跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 04:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭東雄
研究生(外文):Tung-Hsiung Kuo
論文名稱:轉化型煉油廠中石油供應鏈規劃與排程之整合策略
論文名稱(外文):An Integrated Planning and Scheduling Strategy for the Petroleum Supply Chains in Conversion Refineries
指導教授:張玨庭張玨庭引用關係
指導教授(外文):Chuei-Tin Chang
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:134
中文關鍵詞:混合整數線性模式石油供應鏈轉化型煉油廠隨機規劃輕芳香烴族排程規劃
外文關鍵詞:conversion refineryplanningstochastic programming modellight aromaticsmixed-integer linear programming modelpetroleum suppy chainscheduling
相關次數:
  • 被引用被引用:3
  • 點閱點閱:423
  • 評分評分:
  • 下載下載:129
  • 收藏至我的研究室書目清單書目收藏:1
本研究的範圍涉及典型石油公司轉化型煉油廠內的石油供應網路,在此網路中原油被轉化成乙烯、丙烯、丁二烯、液化石油氣、苯、甲苯、二甲苯、汽油、煤油、柴油與其他副產品。一般而言,完整的石油供應鏈至少應包含有13種不同類型的生產單元,即常壓蒸餾工場、真空蒸餾工場、石油焦工場、流體化床觸媒裂解工場、輕油裂解工場、丁二烯萃取工場、芳香烴萃取工場、加氫脫硫工場、重組工場、二甲苯分離工場、二甲苯吸附工場、二甲苯異構化工場與轉烷化工場。傳統的煉油廠營運計畫的訂定,會按照固定程序進行,即首先須提出生產計畫,然後再依照該計畫去安排相關的排程。但因為部份排程細節通常不會在規劃過程中被考慮進去,所以無法保證可以制定出可行的排程,為了解決此一問題,本研究提出一個整合規劃與排程決策的混合整數線性模式來最大化供應鏈效益。求解此模式可得到最適當的原油採購量與時機、石化產品的生產時程與運送量,亦可決定出最適當的原料來源(供應商)、最經濟的採購量、最佳的採購時間與運送時程等。
除了上述整合型數學規劃策略以外,在本研究中也發展出輕芳香烴族供應鏈的生產規劃模式與在供需不確定的情況下石油供應鏈最適生產規劃之隨機性模式,輕芳香烴族供應鏈是生產四個輕芳香烴族產品(苯、甲苯、對二甲苯與鄰二甲苯)的供應鏈,求解此模式不僅是能夠在已知供應與需求的情形下,決定出最經濟的生產策略,同時也能在多生產線的供應鏈中選擇出最佳生產單元的組合。最後,我們也考慮石油供應鏈的原料(石油)、中間油料(重石油腦、輕石油腦、混合二甲苯)和民生消費產品(液化石油氣、柴油、煤油與汽油)的供應不確定與前述民生消費產品需求也不確定的影響下,利用隨機規劃技巧來決定出供應鏈在各規劃時期內在每一可能情境實際發生時可採用的最適當的生產與運輸策略。
The scope of this study is concerned with the petroleum supply network operated by a typical oil company, in which the crude oil is consumed to produce ethylene, propylene, liquefied petroleum gas, butadiene, benzene, toluene, xylene, gasoline, kerosene, diesel and other by-products. These petrochemical products are usually manufactured with a cluster of strategically-located conversion refineries. A complete petroleum supply chain consists of at least 13 different types of production units, i.e., the atmospheric distillation units, the vacuum distillation units, the cokers, the fluid catalystic cracking units, the naphtha crackers, the butadiene extraction units, the hydrotreaters, the aromatics extraction units, the reforming units, the xylene fractionation units, the parex units, the xylene isomar units, and the tatoray units. Traditionally, the production plan of an industrial supply chain is created first and a compatible schedule is then identified accordingly. Since the detailed scheduling constraints are often ignored in the planning model, there is no guarantee that an operable schedule can be obtained with this hierarchical approach. To address this issue, a single mixed-integer linear program (MILP) has been formulated in this study to coordinate various planning and scheduling decisions simultaneously for optimizing the supply chain performance. Solving this MILP model yields the proper procurement scheme for crude oils, the schedules for producing various petrochemical products, and the corresponding logistics. The appropriate sources (suppliers) of raw materials, the economic order quantities, the best purchasing intervals, and also the transportation schedules can be identified accordingly. In particular, the optimal production schedule of olefins, aromatics and other petrochemical products over the specified planning horizon is configured by selecting throughput, operating conditions and technology option for each unit in the chain, by maintaining the desired inventory level for each process material, by securing enough feedstock, and by delivering appropriate amounts of products to the customers.
On the basis of the above-mentioned basic MILP model, two modified versions have been developed for specific applications. A deterministic planning model has been constructed for the supply chains of light aromatic compounds, i.e., benzene, toluene, o-xylene and p-xylene. From the optimal solutions, it is clear that the proposed approach can be used not only to generate the most economic production plan on the basis of given supply and demand rates, but also select the best process configuration in a multi-train supply chain. On the other hand, a stochastic programming (SP) model has also been formulated according to the basic model to synthesize the optimal planning strategy of petroleum supply chain under uncertain supplies and demands. The uncertain parameters in this model include: the supply rates of raw materials (i.e., petroleum), intermediate oils (i.e., heavy naphthas, light naphthas and mixed xylenes) and consumer products (i.e., liquefied petroleum gas, diesel, kerosene and gasoline), and the demand rates of the aforementioned consumer products. By solving the SP model, the best production and transportation strategies can be determined for every possible scenario.
目錄
中文摘要------------------------------------------------------------------------------------------- i

