumarin 343 65
4-3.3 系統(3)─ Mercurochrome與Rose bengal 70
4-3.4 系統(4)─ D149與Mercurochrome 74
4-3.5 雙成份有機色素系統 78
4-4 光電化學分析:微量成份促進效應 80
4-4.1 入射光電轉換效率 80
4-4.2 暗電流 83
4-4.3 電化學交流阻抗圖譜 85
4-5 微量色素與添加劑之比較 93
4-6 抑制漏電流機制 95
第五章 結論與建議 98
5-1結論 98
5-2建議 100
參考文獻 101
自述 114
Adachi, M., Sakamoto, M., Jiu, J. T., Ogata, Y., Isoda, S., “Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy,” Journal of Physical Chemistry B, 110, 13872-13880 (2006).
Amao, Y., and Komori, T., “Dye-sensitized Solar cell using a TiO2 nanocrystalline film electrode modified by an aluminum phthalocyanine and myristic acid coadsorption layer,” Langmuir., 19, 8872-8875 (2003).
Basics of electrochemical impedance spectroscopy (Application Note AC-1), Princeton Applied Research.
Chang, C. H. and Lee, Y. L., “Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot sensitized solar cells,” Applied Physics Letters, 91, 053503 (2007).
Chen, Y. S., Zeng Z. H., Li, C., Wang, W. B., Wang, X. S., Zhang B. W., “Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes,” New Journal of Chemistry, 29, 773-776 (2005).


Ehret, A., Stuhl, L., Spitler, M. T., “Spectral sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine dyes,” Journal of Physical Chemistry B, 105, 9960-9965 (2001).
Fang, J., Su, L., Wu, J., Shen, Y., Lu, Z., “Fabrication, characterization, and photovoltaic study of dye-co-modified TiO2 electrodes,” New Journal of Chemistry, 21, 1303-1307 (1997).
Grätzel, M, “Photoelectrochemical cells,” Nature, 414, 338-344 (2001).
Grätzel, M., “Perspectives for dye-sensitized nanocrystalline solar cells,” Progress in Photovoltaics: Research & Applications, 8, 171-185 (2000).
Guo, M., Diaoc, P., Rena, Y. J., Mengd, F., Tiand, H., Cai, S.M., “Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes,” Solar Energy Materials & Solar Cells, 88, 23-35 (2005).
Hagfeldt, A. and Grätzel, M., “Molecular photovoltaics,” Accounts of Chemical Research, 33, 269-277 (2000).
Halme, J., “Dye-sensitized nanostructured and organic photovoltaic cells: technical review and preliminary tests,” Master Thesis, Helsinki University of Technology (2002).

Hara, K., Dan-oh, Y., Kasada, C., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Arakawa, H., “Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells,” Langmuir., 20, 4205-4210 (2004).
Hara, K., Horiguchi, T., Kinoshita, T., Sayama, K., Sugihara, H., Arakawa, H., “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells,” Solar Energy Materials & Solar Cells, 64, 115-134 (2000).
Hara K., Kurashige, M., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., Sayama, K., Arakawa, H., “Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells,” New Journal of Chemistry, 27, 783-785 (2003a).
Hara, K., Sugihara, H., Tachibana, Y., Islam, A., Yanagida, M., Sayama, K., Arakawa, H., “Dye-sensitized nanocrystalline TiO2 solar cells based on Ruthenium(II) phenanthroline complex photosensitizers,” Langmuir, 17, 5992-5999 (2001).



