跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 15:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳芷容
研究生(外文):Chih-Jung Wu
論文名稱:利用帶正電的陰陽離子液胞做為DNA載體之可行性的研究
論文名稱(外文):A study on the feasibility of using positively charged catanionic vesicles as DNA carriers
指導教授:張鑑祥張鑑祥引用關係
指導教授(外文):Chien-Hsiang Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:143
中文關鍵詞:離子對雙親分子陰陽離子液胞液胞液胞/DNA 複合物轉染效率
外文關鍵詞:catanionic vesicletransfection efficiencyvesiclevesicle/DNA complexesion pair amphiphile
相關次數:
  • 被引用被引用:13
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用粒徑及界面電位的分析,探討帶正電之陰陽離子液胞(catanionic vesicle)的形成 ,以及其與DNA的結合行為,並且進一步分析陰陽離子液胞/DNA複合物的轉染特性。首先將陽離子型界面活性劑hexadecyltrimethylammonium bromide(HTMAB)與陰離子型界面活性劑sodium dodecylsulfate(SDS)於水相中混合,以製備出離子對雙親分子 (ion pair amphiphile)hexadecyltrimethylammonium-dodecylsulfate(HTMA-DS)。然後以HTMA-DS為主材料,添加不同莫耳比率的雙碳氫鏈二甲基溴化銨,並透過適當的製程製備出帶正電的陰陽離子液胞。液胞粒徑分析結果顯示陰陽離子液胞分散液經過稀釋後,液胞的物理穩定性會大幅下降,在液胞組成中添加適量的膽固醇,則可提升液胞的物理穩定性。此外,在緩衝溶液中陰陽離子液胞的電性會變得較不明顯,但透過離子對雙親分子/陽離子型界面活性劑之混合比例的調整,可得到物理穩定性與電性皆屬適當範圍的陰陽離子液胞。透過分析不同比例混合的陰陽離子液胞/DNA複合物的粒徑與界面電位,發現帶正電的陰陽離子液胞可以和DNA結合,利用陰陽離子液胞/DNA複合物進行轉染實驗,則發現不同的細胞與複合物作用時,呈現的轉染特性會有所不同。以人類巨噬細胞(U937)進行轉染實驗時,轉染效率幾乎為零;若是以子宮頸癌細胞(Hela)進行轉染實驗,則陰陽離子液胞可以有商用轉染劑80%的效果。
This study investigated the formation behavior of positively charged catanionic vesicles and the association behavior of the catanionic vesicles with DNA by the vesicle size and zeta potential analyses. The transfection characteristics of the catanionic vesicle/DNA complexes were analyzed further. An ion pair amphiphile (IPA), hexadecyltrimethylammonium- dodecylsulfate (HTMA-DS), was prepared first by mixing the cationic surfactant, hexadecyltrimethylammonium bromide (HTMAB), and anionic surfactant, sodium dodecylsulfate (SDS), in water. The HTMA-DS was then used as the main material with the addition of various molar ratios of dialkyldimethylammonium bromides to form positively charged catanionic vesicles by an appropriate process. The vesicle size analysis indicated that the physical stability of the catanionic vesicles was significantly deteriorated when the vesicle dispersions were diluted, and could be enhanced with the presence of a proper amount of cholesterol. In addition, the charge characteristic of the catanionic vesicles in a buffer solution became less significant. However, by adjusting the composition of the IPA/cationic surfactant mixtures, catanionic vesicles with acceptable physical stability and charge characteristic could be prepared. By analyzing the sizes and zeta potentials of the catanionic vesicle/DNA complexes with various compositions, it was found that the positively charged catanionic vesicles could associate with DNA. The transfection experiments performed with the catanionic vesicle/DNA complexes indicated that the transfection efficiency varied with the types of cells. For U937 cells, the transfection efficiency was negligible. However, if the Hela cells were used in the transfection experiments, the transfection efficiency of the catanionic vesicles could be 80% of that of a commercial transfection reagent.