英文摘要------------------------------------------------------------------------------------------- iii

誌謝------------------------------------------------------------------------------------------------- v

表目錄---------------------------------------------------------------------------------------------- x

圖目錄---------------------------------------------------------------------------------------------- xiii

符號表---------------------------------------------------------------------------------------------- xv

第一章 緒論-------------------------------------------------------------------------------------- 1
1.1 研究動機------------------------------------------------------------------------------------- 1
1.2文獻回顧-------------------------------------------------------------------------------------- 2
1.3 研究目的------------------------------------------------------------------------------------- 5
1.4 組織章節------------------------------------------------------------------------------------- 5

第二章 石油供應鏈之生產輸儲程序-------------------------------------------------------- 7
2.1石油供應鏈的範圍-------------------------------------------------------------------------- 7
2.2石油供應鏈的原料來源及產品客戶----------------------------------------------------- 8
2.3 生產單元--------------------------------------------------------------------------------- 10
2.3.1常壓蒸餾工場(atmospheric distillation unit)------------------------------------------ 10
2.3.2真空蒸餾工場(vacuum distillation unit)----------------------------------------------- 10
2.3.3石油焦工場 (coker) ---------------------------------------------------------------------- 12
2.3.4流體化床觸媒裂解工場(fluidized-bed catalystic cracking unit)------------------- 13
2.3.5輕油裂解工場(naphtha cracker)-------------------------------------------------------- 13
2.3.6丁二烯萃取工場(butadiene extraction unit)------------------------------------------ 16
2.3.7芳香烴萃取工場(aromatics extraction unit) ----------------------------------------- 17
2.3.8加氫脫硫工場(hydrotreater)------------------------------------------------------------ 19
2.3.9重組工場(reforming unit)--------------------------------------------------------------- 20
2.3.10二甲苯分離工場(xylene fractionation unit)---------------------------------------- 21
2.3.11二甲苯吸附工場(parex unit)---------------------------------------------------------- 23
2.3.12二甲苯異構化工場(xylene isomar unit)--------------------------------------------- 24
2.3.13轉烷化工場(tatoray unit)-------------------------------------------------------------- 25
2.4 輸儲設施-------------------------------------------------------------------------------- 26
2.5供應鏈結構------------------------------------------------------------------------------- 28

