跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 15:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:歐以文
研究生(外文):I-Wen Ou
論文名稱:以濕式研磨法研製黏土/聚醯胺及黏土/聚酯類奈米複合材料
論文名稱(外文):Preparation of clay/polyamide and clay/polyester nanocomposites by wet milling process
指導教授:林睿哲
指導教授(外文):Jui-Che Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:112
中文關鍵詞:濕式研磨黏土
外文關鍵詞:wet millingclay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用濕式研磨分散法製得高濃度(50wt%)的黏土(clay)濃縮粒。此濃縮粒經XRD分析得知黏土層間距離可由原本1.5 nm增加至3 nm。進一步地,本研究將此濃縮微粒分別加入尼龍(nylon 6)、聚對苯二甲酸乙二酯(PET)、熱塑性聚胺基甲酸酯(TPU)等高分子中進行分散,成功製備出剝離型clay/nylon 6、clay/PET、clay/TPU奈米複合材料,經XRD、SAXS、TEM等分析可知黏土確實已達脫層狀態分散。由上述結果顯示此種分散方式可以有效地改善過去熔融混摻技術分散性不佳的缺點。另經由拉力測試得知,PL-101/clay/nylon 6奈米複合材料的抗拉強度提升22%、楊氏模數提升72%;PL-102/clay/nylon 6奈米複合材料的抗拉強度提升了11.5%、楊氏模數提升16%、伸長率提升36.5%。進ㄧ步扣除掉插層劑對nylon 6的影響,得知黏土確實能大幅提升nylon 6本身的拉伸強度、降伏強度以及楊氏模數。由非恆溫DSC分析得知clay/nylon 6奈米複合材料整體的結晶生長均會受到黏土片層的阻礙而使結晶完整度下降,且經射出成型後 clay/nylon 6奈米複合材料的整體結晶度均會比經塑譜儀混摻後的來的高。由恆溫DSC、偏光顯微鏡分析得知,經塑譜儀混摻後clay/nylon 6奈米複合材料的結晶會由球晶型態轉變為片狀晶型,且結晶成長速率會由0.15下降至0.015 min-1;經射出成型後clay/nylon 6奈米複合材料的結晶仍然保持原本的球狀結晶型態,且結晶成長速率會由0.15下降至0.011 min-1。由氣體透過率分析得知,clay/nylon 6奈米複合材料的氣體透過率會由6.0275下降到0.966 barrier;clay/PET奈米複合材料的氣體透過率會由2.81下降到2.11 barrier;clay/TPU奈米複合材料的氣體透過率會由13.35下降到9.95 barrier。由以上的結果可知,以本研究的分散方法,的確可將黏土有效地分散於nylon 6、PET、TPU等高分子中,並提高其機械性質與阻氣效能等特性。
The clay (50wt%)/oligomers nanocomposites were synthesized by the wet milling process. The chains of the oligomers were successfully inserted between the interlayer of clay, and its spacing was increased from 1.5 nm to 3 nm from the XRD diffraction pattern. Furthermore, the high clay/oligmers nanocompsites was blended with the nylon 6, PET and TPU, respectively. The clay/nylon 6, clay/PET nanocomposites were characterized by XRD, SAXS and TEM. From the experiment results, the delaminar clay/polymer nanocomposite was successfully obtained via the wet milling process. The yield strength and young’s modulus of clay/nylon 6 were enhanced to 72%, respectively. The yield strength, young’s modulus and elongation clay/nylon 6 was enhanced to 11.5%, respectively. On the other hands, the crystalline degree of clay/nylon6 nanocomposites was decreased with the increasing amount of clay from non-isothermal DSC analysis. Notable, the crystallization of the clay/nylon6 prepared by brabender is lower than that of prepared by injection. The result can be confirmed by the isothermal DSC and POM analysis. The crystallization behavior of clay/nylon6 prepared by brabender will change from sphere to circular lamella, and crystal growth rate will drop from 0.15 to 0.015 min-1. The crystallization behavior of clay/nylon 6 prepared by injection will remain spherical, and crystal growth rate will drop from 0.15 to 0.011 min-1. For gas barrier analysis, the clay/nylon 6 dropped from 6.0275 to 0.966 barrier and the clay/PET dropped from 2.81 to 2.11 barrier. The clay/TPU dropped from 13.35 to 9.95 barrier. Summary, the exfoliated nanocomposites can be successfully prepared by using wet milling process and the mechanical properties, crystallization and gas barrier also be significantly improved by well clay dispersion within polymer.