摘要 i
Abstract ii
誌謝 iv
總目錄 v
表目錄 viii
圖目錄 x
符號說明 xvii
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 4
1-3 文獻回顧 5
1-3-1 離子對雙親分子 5
1-3-2 帶電液胞 6
1-3-3 膽固醇的影響 10
1-3-4 鹽類的影響 13
1-3-5 液胞與DNA的交互作用 14
1-3-6 液胞/DNA的結合結構 17
1-3-7 生物毒性 18
第二章 實驗 28
2-1 藥品 28
2-2 實驗儀器及裝置 29
2-2-1 超音波震盪分散裝置 29
2-2-2 雷射光散射法粒徑及界面電位分析儀 29
2-2-3 元素分析儀 32
2-2-4 穿透式電子顯微鏡 32
2-2-5 流式細胞儀 33
2-3 實驗方法 34
2-3-1 HTMA-DS的製備 34
2-3-2 帶正電陰陽離子液胞的製備 34
2-3-3 粒徑分布、界面電位及電導度的量測 35
2-3-4 穿透式電子顯微鏡的分析 35
2-3-5 液胞毒性的檢測 36
2-3-6 轉染特性的檢測 37
第三章 結果與討論 44
3-1 帶正電陰陽離子液胞 44
3-1-1 粒徑 44
3-1-2 界面電位 49
3-1-3 物理穩定性 49
3-2 膽固醇的影響 53
3-2-1 粒徑 54
3-2-2 界面電位 56
3-2-3 物理穩定性 57
3-3 液胞分散液的稀釋及緩衝溶液的使用 58
3-3-1 稀釋的影響 59
3-3-2 緩衝溶液的影響 61
3-4 液胞與DNA的交互作用 62
3-4-1 液胞毒性的檢測 63
3-4-2 帶正電的陰陽離子液胞╱DNA複合物 63
3-4-3 轉染特性的分析 65
第四章 結論 122
參考文獻 124
自述 143
Ahmad, I., Longenecker, M., Samuel, J., and Allen, T. M., “Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice,” Cancer Research 55, 1484-1487, 1993.
Andersson, M., Hammarstrom, L., and Edwards, K., “Effect of bilayer phase transitions on vesicle structure and its influence on the kinetics of viologen reduction,” Journal of Physical Chemistry 99, 14531-14538, 1995.
Apel-Paz, M., Doncel, G. F., and Vanderlick, T. K., “Impact of membrane cholesterol content on the resistance of vesicles to surfactant attack,” Langmuir 21, 9843-9849, 2005.
Aramaki, Y., Matsuno, R., Nitta, F., Arima, H., and Tsuchiya, S., “Negatively charged liposomes inhibit tyrosine phosphorylation of 41-kDa protein in murine macrophages stimulated with LPS,” Biochemical and Biophysical Research Communications 220, 1-6, 1996.
Aramaki, Y., Takano, S., and Tsuchiya, S., “Induction of apoptosis in macrophages by cationic liposomes,” FEBS Letter 460, 472-476, 1999.
Bach, D., and Wachtel, E., “Phospholipid/cholesterol model membranes: formation of cholesterol crystallites,” Biochimica et Biophysica Acta 1610, 187-197, 2003.
Barreleiro, P. C. A., Olofsson, G., and Alexandridis, P., “Interaction of DNA with cationic vesicles: a calorimetric study,” Journal of Physical Chemistry B 104, 7795-7802, 2000.
Battersby, B.J., Grimm, R., Huebner, S., and Gevc, G., “Evidence for three-dimensional interlayer correlations in cationic lipid-DNA complexes as observed by cyro-electron microscopy,” Biochimica et Biophysica Acta 1372, 379-383, 1998.
Bhattacharya, S., De, S., and Subramanian, M., “Synthesis and vesicle formation from hybrid bolaphile/amphiphile ion-pairs. Evidence of membrane property modulation by molecular design,” Journal of Organic Chemistry 63, 7640-7651, 1998.
Bhattacharya, S., and Haldar, J., “Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage,” Biochimica et Biophysica Acta 1467, 39-53, 2000.
Bhattacharya, S., and Haldar, S., “Molecular design of surfactants to tailor its aggregation properties,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 205, 119-126, 2002.