第三章 數學規劃模式------------------------------------------------------------------------- 32
3.1決定石油供應鏈最適生產規劃與排程之確定性模式------------------------------- 32
3.1.1 基本單元模式---------------------------------------------------------------------------- 33
3.1.1.1反應型製程(reaction processes)----------------------------------------------------- 33
3.1.1.2分離型製程(separation processes)--------------------------------------------------- 36
3.1.1.3儲槽型製程(storage process)--------------------------------------------------------- 37
3.1.2結構限制式---------------------------------------------------------------------------- 39
3.1.2.1混合器與分配器(mixer and distributor)-------------------------------------------- 39
3.1.2.2 油料運輸能力------------------------------------------------------------------------- 40
3.1.2.3原油、中間油料與成品油之輸入限制------------------------------------------------------ 41
3.1.2.4中間油料與成品油之輸出限制------------------------------------------------------------ 43
3.1.3 目標函數------------------------------------------------------------------------------- 44
3.2可供訂定石油供應鏈最適生產規劃策略之隨機性模式-------------------------------------------- 47
3.2.1 基本原理-------------------------------------------------------------------------------- 48
3.2.2 考慮不確定供需之數學規劃模式---------------------------------------------------- 50
3.2.2.1情境集合------------------------------------------------------------------------------- 50
3.2.2.2變數與參數的修改原則--------------------------------------------------------------- 50
3.2.2.3限制式修改原則------------------------------------------------------------------------ 52
3.2.2.4目標函數的修改原則------------------------------------------------------------------ 54

第四章 確定性數學規劃模式在輕芳香族供應鏈生產規劃上的應用---------------- 58
4.1供應鏈流程----------------------------------------------------------------------------------58
4.2 數學規劃模式 ----------------------------------------------------------------------------- 58
4.2.1原料、中間油料與成品油輸入限制式----------------------------------------------- 60
4.2.2 中間油料與成品油之輸出限制------------------------------------------------------- 61
4.2.3 目標函數-------------------------------------------------------------------------------- 63
4.3案例研討----------------------------------------------------------------------------------- 65
4.3.1案例一:基本案例----------------------------------------------------------------------- 72
4.3.2案例二:部份單元因例行檢修無法操作-------------------------------------------- 77
4.3.3案例三:市場上無適當的產品可供採購-------------------------------------------- 79
4.3.4案例四:物料價格變動----------------------------------------------------------------- 81
4.3.5案例五:顧客因設備故障取消部份產品訂單----------------------------------------------- 83
4.3.6案例六:考慮缺貨賠償與促銷折扣因素--------------------------------------------------- 84
4.4結語----------------------------------------------------------------------------------- 86

第五章 確定性數學規劃模式在整合煉油廠生產規劃與排程上的應用------------- 87
5.1供應鏈流程與數學規劃模式--------------------------------------------------------------- 87
5.2案例研討------------------------------------------------------------------------------- 87
5.2.1 案例一:基本案例-------------------------------------------------------------------- 88
5.2.2 案例二:部份單元因例行檢修無法操作-------------------------------------------------- 89
5.2.3 案例三:市場上無適當的產品可供採購-------------------------------------------------- 90
5.2.4 案例四:顧客因設備故障取消部份產品訂單---------------------------------------------- 90
5.2.5 案例五:出口需求量降低------------------------------------------------------------- 90
5.2.6 案例六:考慮簽定原油或中間油料的長期供應合約的情況--------------------------------- 91
5.3 結語--------------------------------------------------------------------------------- 91

第六章 隨機規劃模式在整合煉油廠生產與維修排程上的應用------------------------------------ 111
6.1供應鏈流程與數學規劃模式--------------------------------------------------------------- 111
6.2案例研討------------------------------------------------------------------------------- 111
6.3結語----------------------------------------------------------------------------------- 113

第七章結論與展望-------------------------------------------------------------------------- 126

參考文獻---------------------------------------------------------------------------------- 127

自述-------------------------------------------------------------------------------------- 133

附錄--------------------------------------------------------------------------------------附於光碟
附錄一 輕芳香烴族供應鏈案例的數據---------------------------------------------------------附於光碟
附錄二 石油供應鏈之整合生產規劃與排程案例的數據-------------------------------------------附於光碟
附錄三 在供需不確定情況下石油供應鏈之生產規劃案例的數據-----------------------------------附於光碟

著作-------------------------------------------------------------------------------------- 134



表目錄

表2.1各地區原油產出體積比率表-------------------------------------------------------- 9

表2.2 C8 芳香烴的性質----------------------------------------------------------------------- 22

表2.3重組汽油與裂解汽油中芳香烴的組成--------------------------------------------- 25
表 2.4a 石油供應鏈中生產工場間之關係------------------------------------------------ 30