摘要......................................................I
Abstract............................................... III
誌謝......................................................V
目錄.....................................................VI
表目錄...................................................IX
圖目錄...................................................XI
第一章 緒論............................................1
第二章 文獻回顧...........................................4
2-1 黏土之簡介............................................4
2-2 黏土/高分子複合材料分散型態...........................5
2-3 黏土/高分子奈米複合材料製備方式.......................6
第三章 動機與目的........................................13
第四章 實驗部份..........................................14
4-1 實驗材料.............................................14
4-2 實驗儀器.............................................15
4-3 實驗步驟.............................................16
4-3-1製備插層劑/黏土濃縮粒...............................16
(a) 黏土膨潤分散實驗.....................................16
(b) 濕式研磨分散實驗.....................................17
4-3-2 製備clay/nylon6奈米複合材料........................18
4-3-3 製備clay/PET奈米複合材料...........................18
4-3-4 製備clay/TPU奈米複合材料...........................19
4-3-5 製備clay/nylon6/TPU奈米複合材料....................19
4-4 實驗分析方法.........................................20
第五章 結果討論..........................................22
5-1 插層型黏土濃縮粒製備與研究...........................22
5-1-1 黏土的膨潤分散影響.................................23
5-1-2 濕式研磨分散法中不同分散機制的影響.................25
5-2 Clay/nylon6 奈米複合材料製備與研究...................27
5-2-1 分散性質分析.......................................28
5-2-2 機械性質分析.......................................38
5-2-3 結晶性質分析.......................................40
5-2-4 氣體透過率分析.....................................61
5-3 Clay/PET 奈米複合材料製備與研究......................63
5-3-1 分散性質分析.......................................63
5-3-2 結晶性質分析.......................................67
5-3-3 氣體透過率分析.....................................75
5-4 clay/TPU 奈米複合材料製備與研究......................77
5-4-1 分散性質分析.......................................77
5-4-2 機械性質分析.......................................79
5-4-3 氣體透過率分析.....................................81
5-5 Clay/nylon6/TPU 奈米複合材料製備與研究...............83
5-5-1 分散性質分析.......................................83
5-5-2 機械性質分析.......................................89
5-5-3 氣體透過率分析.....................................90
第六章 結論..............................................92
參考文獻.................................................94
自述.....................................................96
(1) A. Okada, A. Usuki, T. Kurauchi, O. Kamigaito. ACS Symp. Series, 55, 585 (1995)
(2) A. Akelah, J. A. Moet. Polym. Sci., 55, 153 (1994)
(3) A. Mahieu Sicaud, J. Mering, Perrin Bonnet. Bull. Soc. Milner. Cryistal. 74, 473 (1971)
(4) E. P. Giannelis. Adv. Mater. 8, 1179 (1996)
(5) T. Ozawa, Polymer, 12, 150 (1971)
(6) C. Zilg, R. Thompson, J. Finter. Adv. Mater, 11, 49 (1999)
(7) S. Bonnet, C. Forano, A. D. Roy, J. P. Besse. Chem. Mat. 8, 1962 (1996)
(8) M. Kawasumi, A. Usuki, Y. Kojima, A. Okada, T. Kurauchi and O. Kamigaito. J. Mater. Res., 8, 1174 (1993)
(9) M. Kawasumi, A. Usuki, Y. Kojima, A. Okada, T. Kurauchi and O. Kamigaito, J. Polym. Sci. Polym. Chem. Ed., 31, 983 (1993)
(10) M. Kawasumi, A. Usuki, Y. Kojima, A. Okada, T. Kurauchi and O. Kamigaito, J. Mater. Res., 8, 1179 (1993)
(11) A. Usuki, et al, J. Mater. Res, 8 (5), 1179 (1993)
(12) G. W. Beall, S. Tsipursky, A. Goldman. US Pat. 5578672 (1996)
(13) G. W. Beall, S. Tsipursky, A. Goldman. US Pat. 5721306 (1998)
(14) Y. Kurokawa, H. Yasuda and A. Oyo, J. Mater. Sci. Lett., 15, 1481 (1996)
(15) Y. Kurokawa, H. Yasuda, M. Kashiwagi and A. Oyo, J. Mater. Sci. Lett., 16, 1670 (1997)
(16) L. Liu, Z. Qi, X. J. Zhu. Polym. Sci, 71, 1133 (1999)
(17) X. Liu, Q. Wu. Polym. Sci., 43, 1933 (2002)
(18) S. H. Douwe, G. Bart, G. Gabriel. Polym. Sci., 47, 1630~1639 (2006)
(19) T. J. Pinnavaia, G. W. Beall. John Willy & Sons (2000)
(20) R. A. Vaia, H. Isii and E. P. Giannelis, Chem. Mater., 5, 1694 (1996)
(21) R. A. Vaia, K. D. Jandt, E. J. Kramer and E. P. Giannelis, Chem. Mater., 8, 2628 (1996)
(22) R. A. Vaia, R. Krishnamoorti, E. P. Giannelis, Chem. Mater., 9, 1728 (1996)
(23) M. Kato, A. Usuki, A. Okada, J. Appl. Polym. Sci., 66, 1781 (1997)
(24) M. Kato, M. Kawasumi, N. Hasegawa, A. Usuki, A. Okada. Macromolecules, 30, 6333 (1997)
(25) M. Kato, N. Hasegawa, M. Kawasumi, and A. Okada, J. Appl. Polym.Sci., 67, 87 (1997)
(26) X. Liu and Q. Wu, Polymer, 42, 10013 (2001)
(27) M. Avrami, J. Chem. Phys., 7, 1103 (1939)
(28) M. Avrami, J. Chem. Phys., 8, 212 (1940)
(29) M. Avrami, J. Chem. Phys., 9, 177 (1941)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top