Blandamer, M. J., Briggs, B., Cullis, P. M., Rawlings, B. J., and Engberts, J. B. F. N., “Vesicle-cholesterol interactions: effect of added cholesterol on gel-to-liquid crystal transitions in a phopholipid membrane and five dialkyl-based vesicles as monitored using DSC,” Physical Chemistry Chemical Physics 5, 5309-5312, 2003.
Blanzat, M., Perez, E., Rico-Latters, R., Prome, D., Prome, J. C. and Lattes, A., “New catanionic glycolipids. 1. Synthesis, characterization, and biological activity of double-chain and gemini catanionic analogues of galactosylceramide(galβ1cer),” Langmuir 15, 6163-6169, 1999.
Borochov, N., Wachtel, E. J., and Bach, D., “Phase behavior of mixtures of cholesterol and saturated phosphatidylglycerols,” Chemistry and Physics of Lipids 76, 85-92, 1995.
Brasher, L. L., Herrington, K. L., and Kaler, E. W., “Electrostatic effects on the phase behavior of aqueous cetyltrimethylammonium bromide and sodium octyl sulfate mixtures with added sodium bromide,” Langmuir 11, 4267-4277, 1995.
Campbell, R. B., Balasubramanian, S. V., and Straubinger, R. M., “Phospholipid-cationic lipid interactions: influences on membrane and vesicle properties,” Biochimica et Biophysica Acta 1512, 27-39, 2001.
Carmona-Ribeiro, A. M., and Midmore, B. R., “Surface potential in charged synthetic amphiphile vesicles,” Journal of Physical Chemistry 96, 3542-3547, 1992.
Carmona-Ribeiro, A. M., Ortis, F., Schumacher, R. I., and Armelin, M. C. S., “Interactions between cationic vesicles and cultured mammalian cells,” Langmuir 13, 2215-2218, 1997.
Carrion, F. J., Maza, A. D., and Parra, J. L., “The influence of ionic strength and lipid bilayer charge on the stability of liposomes,” Journal of Colloid and Interface Science 164, 78-87, 1994.
Chen, M., Mason, R. P., and Tulenko, T. N., “Atherosclerosis alters the composition, structure and function of arterial smooth muscle cell plasma membranes,” Biochimica et Biophysica Acta 1272, 101–112, 1995.
Chien, C.-L., Yeh, S.-J., Yang, Y.-M., Chang, C.-H., and Maa, J.-R., “Formation and encapsulation of catanionic vesicles,” Journal of the Chinese Colloid and Interface Society 24, 31-45, 2002.
Chiruvolu, S., Israelachvili, J. N., Naranjo, E., Xu, Z., and Zasadzinski, J. A., “Measurement of forces between spontaneous vesicle-forming bilayers,” Langmuir 11, 4256-4266, 1995.
Choosakoonkriang, S., Wieyhoff, C. M., Anchordoquy, T. J., Koe, G. S., Smith, J. G., and Middaugh, R. C., “Infrared spectroscopic characterization of the interaction of cationic lipids with plasmid DNA,” The Journal of Biological Chemistry 276, 8037-8043, 2001.
Chung, M. H., and Chung, Y. C., “Polymerized ion pair amphiphile that shows remarkable enhancement in encapsulation efficiency and very slow release of fluorescent markers,” Colloids and Surfaces B: Biointerfaces 24, 111-121, 2002.
Chung, M. H., Park, M. J., Chun, B. C., and Chung, Y. C., “Encapsulation and permeation properties of the polymerized ion pair amphiphile vesicle that has an additional carboxyl group on anionic chain,” Colloids and Surfaces B: Biointerfaces 28, 83-93, 2003.
Chung, M. H., Park, C., Chun, B. C., and Chung, Y. C., “Polymerized ion pair amphiphile vesicles with pH-sensitive transformation and controlled release property,” Colloids and Surfaces B: Biointerfaces 34, 179-184, 2004.
Cuccovia, I. M., Feitosa, E., Chaimovich, H., Sepulveda, L., and Reed, W., “Size, electrophoretic mobility, and ion dissociation of vesicles prepared with synthetic amphiphiles,” Journal of Physical Chemistry 94, 3722-3725, 1990.