表 2.4b 石油供應鏈中生產工場間之關係------------------------------------------------ 31

表4.1 BTX供應鏈數學規劃模式之集合定義-------------------------------------------- 60

表4.2供應鏈的單元於各煉油廠的位置表----------------------------------------------- 67

表4.3最終產品與中間油料之需求及容許的輸送數量範圍-------------------------- 68

表4.4供應鏈的各物料代號表-------------------------------------------------------------- 68

表4.5裂解汽油與輕石油腦供應量-------------------------------------------------------- 69

表4.6重組工場的最高與最低煉量-------------------------------------------------------- 69

表4.7芳香烴萃取工場的最高與最低煉量----------------------------------------------- 69

表4.8二甲苯分離、二甲苯吸附、二甲苯異構化和轉烷化工場的最高
與最低煉量---------------------------------------------------------------------------- 70

表4.9a輕石油腦與裂解汽油採購成本---------------------------------------------------- 70

表4.9b產品與中間油料的銷售及採購成本---------------------------------------------- 71

表4.10每一規劃時期原料、中間油料與最後產品採購及銷售的最高數量------- 71

表4.11a基本案例之第一個規劃時期內各生產單元的最適煉量-------------------- 73

表4.11b基本案例之第二個規劃時期內各生產單元的最適煉量------------------- 74

表4.11c基本案例之第三個規劃時期內各生產單元的最適煉量-------------------- 75

表4.12基本案例之最適當的採購原料種類與數量------------------------------------ 76

表4.13基本案例之各規劃時期結束時產品輸儲站的產品儲存量------------------ 76

表4.14基本案例之運送給客戶的最後產品與中間油料之建議量------------------ 77

表4.15案例二之最適當的採購原料種類與數量-------------------------------------- 78

表4.16案例二之每一個規劃時期運送給客戶的最後產品與中間油料
之建議量------------------------------------------------------------------------------ 78

表4.17案例三之最適當的採購原料種類與數量-------------------------------------- 79

表4.18案例三中各規劃時期所有生產單元的最適煉量----------------------------- 80

表4.19案例四中最終產品與中間油料市場銷售與採購價格----------------------- 81

表4.20案例四中各生產單元的最適煉量----------------------------------------------- 82

表4.21案例四之最適當的採購原料種類與數量-------------------------------------- 83

表4.22案例五最適當的採購原料種類與數量----------------------------------------- 83

表4.23案例六中僅考慮缺貨賠償之運送給客戶的最後產品與中間油
料之建議量--------------------------------------------------------------------------- 85

表4.24案例六僅考慮促銷折扣之每一個規劃時期運送給客戶的最後產品
與中間油料之建議量--------------------------------------------------------------- 85

表5.1供應鏈的單元於各煉油廠的位置表--------------------------------------------- 103

表5.2a各規劃時期內最終產品與中間油料之需求及容許的輸送數量範圍---- 104

表5.2b各規劃時期內最終產品與中間油料之需求及容許的輸送數量範圍---- 105

表5.3案例一中最適當的採購原油之種類與數量----------------------------------- 106

表5.4案例一中最適當的採購原料、中間油料與最後產品之種類與數量----- 107

表5.5案例一中每一個規劃時期運送給當地客戶的最後產品與中間油料
之建議量---------------------------------------------------------------------------- 108

表5.6所有案例最適當的採購原料、中間油料與最後產品之種類與數量----- 109

表5.7案例六中原油與輕石油腦抵達港口的排程----------------------------------- 110

表6.1每組可能發生的情境的機率----------------------------------------------------- 114

表6.2每組可能發生的情境下各規劃時期內每種可供採購原油的最高數量-- 115

表6.3每組可能發生的情境下各規劃時期內每種可供採購原油的價格-------- 116

表6.4重石油腦、輕石油腦與混合二甲苯在各規劃時期內每種可供採購 的最高數量---------------------------------------------------------------------------- 117
表6.5重石油腦、輕石油腦與混合二甲苯在各規劃時期內每種可供採購 的價格---------------------------------------------------------------------------------- 118

表6.6每組可能發生的情境下各規劃時期內液化石油氣、汽油、煤油與 柴油的銷售或自海外採購的最高數量------------------------------------------ 119