Hara, K., Sato, T., Katoh, R., Furube, A., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H., Arakawa, H., “Molecular design of coumarin dyes for efficient dye-sensitized solar cells,” Journal of Physical Chemistry B, 107, 597-606 (2003b).
He, J. J., Benko, G., Korodi, F., Polivka, T., Lomoth, R., Akermark, B., Sun, L. C., Hagfeldt, A., Sundstrom, V., “Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode,” Journal of the American Chemical Society, 124, 4922-4932 (2002).
Horiuchi, T., Miura, H, Sumioka, K., Uchida, S., “High efficiency of dye-sensitized solar cells based on metal-free Indoline dyes,” Journal of the American Chemical Society, 126, 12218-12219 (2004).
Ito, S., Zakeeruddin, M., Humphry-Baker, R., Liska, P., Charvet, R., Comte, P., Nazeeruddin, M. K., Pechy, P., Takata, M., Miura, H., Uchida, S., Gratzel, M., “High-efficiency organic dye seneitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Advanced Materials, 18, 1202-1205 (2006).
Jana, A. K. and Bhowmik, B. B.,“Enhancement in power output of solar cells consisting of mixed dyes,” Jourmal of Photochemistry and Photobiology A: Chemistry, 122, 53-56 (1999).
Kim, B. H., Ahn, J. H., Jeong, J. H., Jeon, Y. S., Jeon, K. O., Hwan K.S., “Preparation of TiO2 thin film on SiO2 glass by a spin coating pyrolysis process,” Ceramics International, 32, 223-225 (2006).
Kumara, G. R. A., Kaneko S., Okuya, M., Onwona-Agyeman, B., Konno, A., Tennakone, K., “Shiso leaf pigments for dye-sensitized solid-state solar cell,” Solar Energy Materials & Solar Cells, 90, 1220-1226 (2006).
Lee, K. M., Suryanarayanan, V., Ho, K. C., Thomas, K. R. J., Lin, J., “Effects of co-adsorbate and additive on the performance of dye-sensitized solar cells: A photophysical study,” Solar Energy Materials & Solar Cells, 91, 1426-1431 (2007).
Nazeeruddin, M. K., Angelis, F. D., Fantacci, S., Sellon, A., Viscardi, G., Liska, P., Ito, S., Takeru, B., Grätzel M., “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” Journal of the American Chemical Society, 127, 16835-16847 (2005).
Nazeeruddin, M. K., Humpbry-Baker, R., Liska, P., Grätzel, M., “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell,” Journal of Physical Chemistry B, 107, 8981-8987 (2003).
Nazeeruddin, M. K., Pechy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G., Bignozzi, C. A., Gratzel, M., “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-Based sloar cells,” Journal of the American Chemical Society, 123, 1613-1624 (2001).
Nazeeruddin, M. K., Zakeeruddin, S. M., Humphry-Baker, R., Jirousek, M., Liska, P., Vlachopoulos, N., Shklover, V., Fischer, C. H., Gratzel, M., “Acid-Base equilibria of (2,2’-bipyridy-4,4’-dicarboxylic acid) ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania,” Inorganic Chemistry, 38, 6298-6305 (1999).
Neale, N. R., Kopidakis, N., Lagemaat, J., Gratzel, M., Frank, A. J., “Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: shielding versus Band-Edge movement,” Journal of Physical Chemistry B, 109, 23183-23189 (2005).
O’Regan, B., and Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature , 353, 737 (1991).

Planells, M., Forneli, A., Martinez-Ferrero, E., Sanchez-Diaz, A., Sarmentero, M. A., Ballester, P., Palomares, E., O’Regan, B. C., “The effect of molecular aggregates over the interracial charge transfer processes on dye sensitized solar cells,” Applied Physics Letters, 92, 153506 (2008).
Plass, R., Pelet, S., Krueger, J., Grätzel, M., “Quantum dot sensitization of organic-inorganic hybrid solar cells,” Journal of Physical Chemistry B, 106, 7578-7580 (2002).
Pradhan, B., Batabyal, S. K., Pal, A. J., “Vertically aligned ZnO nanowire arrays in Rose Bengal based dye-sensitized solar cells,” Solar Energy Materials & Solar Cells, 91, 769-773 (2007).
Roy, M. S., Balraju, P., Kumar, M., Sharma, G. D., “Dye-sensitized solar cell based on Rose Bengal dye and nanocrystalline TiO2,” Solar Energy Materials & Solar Cells, 92, 909-913 (2008).
Sayama, K., Tsukagoshi, S., Mori, T., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S., Arakawa, H., “Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes,” Solar Energy Materials & Solar Cells, 80, 47-71 (2003).


Tennakone, K., Kumara, G. R. R. A., Kottegoda, I. R. M., Wijayantha, K. G. U., Perera, V. P. S., “A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex,” Journal of Physics D: Applied Physics, 31, 1492-1496 (1998).
Tsubomura, H., Matsumura, M., Nomura, Y., Amamiya, T., “ Dye sensitized zinc oxide aqueous electrolyte: platinum photocell,” Nature, 261, 402 (1976).
Vogel, R., Hoyer, P., Weller, H., “Quantum-sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors,” The Journal of Physical Chemistry, 98, 3183-3188 (1994).
Wang, X. F., Xiang, J. F., Wang, P., Koyama, Y., Yanagida, S., Wada, Y., Hamada, K., Sasaki, S., Tamiaki, H., “Dye-sensitized solar cells using a chlorophyll a derivative as the sensitizer and carotenoids having different conjugation lengths as redox spacer,” Chemical Physics Letters, 408, 409-414 (2005a).