Dan, N., “The structure of DNA complexes with cationic liposomes-cylindrical or flat bilayer?” Biochimica et Biophysica Acta 1369, 34-38,1998.
Dias, R. S., Lindman, B., and Miguel, M. G., “DNA interaction with catanionic vesicles,” Journal of Physical Chemistry B 106, 12600-12607, 2002.
Dias, R. S., Lindman, B., and Miguel, M. G., “Compaction and decompaction of DNA in the presence of catanionic amphiphile mixtures,” Journal of Physical Chemistry B 106, 12608-12612, 2002.
Eastman, S. J., Siegel, C., Tousignant, J., Smith, A. E., Cheng, S. H., and Scheule R. K., “Biophysical characterization of cationic lipid:DNA complexes,” Biochimica et Biophysica Acta 1325, 41-62, 1997.
Feitosa, E., and Brown, W., “Fragment and vesicles structures in sonicated dispersions of dioctadecyldimethylammonium bromide,” Langmuir 13, 4810-4816, 1997.
Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, J. P., Ringold, G. M., and Danielsen, M., “Lipofection-A highly efficient, lipid-mediated DNA-transfection procedure,” Proceedings of the National Academy of Sciences of the United States of America 84, 7413-7417, 1987.
Felgner, J. H., Kumar, R., Sridhar, C. N., Wheeler, C. J., Tsai, Y. J., Border, R., Ramsey, P., Martin, M., and Felgner, P. L., “Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations,” Journal of Biological Chemistry 269, 2550-2561, 1994.
Filion, M. C., and Phillips, N. C., “Major limitations in the use of cationic liposomes for DNA delivery,” International Journal of Pharmaceutics 162, 159-170, 1998.
Fischer, A., Hebrant, M., and Tondre, C., “Glucose encapsulation in catanionic vesicles and kinetic study of the entrapment/release processes in the sodium dodecyl benzene sulfonate/cetyltrimethylammonium tosylate/water system,” Journal of Colloid and Interface Science 248, 163-168, 2002.
Franks, N. P., “Structural analysis of hydrated egg lecithin and cholesterol bilayers: I. X-ray diffraction,” Journal of Molecular Biology 100, 345–358, 1976.
Fukuda, H., Kawata, K., and Okuda, H., “Bilayer-forming ion-pair amphiphiles from single-chain surfactants,” Journal of the American Chemical Society 112, 1635-1637, 1990.
Gao, X., and Huang, L., “A novel cationic liposome reagent for efficient transfection of mammalian-cells,” Biochemical and Biophysical Research Communications 179, 280-285, 1991.
Guillaume, B. C. R., Yogev, D., and Fendler, J. H., “Twisted intramolecular charge-transfer emissions of fluorescence probes in didodecyldimethylammonium bromide, dioctadecyldimethylammonium bromide, and didodecyl phosphate vesicles undergoing fusion,” Journal of Physical Chemistry 95, 7489-7494, 1991.
Gustafsson, J., Arvidson, G., Karlsson, G., and Almgren, M., “Complexes between cationic liposomes and DNA visualized by cyro-TEM,” Biochimica et Biophysica Acta 1235, 305-312, 1995.
Hac-Wydro, K., Wydro, P., and Dynarowicz-Latka, P., “Interactions between dialkyldimethylammonium bromides (DXDAB) and sterols-a monolayer study,” Journal of Colloid and Interface Science 286, 504-510, 2005.
Hirano K., and Fukuda, H., “Polymerizable ion-paired amphiphiles,” Langmuir 7, 1045-1047, 1991.
Holmberg, K., Handbook of applied surface and colloid chemistry, John Wiley and Sons, England, 2, 45-54, 2002.
Huang, J. B., and Zhao, G. X., “Formation and coexistence of the micelles and vesicles in mixed solution of cationic and anionic surfactant,” Colloid and Polymer Science 273, 156-164, 1995.