表6.7每組可能發生的情境下各規劃時期內液化石油氣、汽油、煤油與 柴油的銷售或自海外採購的價格------------------------------------------------ 120

表6.8以隨機規劃模式與確定性規劃模式所產生的各種情境建議的操作 數據所得的利潤值----------------------------------------------------------------- 120

表6.9以隨機規劃模式與確定性規劃模式所產生的第7種與第8種情境 建議的操作數據在各時期所得的利潤值比較-------------------------------- 120

表6.10隨機規劃模式所產生的第5種情境各規劃時期所有生產單元的最 適煉量--------------------------------------------------------------------------------- 122

表6.11以確定性規劃模式所產生的第5種情境各規劃時期所有生產單元 的最適煉量--------------------------------------------------------------------------- 123

表6.12以隨機規劃模式與確定性模式所得第5種情境最適當的採購原料、 中間油料與最後產品之種類與數量--------------------------------------------- 124

表6.13以確定性模式第5種情境與在第二個月與第三個月發生第2種情 境所產生最適當的採購原料、中間油料與最後產品之種類與數量------ 125

圖目錄

圖2.1典型轉化型煉油廠之簡化流程圖---------------------------------------------- 8

圖 2.2典型常壓蒸餾程序的流程圖--------------------------------------------------- 11

圖 2.3真空蒸餾的流程圖--------------------------------------------------------------- 11

圖 2.4流體結焦法的流程圖------------------------------------------------------------ 12

圖 2.5流體化床觸媒裂解工場的流程圖--------------------------------------------- 14

圖 2.6輕油裂解工場的流程圖--------------------------------------------------------- 15

圖 2.7丁二烯萃取製程的流程圖------------------------------------------------------ 17

圖2.8 芳香烴萃取工場流程圖--------------------------------------------------------- 18

圖2.9 加氫脫硫製程之流程圖--------------------------------------------------------- 19

圖2.10鉑重組法之流程圖-------------------------------------------------------------- 21

圖2.11鄰-二甲苯分離之流程圖------------------------------------------------------- 22

圖2.12對-二甲苯吸附分離法之流程圖---------------------------------------------- 23

圖2.13二甲苯異構化(Isomar Process)之流程圖------------------------------------ 25

圖2.14二甲苯轉烷化(Tatoray Process)之流程圖----------------------------------- 26

圖2.15輸儲設施圖----------------------------------------------------------------------- 27

圖2.16石油供應鏈的結構-------------------------------------------------------------- 29

圖3.1反應型製程之物流結構圖------------------------------------------------------- 38

圖3.2分離型製程之物流結構圖------------------------------------------------------- 38

圖3.3儲槽型製程之物流結構圖------------------------------------------------------- 39

圖3.4儲槽型製程圖---------------------------------------------------------------------- 39

圖3.5主要產品銷售給本地顧客的其數量與範圍之關係------------------------- 45

圖3.6三階段情境樹(three-stage scenario tree) -------------------------------------- 49

圖4.1石化產品煉製程序簡化流程圖------------------------------------------------ 59

圖4.2典型單一流程的BTX供應鏈圖----------------------------------------------- 59

圖4.3 BTX供應鏈網路圖--------------------------------------------------------------- 66

圖5.1石油供應鏈網路------------------------------------------------------------------- 92

圖5.2 KSR煉油廠的流程圖------------------------------------------------------------ 93

圖5.3 DLR煉油廠的流程圖------------------------------------------------------------ 94

圖5.4 LIWR煉油廠的流程圖---------------------------------------------------------- 95

圖5.5a案例一中各生產單元的最適煉量-------------------------------------------- 96

圖5.5b案例一中各生產單元的最適煉量-------------------------------------------- 97

圖5.6案例一中送給各客戶的產品或副產品的數量與運送時間--------------- 98

圖5.7a案例二中各生產單元的最適煉量-------------------------------------------- 99

圖5.7b案例二中各生產單元的最適煉量------------------------------------------- 100

圖5.8a案例三中各生產單元的最適煉量------------------------------------------- 101

圖5.8b案例三中各生產單元的最適煉量------------------------------------------- 102
Aprile, D.; Garavelli, A. C.; Giannoccaro, I. Operations Planning and Flexibility in a Supply Chain. Production Planning & Control, 16, 1, January 2005, 21-31, 2005.

