跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 04:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃育賢
研究生(外文):Yu-Shian Huang
論文名稱:氮化鋁陶瓷材料之微波燒結研究
論文名稱(外文):A Study on Microwave Sintering of AlN Ceramic Material
指導教授:鍾賢龍
指導教授(外文):Shyan-Lung Chung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:106
中文關鍵詞:微波燒結氮化鋁
外文關鍵詞:AlNSinteringMicrowave
相關次數:
  • 被引用被引用:1
  • 點閱點閱:537
  • 評分評分:
  • 下載下載:200
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用單模腔之微波燒結爐進行高熱傳導氮化鋁陶瓷材料的燒結,並針對本實驗室燃燒合成法(SHS)製備之氮化鋁粉體與微波快速加熱節省能源的優點,探討氧化釔、氧化鈣、氧化鏑、氧化銣以及氧化釤等助劑在固定溫度下對氮化鋁材料燒結性質的影響,包括收縮行為、燒結體密度、二次相組成、微結構和熱傳導值等。後續並在還原氣氛當中改變時間進行熱處理,觀察氧含量、密度、二次相的分布以及熱傳導值提升等等之改變。研究中發現當以5wt%氧化鏑作為燒結助劑時,於1830℃燒結30 分鐘後可以的到最高的熱傳導值155.4W/mK,再經1830℃熱處理180 分鐘後,可以得到更高的熱傳導值約228 .139W/mK,而其他助劑也可得到不錯的熱傳導值,如:氧化釔的218.069 W/mK、氧化銣的220.33 W/mK、氧化釤的216.087 W/mK 以及氧化鈣的170.147 W/mK。
The single-mode microwave furnace was used to sinter high thermal conductivity AlN ceramics.The effects of Y2O3,CaO, Dy2O3, Nd2O3,and Sm2O3 as additives on the densification, phase distribution,microstructure, and thermal conductivity were studied by using SHS-produced AlN powder and microwave sintering with the advantages of fast heating and saving energy.The changes of densification, phase distribution , microstructure,and thermal conductivity were studied by microwave reheating the sintered specimen under the reducing atmosphere.
A highest thermal conductivity of 155.4 W/mK was achieved with a sintering temperature of 1830℃,soaking time of 30 minutes ,and 5wt% of Dy2O3 . The thermal conductivity could be further significantly improved to 228 W/mK by microwave reheating process. The other AlN samples with the other additives also could get fine thermal conductivities,among others; 218.069 W/mK with 5wt% of Y2O3 , 220.33 W/mK with 5wt% of Nd2O3, 216.087 W/mK with 5wt% of Sm2O3,and 170.147 W/mK with 3wt% of CaO.
摘要 I
Abstract II
誌 謝 III
總目錄 IV
圖目錄 IX
表目錄 XIII
第一章 緒 論 1
1-1氮化鋁簡介 1
1-2氮化鋁合成簡介 3
1-3 SHS簡介 5
1-4微波燒結 8
第二章 理論基礎 10
2-1氮化鋁的特性 10
2-2熱傳導機構 11
2-3 微波加熱原理14,18,19 14
2-3-1 微波簡介 14
2-3-2 微波加熱原件 15
2-3-3 微波加熱原理 19
2-3-4 微波加熱的優點 21
2-3-5 微波效應(microwave effect) 23
2-4液相燒結 24
2-5 AlN燒結 28
2-5-1液相燒結助劑選擇 28
2-5-2 氮化鋁燒結助劑的文獻回顧 31
2-6測溫原理 35
第三章 實驗藥品、儀器與方法 39
3-1藥品 39
3-2實驗設備與分析儀器 41
3-2-1 實驗設備 41
3-2-2 分析儀器 43
3-3 儀器原理與測量方法 46
3-3-1粒徑分析儀 46
3-3-2氮含量與氧含量分析 46
3-3-3晶相結構分析 47
3-3-4表面型態分析 47
3-3-5理論密度之計算 47
3-3-6 試片密度測量 48
3-3-7熱傳導值分析 48
3-4實驗方法 49
3-4-1 粉體特性 49
3-4-2 氮化鋁生肧之漿料配製 50
3-4-3 生胚之成型 52
3-4-4 黏結劑之去除 52
3-4-5 坩堝之製作 52
3-4-6 微波燒結 53
第四章 結果與討論 54
4-1 AlN粉體性質和燒結溫度條件 54
4-1-1 燒結用氮化鋁粉體性質 54
AlN 54
4-1-2 燒結溫度條件 54
4-2氧化釔助劑對氮化鋁微波燒結之影響 56
4-2-1試片的緻密性 56
4-2-2 XRD分析 58
4-2-3微結構分析 59
4-3氧化鈣助劑對氮化鋁微波燒結之影響 63
4-3-1試片的緻密性 63
4-3-2 XRD分析 66
4-3-3微結構分析 67
4-4氧化鏑助劑對氮化鋁微波燒結之影響 70
4-4-1試片的緻密性 70