Huebner, S., Battersby, B.J., Grimm, R., and Cevc, G. “Lipid-DNA complex formation: reorganization and rupture of lipid vesicles in the presence of DNA as observed by cryoelectron Microscopy,” Biophysical Journal l76, 3158-3166, 1999.
Israelachvili, J. N., Mitchell, D. J., and Ninham, B. W., “Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers,” Journal of the Chemical Society-Faraday Transactions 72, 1525, 1976.
Jubeh, T. T., Barenholz, Y., and Rubinstein, A., “Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes,” Pharmaceutical Research 21, 447-453, 2004
Kaler, E. W., Murthy-, A. K., Rodriguez, B. E., and Zasadzinski, A. N., “Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants,” Science 245, 1371-1374, 1989.
Kennedy, M. T., Pozharski, E. V., Rakhmanova, V. A., and MacDonald, R. C., “Factors governing the assembly of cationic phospholipid – DNA complexes,” Biophysical Journal 78, 1620-1633, 2000.
Koltover, I., Salditt, T., Rädler, J. O., and Safinya, C. R., “An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery,” Science 281, 78-81, 1998.
Kondo, Y., Uchiyama, H., Yoshino, N., Nishiyama, K., and Abe, M., “Spontaneous vesicle formation from aqueous solutions of didodecyldimethylammonium bromide and sodium dodecyl sulfate mixtures,” Langmuir 11, 2380-2384, 1995.
Kuo, J.-H., Jan, M.-S., Chang, C.-H., Chiu, H.-W., and Li, C.-T., “Cytotoxicity characterization of catanionic vesicles in RAW 264.7 murine macrophage-like cells,” Colloids and Surfaces B:Biointerfaces 41, 189-196, 2005.
Kuo, J.-H., Chang, C.-H., Lin, Y.-L., and Wu, C.-J., “Flow cytometric characterization of interactions between U-937 human macrophages and positively charged catanionic vesicles,” Colloids and Surfaces B:Biointerfaces 64, 307-313, 2008.
Kwon, K. O., Kim, M. J., Abe, M., Ishinomori, T., and Ogino, K., “Thermotropic behavior of a phospholipid bilayer interacting with metal ions,” Langmuir 10, 1415-1420, 1994.
Lasic, D. D., “Liposomes: from physics to applications,” Elsevier, New York, 265-318, 1993.
Lasic, D. D., and Papahadjopoulos, D., “Liposomes and biopolymers in drug and gene delivery,” Solid State and Materials Science 1, 392-400, 1996.
Lasic, D. D., “Liposomes in gene delivery,” CRC Press, New York, 67-112, 1997.
Lasic, D. D., Strey, H., Stuart, M. C. A., Podgornik, R., and Frederik, P., “The structures of DNA-liposome complexes,”Journal of the American Chemical Society 119, 832-833, 1997.
Leonard, A., and Dufourc, E. J., “Interactions of cholesterol with the membrane lipid matrix. A solid state NMR approach,” Biochimie 73 , 1295–1302, 1991.
Leventis, R., and Silvius, J. R., “Interactions of mammalian-cells with lipid dispersions containing novel metabolizable cationic amphiphiles,” Biochimica et Biophysica Acta 1023, 124-132, 1990.
Liang, C. H., and Chou, T. H., “Membrane properties and cyototoxicity of cationic surfactants/phosphatidylcholine mixed systems,” The 2006 Japan/Taiwan/Korea Chemical Engineering Conference, 140-141, PF-11, Taiwan, 2006.
Liu, D. Z., Chen, W. Y., Tasi, L. M., and Yang, S. P., “Microcalorimetric and shear studies on the effects of cholesterol on the physical stability of lipid vesicles,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 172, 57-67, 2000.
Lopez-Garcia, F., Villalain, J., and Gomez-Fernandez, J. C., “Effect of sphingosine and stearylamine on the interaction of phosphatidylserine with calcium. A study using DSC, FT-IR and Ca2+-binding,” Biochimica et Biophysica Acta 1236, 279-288, 1995.
Ma, B., Zhang, S., Jiang, H., Zhao, B., and Lv, H., “Lipoplex morphologies and their influences on transfection efficiency in gene delivery,” Journal of Controlled Release 123, 184-194, 2007.