Ashayeri, J.; Selen, W. A Planning and Scheduling Model for Onsertion in Printed Circuit Board Assembly, European Journal of Operational Research, 183, 909-925, 2007.

Beamon, B. M. Supply Chain Design and Analysis: Models and Methods. International Journal on Production Economics, 55, 281-294, 1998.

Bopp, A. E.; Kannan, V. R.; Palocsay, S.W.; Stevens, S. P. An Optimization Model for Planning Natural Gas Purchases, Transportation, Storage and Deliverability. Omega, 24 (5), 511-522, 1996.

Bonner, M. RPMS (Refinery and Petrochemical Modeling System): A System Description. Houston, NY: Bonner and Moore Management Science, 1979.

Bechtel. PIMS (Process Industry Modeling System) User’s manual. Version 6.0, Houston, TX: Bechtel Corp, 1993.

Biegler, L. T.; Grossmann, I. E.; Westerberg, A. W. Systematic Methods of Chemical Process Design. Prentice-Hall, U.S.A., 1999.

Bonfill, A.; Bagajewicz, M. J.; Espunả, A.; Puigjaner, L. Risk Management in the Scheduling of Batch Plants under Uncertain Market Demand. Ind. Eng. Chem. Res., 43, 741-750, 2004.

Bryson, A. E., Jr.; Ho, Y. C. Applied Optimal Control: Optimization, Estimation, and Control, Hemisphere Publishing Corporation, New York, 1975.

Carvalho, M. C. A.; Pinto, J. M. An MILP Model and Solution Technique for the Planning of Infrastructure in Offshore Oilfields. Journal of Petroleum Science and Engineering, 51, 97-110, 2006.

Chen, K.; Ji, P. A Mixed Integer Programming Model for Advanced Planning and Scheduling (APS). European Journal of Operational Research, 181, 515-522, 2007.

Chopra, S.; Meindl, P. Supply Chain Management-Strategy, Planning and Operation; 2nd ed., Pearson Education, Inc., Upper Saddle River, New Jersey, 2004.

Dodin, B.; Elimam, A. A. Integration of Equipment Planning and Project Scheduling, European Journal of Operational Research, 184, 962-980, 2008.

Dogan, M. E.; Grossmann, I. E. Design of Multi-echelon Supply Chain Networks under Demand Uncertainty. Industrial and Engineering Chemistry Research, 45, 299-315, 2006.

Franck, H. G.; Stadelhofer, J. W. Industrial Aromatic Chemistry: Raw Materials, Processes, Products. Berlin: Spring-Verlag, 1988.

Floudas, C.A.; Lin, X. Continuous-time versus Discrete-time Approaches for Scheduling of Chemical Processes: A Review. Computers & Chemical Engineering, 28, 2109-2129, 2004.

Floudas, C.A.; Lin, X. Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications. Annals of Operations Research, 139, 1, 131-162, 2005.

Gary, J. H.; Handwerk, G. E. Petroleum Refining Technology and Economics. 4th ed., Marcel Dekker, 2001.

Göthe-Lundgren, M.; Lundren, J. T.; Persson, J. A. An Optimization Model for Refinery Production Scheduling. Intl. J. Prod. Eco., 78, 255-270, 2002.

Guillen, G. F. D.; Mele, M. J.; Bagajewicz, A. E.; Puigjaner, L. Multiobjective Supply Chain Design under Uncertainty. Chemical Engineering Science, 60, 1535-1553, 2005.

Guldmann, J. M.; Wang, F. Optimizing the Natural Gas Supply Mix of Local Distribution Utilities. European Journal of Operational Research, 112, 598-612, 1999.

Gupta, A.; Maranas, C. D. A Two-Stage Modeling and Solution Framework for Multisite Midterm Planning under Demand Uncertainty. Industrial and Engineering Chemistry Research, 39, 3799-3813, 2000.

Gupta, A.; Maranas, C. D. Managing Demand Uncertainty in Supply Chain Planning. Computers & Chemical Engineering, 27, 1219-1227, 2003.