4-4-2 XRD分析 70
4-4-3微結構分析 71
4-5氧化銣助劑對氮化鋁微波燒結之影響 76
4-5-1試片的緻密性 77
4-5-2 XRD分析 78
4-5-3微結構分析 81
4-6氧化釤助劑對氮化鋁微波燒結之影響 82
4-6-1試片的緻密性 83
4-6-2 XRD分析 87
4-6-3微結構分析 87
4-7還原氣氛熱處理 89
4-7-1試片的密度變化 89
4-7-2 XRD分析 94
4-7-3熱傳導分析 94
4-7-4微結構分析 95
4-7-5氧含量分析 95
4-8成本分析 96
第五章 結論 102
第六章 參考文獻 103
1 . L. M. Sheppard, Ceram. Bull., 69, 1801 (1990)
2 . B. H. Mussler, Ceram. Bull., 79, 45 (2000)
3. F. J.-M. Haussonne, Mater. Manuf. Processes, 10, 717 (1995)
4. G. Selvaduray, and L. Sheet, Mater. Sci. Technol., 9, 463 (1993)
5. J. Subrahmanyam, and M. Vijayakumar, J. Mater. Sci., 27, 6249 (1997)
6. C. N. Lin and S. L. Chung, J. Mater. Res., 16, 2200 (2001)
7. C. N. Lin and S. L. Chung, J. Mater. Res., 16, 3518 (2001)
8. C. N. Lin, and S. L. Chung, J. Mater. Res. 19, 3037 (2004)
9. J. F. Crider, “Self-propagating High Temperature Synthesis-A
Soviet Method for producing Ceramic Materials”, Ceram. Eng. Sci.
Proc., 3,519, (1982).
10. S. Kumar, Key Engineering Materials, 56, 183, (1991).
11. A. G. Merzhanov, “Self-Propagating High Temperature
Synthesis: Twenty Years of Search and Findings”, In Combustion
and Plasma Synthesis of High-Temperature Materials, edited byZ.A.
Munir and J.B. Holt, VCH, New York, USA, 1, (1990).
12. G. Selvaduray, and L. Sheet, Mater. Sci. Technol., 9, 463, (1993).
13. Z. A. Munir, “Synthesis of High Temperature Materials by
Self-Propagating Combustion Methods”, Ceram. Bull., 67, 342,
(1988)
14.汪建民, “陶瓷技術手冊”, 中華民國科技發展協進會, (1994)。
15.黃昌偉, “陶瓷材料之熱性質分析”, 精密陶瓷特性及檢測分析
,10,1,54.
16. H. K. Sander, “High-tech Ceramics”, C&E News, July 9, (1984)
17.W. J. Kim, D. K. Kim, and C. H. Kim, “Coating of Al2O3 Additive on
AlN Powder and Its Effect on the Thermal Conductivity of AlN
Ceramics”, Journal of Materials Synthesis and Processing, 3, 39,
(1995)
18.劉岐山, “微波能應用”, 電子工業出版社, (1990)
19. E. T. Thostentson, and T. -W. Chou, “Microwave processing:
fundamentals and applications ”, Composites: Part A 30, 1055, (1999)
20. Roussy and J. A. Pierce, Foundations and industrial applications
of microwave and radio frequency fields, Wiely (1980)
21. R. E. Collin, Foundations for microwave engineering, McGraw Hill
(1966)
22. P. O. Risman, T. Ohlsson and B. Wass, J. Microwave power and
electromagnetic energy, 22, 193 (1987)
23. V. N. Tran, Microwaves: theory and application in materials
processing, ceramic transactions, Proceedings of the symposium
during 93rd annual meeting of American Ceramic Society, 683 (1991)
24. M. A. Janney, C. L. Calhoun and H. D. Kimrey, J. Am. Ceram.
Soc.,75, 314 (1992)
25 M. Mizuno, S. Obata, S. Takayama, S. Ito, N. Kato, T. Hirai and M.
Sato, J. Euro. Ceram. Soc., 24, 387 (2004)
26. Liu, “Low-temperature sintering of aluminum nitride with
YF3-CaF2 binary additive.”, Journal of Materials science letters,
18,703,(1999).