Wang, X. F., Kakitani, Y., Xiang, J. F., Koyama, Y., Rondonuwu, F. S., Nagae, H., Sasaki, S., Tamiaki, H., “Generation of carotenoid radical cation in the vicinity of a chlorophyll derivative bound to titanium oxide, upon excitation of the chlorophyll derivative to the Qy state, as identified by time-resolved absorption spectroscopy,” Chemical Physics Letters, 416, 229-233 (2005b).
Wang, Z., Sayama, K., Sugihara, H., “Efficient Eosin Y dye-sensitized solar sell containing Br-/Br3- electrolyte,” Journal of Physical Chemistry B, 109, 22449-22455 (2005c).
Wang, C.C. and Ying, J. Y.; Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals; Chemistry of Materials, 11, 3113-3120 (1999).
Wang, P., Zakeeruddin, S. M., Humphry-Baker, R., Moser, J. E., Gratzel, M., “Molecular-scale interface engineering of TiO2 nanocrystalline: improving the efficiency and stability of dye-sensitized solar cells,” Advanced Materials, 15, 2101-2104 (2003a).



Wang, P., Zakeeruddin, S. M., Comte, P., Charvet, R., Humphry-Baker, R., Grätzel, M., “Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals,” Journal of Physical Chemistry B, 107, 14336 (2003b).
Wongcharee, K., Meeyoo, V., Chavadej, S., “Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers,” Solar Energy Materials & Solar Cells, 91, 566-571 (2007).
Xu, W. W., Dai, S. Y., Hu, L. H., Zhang, C. N., Xiao, S. F., Luo, X. D., Jing, W. P., Wang, K. J., “Influence of different surface modifications on the photovoltaic performance and dark current of dye-sensitized solar cells,” Plasma Science and Technology, 9, 556-559 (2007).
Yoshida, T., Iwaya, M., Ando, H., Oekermann, T., Nonomura, K., Schlettwein, D., Wöhrlec, D., Minoura, H., “Improved photoelectron -chemical performance of electrodeposited ZnO/EosinY hybrid thin films by dye re-adsorption,” Chemical Communications, 400-401 (2004).
Yum, J. H., Jang, S. R., Walter, P., Geiger, T. Nuesch, F., Kim, S. H., Ko, J. J., Gratzel, M., Nazeeruddin, M. K., “Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizer,” Chemical Communications, 4680-4682 (2007).
Zhang, D. S., Wang, W. B., Liu, Y., Xiao, X. R., Zhao, W., Zhang B. W., Cao, Yi., “Photosensitization of nanocrystalline TiO2 electrodes by squarylium cyanine incorporated with a ruthenium bipyridyl complex,” Journal of Photochemistry and Photobiology A: Chemistry, 135, 235-240 (2000).
Zhang, D., Yoshida, T., Minoura, H., “Low temperature synthesis of porous nanocrystalline TiO2 thick film for dye-sensitized solar sells by hydrothermal crystallization,” Chemistry Letter, 9, 874-875 (2002)
Zhang, Z. P., Zakeeruddin, S. M., O’Regan, B. C., Humphry-Baker, R., Gratzel, M., “Influence of 4-Guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells,” Journal of Physical Chemistry B, 109, 21818-21824 (2005).
Zhao, W., Hou, Y. J., Wang, X. S., Zhang, B. W., Cao, Y., Yang, R., Wang, W. B., Xiao, X. R., “Study on squarylium cyanine dyes for photoelectric conversion,” Solar Energy Materials & Solar Cells , 58, 173-183 (1999).
Zuo, P., Li, C., Wu, Y. S., Ai, X. C., Wang, X. S., Zhang, B. W., Zhang, J. P., “Mechanism of squarylium cyanine and Ru(dcbpy)2(NCS)2 co-sensitization of colloidal TiO2,” Journal of Photochemistry and Photobiology A: Chemistry, 183, 138-145 (2006).

許志偉、陳宏仁、林怡君、王立義,「有機╱無機太陽能電池之現況發展」,化工,第52卷,第2期,49-58 (2005)。
鄭揚霖,「雞尾酒有機色素增感太陽電池之研究」成功大學化學工程系碩士論文 (2006)。
黃士哲,「有機色素增感太陽電池-雞尾酒色素/色素能帶階梯增感之探討」成功大學化學工程系碩士論文 (2007)。
鄭揚霖、黃士哲、陳政廷、楊毓民,「色素增感太陽電池的發展現況」,化工技術,第15卷,第6期,156-169 (2007)。

網頁介紹
色素增感太陽能電池總整理(日本特許廰):
http://www.jpo.go.jp/shiryou/s_sonota/hyoujun_gijutsu/solar_cell/01_mokuji.htm
色素增感太陽能電池年表:
http://kuroppe.tagen.tohoku.ac.jp/~dsc/history-j.htm
色素太陽能電池實體介紹:
http://apchem.gifu-u.ac.jp/~pcl/special/products_j.htm#racing
太陽光電示範系統推廣網站:
http://solarpv.itri.org.tw/memb/main.aspx
矽型太陽能電池的介紹(益通光能):
http://www.e-tonsolar.com/edu.htm
G24網站:
http://g24innovations.com/home.html
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top