Hsieh, S.; Chiang, C. C. Manufacturing-to-sale Planning Model for Fuel oil Production. Advanced Manufacturing Technology, 18, 303-311, 2001.

Ho, C. H.; Yu, M. L. Application of Linear Programming Model in an Aromatic Plant, Proceeding PSE Asia, Taipei, Taiwan, pp.513-518, 2002.

Ho, J. C.; Chang, Y. L. An Integrated MRP and JIT Framework. Computers & Industrial Engineering, 41, 173-185, 2001.

Iyer, R. R.; Grossmann, I. E.; Vasantharajan, S.; Cullick, A. S. Optimal Planning and Scheduling of Offshore Oil Field Infrastructure Investment and Operations. Industrial and Engineering Chemistry Research, 37, 1380-1397, 1998.

Jackson, J. R.; Grossmann, I. E. Temporal Decomposition Scheme for Nonlinear Multisite Production Planning and Distribution Models. Industrial and Engineering Chemical Research, 42, 3045-3055, 2003.

Janak, S. L.; Lin, X.; Floudas, C.A. A New Robust Optimization Approach for Scheduling under Uncertainty: II. Uncertainty with Known Probability Distribution. Computers & Chemical Engineering, 31, 171-195, 2007.

Jia, Z.; Ierapetritou, M. Efficient Short-term Scheduling of Refinery Operations Based on a Continuous Time Formulation. Computers & Chemical Engineering, 28, 1001-1019, 2004.

Jones, D. S. J.; Pujadõ, P. R. Handbook of Petroleum Processing. Springer: Netherland, 2006

Julka, N.; Srinivasan, R., ; Karimi, I. Agent-based Supply Chain Management-1: Framework. Computers & Chemical Engineering, 26, 1755-1769, 2002.

Julka, N.; Karimi, I.,; Srinivasan, R. Agent-based Supply Chain Management*/2: A Refinery Application. Computers & Chemical Engineering, 26, 1771-1781, 2002.

Lee, H.; Pinto, J. M.; Grossmann, I. E.; Park, S. Mixed-integer Linear Programming Model for Refinery Short-term Scheduling of Crude Oil Unloading with Inventory Management. Industrial and Engineering Chemistry Research, 35, 1630-1641, 1996.

Li, W.; Hui, C. W.; Li, A. Integrating CDU, FCC and Product Blending Models into Refinery Planning. Computers & Chemical Engineering, 29, 2010-2028, 2005.

Li, Zukui; Ierapetritou, M. Process Scheduling under Uncertainty: Review and Challenges. Computers & Chemical Engineering, 32, 715-727, 2008.

Lin, X.; Janak, S. L.; Floudas, C. A. A New Robust Optimization Approach for Scheduling under Uncertainty: I. Bounded Uncertainty. Computers & Chemical Engineering, 28, 1069-1085, 2004.

Liu, M. L.; Sahinidis, N. V. Optimization in Process Planning under Uncertainty. Industrial & Engineering Chemistry Research, 35, 4154-4165, 1996.

Liu, M. L.; Sahinidis, N. V. Process Planning in a Fuzzy Environment. European Journal of Operational Research, 100, 142-169, 1997.

Más, R.; Pinto, J. M. A Mixed-integer Optimization Strategy for Oil Supply in Distribution Complexes. Optimization and Engineering, 4, 23-64, 2003.

Magalhães, M.V.; Shah, N. Crude Oil Scheduling. In I. E. Grossmann & C. M. McDonald (Eds.), Proceedings of Fourth Iinternational Conference on Foundations of Computer-aided Process Operations, Coral Springs, CAChE, 323-326, 2003.

Maples, R. E. Petroleum Refinery Process Economics. Tulsa, Okla.:Penn Well Corp., 2000.

McKay, D. L.; Dale, G. H.; Tabler, D. C. Para-xylene via Fractional Crystallization. Chem. Eng. Progr., 62, Nr. 11, 104, 1966.

Méndez, C. A.; Grossmann, I. E.; Harjunkoski I.; Kaboré, P. A Simultaneous Optimization Approach for Off-line Blending and Scheduling of Oil-refinery Operations. Computers & Chemical Engineering, 30, 614-634, 2006.

Meyers, R. A. Handbook of Petroleum Refining Processes. Mexico: Impresora Donneco, 1986.