27. M. A. Janny and H. D. Kimrey, Mater. Res. Soc. Proc., 189, 215
(1991)
28. D. A. Lewis, Mater. Res. Soc., Proc., 269, 21 (1992)
29. M. A. Janny, C. L. Calhoun and H. D. Kimrey, Ceram. Trans.,
21, 311(1991)
30. M. A. Janny and H. D. Kimrey, Ceramic Powder Science, vol. II,
American ceramic Society, 919 (1988)
31. Z. Fathi, I. Ahmed J. H. Simmons, D. E. Clark and A. R. Loding,
Ceram. Trans., 21, 623 (1991)
32. J. H. Brooske, R. F. Cooper, I. Dobson and L. McCaubhan, Ceram.
Trans., 21, 185 (1991)
33. S. Freeman, J. H. Booske, R. F. Cooper, B. Meng, J. Kieffer and B. J.
reardon, Proceedings of the workshop on microwave-absorbing
materials for accelerators, Newport News (1993)
34. J. Wang, J. Binner, B. Vaidhyanathan, N. Joomun, J. Kilner, G.
Dimitrakis and T. E. Cross, J. Am. Ceram. Soc., 89, 1977 (2006)
35. G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, J.
Phys. Chem. Solids, 48, 641 (1987)
36. K. Momeya and H. Inoue, Yogyo-Kyokai-Shi, 77, 30 (1969)
37. R. M. German, Liquid Phase Sintering, Plenum, New York, (1985)
38.謝承佑,"氮化鋁粉體水解性質探討與抗濕技術開發",成功大
學碩士論文 (2002)
39. K. Watari, H. J. Hwang, M. Toriyama and S. Kanzaki, J. Am. Ceram.
Soc., 79, 1979 (1996)
40. J. H. Harris, “Sintered Aluminum Nitride Ceramics for High-Powder
Electronic Applications”, JOM, 56 (1998)
41. K. Watari, Hae J. Hwang, Motohiro Toriyama, and Shuzo
Kanzaki, J. Mater. Res., 14, 1409 (1999)
42. K. Komeya, H. Inoue and A.Tsuge, Yogyo-Kyokai-Shi, 89, 330(1981)
43. Y. Kurokawa, K. Utsumi and H. Takamizawa, J. Am. Ceram. Soc.,
71,588 (1988)
44. R. Lee, J. Am. Ceram. Soc., 74, 2242 (1991)
45. K. Watari, M. Kawamoto and K. Ishizaki, J. Mater.
Sci., 6, 4727(1991)
46. H. Yan, W. R. Cannon and D. J. Shanefield, J. Am. Ceram. Soc.,
76,166 (1993)
47. N. Ichinose, Mater. Chem. Phys., 42, 176 (1995)
48. K. Watari, K. Ishizaki, T. Hamasaki and T. Fuyuki,
Yogyo-Kyokai-Shi,96, 1066 (1988)
49. K. Watari, M. Cecilia, M. Brito, M. Toriyama and S. Kanzaki, J. Am.
Ceram. Soc., 79, 3103 (1996)
50. T. B. Jackson, A. V. Virkar, K. L. More and R. B. Dinwiddie Jr., J.Am.
Ceram. Soc., 80, 1421 (1997)
51. R. Terao, J. Tatami, T. Meguro and K. Komeya, J. Euro. Ceram.
Soc.,22, 1051 (2002)
52. X. Xu, H. Zhuang, W. Li, S. Xu, B. Zhang and X. Fu, Mater. Sci.
Eng.,A342, 104 (2003)
53. Xueli Du.,Mingli Qin ,Akhtar Farid,Islam S. Humali ,Xuanhui Qu
Materials Science and Engineering A 460-461(207)471-474
54.G. Pezzotti, A. Nakahira and M. Tajika, J. Euro.
Ceram. Soc., 20,1319 (2000)
55. N. S. VanDamme, S. M. Richard and S. R. Winzer,
J. Am. Ceram. Soc., 72, 1409 (1989)
56. I. Haase, U. Schneider and W. Winkler, Scientific Forum, 70,
404(1993)
57. T. B. Troczynski and P. S. Nicholson, J. Am. Ceram. Soc., 72,
1488(1989)
58. E. Streicher, T. Chartier, P. Boch, M. Denanot and J. Rabier, J. Euro.
Ceram. Soc., 6, 23 (1990)
59. P. S. de Baranda, A. K. Knudsen and E. Ruh, J. Am. Ceram. Soc.,
76, 1761 (1993)
60. A. Geith, M. Kulig, T. Hofmann and C. Russel, J. Mater. Sci., 28, 865
(1993)
61. Y. Liu, Y. Wu and H. Zhiu, Mater. Lett., 35, 232 (1998)

62. L. Qiao, H. Zhou, H. Xue and S. Wang, J. Euro. Ceram. Soc.,
23,61(2003)
63. P. S. de Baranda, A. K. Knudsen and E. Ruh, J. Am. Ceram. Soc.,
76,1751 (1993)
64.P. B. Dunscombe, ”Heat Production in Microwave–Irradiated
Thermocouples ”,Med. Phys.,13,457,(1986)
65. E. Olmstead, ”A Model for Thermocouple Sensitivity during
Microwave Heating ”, Int. J. Heat Mass Transfer. ,40,1559, (1997).
66. T. B. Jackson, and Raymond A. Cutler Ceram. Soc., 72, 2031-42 (1989)
67. Robert.Roth,Taki Negus,and Lawrence P.Cook ”PHASE DIAGRAM For CERAMICS”
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