Micheletto, S. R.; Carvalho, M. C.A.; Pinto, J. M. Operational Optimization of the Utility System of an Oil Refinery. Computers & Chemical Engineering, 32, 170-185, 2008.

MirHassani, S. A. An Operational Planning Model for Petroleum Products Logistics under Uncertainty. Applied Mathematics and Computation, 196, 744-751, 2008

Moro, L. F. L.; Zanin, A. C.; Pinto, J. M. A Planning Model for Refinery Diesel Production. Computers & Chemical Engineering, 22, S1039-S1042, 1998.

Neiro, S. M. S.; Pinto, J. M. A General Modeling Framework for the Operational Planning of Petroleum Supply Chain. Computers & Chemical Engineering, 28, 871-896, 2004.

Nishi, T; Konishi, M.; Ago, M. A Distributed Decision Making System for Integrated Optimization of Production Scheduling and Distribution for Aluminum Production Line. Computers & Chemical Engineering, 31, 1205-1221, 2007.

Paolucci, M.; Sacile, R.; Boccalatte, A. Allocating Crude Oil Supply to Port and Refinery Tanks: A Simulation-Based Decision Support System. Decision Support Systems, 33, 39-54, 2002.

Persson, J. A.; Göthe-Lundgren, M. Shipment Planning at Oil Refineries Using Column Generation and Valid Inequalities. European Journal of Operational Research, 163, 631-652, 2005.

Perry, R. H.; Green, D. W.; Maloney, J. O. Perry’s Chemical engineerings’ handbook. 7th ed., New York: McGraw-Hill, 1997.

Pinto, J. M.; Moro, L. F. L. A Planning Model for Petroleum Refineries. Brazilian Journal of Chemical Engineering, 17(4-7), 575-585, 2000.

Pinto, J. M.; Joly, M.; Moro, L. F. L. Planning and Scheduling Models for Refinery Operations. Computers & Chemical Engineering, 24, 2259-2276, 2000.

Speight, J. G.; Ozum, B. Petroleum Refining Processes. Marcel Dekker: New York, pp. 320-321, 2002.

Simchi-Levi, D.; Kaminsky, P.; Simchi-Levi, E. Designing and Managing the Supply Chain. McGraw-Hill Inc., New York, 2003.

Tan, K. C. A Framework of Supply Chain Management Literature. European Journal of Purchasing and Supply Management, 7, 39-48, 2001.

Tang, L.; Liu, J.; Rong, A.; Yang, Z. A Review of Planning and Scheduling Systems and Methods for Integrated Steel Production. European Journal of Operation Research, 133, 1-20, 2001.

Watkins, R. N. Petroleum Refining Distillation. 2nd ed., Houston: Gulf Publishing Co., 1979.

Wenkai Li, W.; Hui, C. W.; Li, A. Integrating CDU, FCC and Product Blending Models into Refinery Planning. Computers & Chemical Engineering, 29, 2010-2028, 2005.

Xie, Y.; Petrovic, D.; Burnham, K. A Heuristic Procedure for the Two-Level Control of Serial Supply Chains under Fuzzy Customer Demand. Int. J. Production Economics, 102, 37-50, 2006.

Zhang, J.D.; Rong, G. An MILP Model for Multi-period Optimization of Fuel Gas System Scheduling in Refinery and its Marginal Value Analysis. Chemical engineering Research and Design, 86, 141- 151, 2008

Zhang, N. ; Zhu, X. X. A Novel Modelling and Decomposition Strategy for Overall Refinery Optimization. Computers & Chemical Engineering, 24, 1543-1548, 2000.

柯清水, 石油化學概論,正文書局有限公司, 台北, 1980

徐武軍, 石油化學工業導論,高立圖書有限公司, 台北, 2001

徐武軍, 石油化學工業:原料製程及市場, 五南圖書有限公司,台北, 2005

謝俊雄, 石油化學工業, 文京圖書有限公司,台北, 1977

林茂文,蔡德慶,胡鑫彬, 經濟部七十四年度研究發展專題:石油工業線型規劃模式之研究, 中國石油公司, 台北, 1985

楊思廉, 工業化學概論, 高立圖書有限公司, 台北, 1999
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top