Marques, E. F., Brito, R. O., Wang, Y., and Silva, B. F. B., “Thermotropic phase behavior of triple-chained catanionic surfactants with varying headgroup chemistry,” Journal of Colloid and Interface Science 294, 240-247, 2006.
Marques, E. F., Regev, O., Khan, A., and Lindman, B., “Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects,” Advances in Colloid and Interface Science 100, 83-104, 2003.
Matsumura, H., Watanabe, K., and Furusawa, K., “Flocculation behavior of egg phosphatidylcholine liposomes caused by Ca2+ ions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 98, 175-184, 1995.
McIntosh, T. J., “The effect of cholesterol on the structure of phosphatidylcholine bilayers,” Biochimica et Biophysica Acta 513, 43–58, 1978.
McMullen, T. P. W., Lewis, N. A. H., and McElhaney, R. N., “Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines,” Biochemistry 32, 516-522, 1993.
McMullen, T. P. W., Lewis, R. N. A. H., and McElhaney, R. N., “Differential scanning calorimetric and fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes,’ Biophysical Journal 79, 2056-2065, 2000.
Mel’nikov, S. M., Dias, R., Mel’nikov, S. Y., Marques, E. F., Miguel, M. G., and Lindman, B., “DNA conformational dynamics in the presence of catanionic mixtures,” FEBS Letters 453, 113-118, 1999.
Mel’nikov, S. M., Mel’nikova, Y. S., and Löfroth, J. E., “Single molecule visualization of interaction between DNA and oppositely charged mixed liposomes,” Journal of Physical Chemistry B 102, 9367-9369, 1998.
Mel’nikova, Y. S., Mel’nikov, S. M., and Löfroth, J. E., “Physico-chemical aspects of the interaction between DNA and oppositely charged mixed liposomes,” Biophysical Chemistry 81, 125-141, 1999.
Mel’nikov, S.M., Sergeyev, V.G, Mel’nikov, Y.S., and Yoshikawa, K., “Folding of long DNA chains in the presence of distearyldimethylammonium bromide and unfolding induced by neutral liposomes,” Journal of the Chemical Society-Faraday Transactions 93, 283-288, 1997.
Menger, F. M., Binder, W. H., and Keiper, J. S., “Cationic surfactants with counterions of glucuronate glycosides,” Langmuir 13, 3247-3250, 1997.
Miguel, M. G., Pais, A. A. C. C., Dias, R. S., Leal, C., Rosa, M., and Lindman, B., “DNA-cationic amphiphile interactions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 228, 43-55, 2003.
Miyajima, K., Komatsu, H., Sun, C. Q., Aoki, H., Handa, T., Xu, H. J., Fuji, K. R., and Okada, S., “Effects of cholesterol on the miscibility of synthetic glucosamine diesters in lipid bilayers and the entrapment of superoxide-dismutase into the positively charged liposomes,” Chemical and Pharmaceutical Bulletin 41, 1889-1894, 1993.
Morgan, D. M. L., Larvin, V. L., and Pearson, J. D., “Biochemical characterisation of polycation-induced cytotoxicity to human vascular endothelial cells,” Journal of Cell Science 94, 553-559, 1989.
Murai, M., Aramaki, Y., and Tsuchiya, S., “Modification of alpha(2)-macroglobulin into a macrophage-activating factor through the action of liposome-stimulated B-cell membranous glycosidases,” Immunology 86, 58-63, 1995.
Murai, M., Aramaki, Y., and Tsuchiya, S., “Identification of the serum factor required for liposome-primed activation of mouse peritoneal-macrophages-modified alpha (2)-macroglobulin enhances Fc-gamma receptor-mediated phagocytosis of opsonized sheep red-blood-cells,” Immunology 86, 64-70, 1995.
New, R. R. C., “Liposomes: a practical approach,” Oxford University Press, New York, 1-32, 1990.
Nishkawa, M., and Hung, L., “Nonviral vectors in the newillennium: delivery barriers in gene transfer,” Human Gene Therapy 12, 861-865, 2001.
Oberle, V., Bakowsky, U., Zuhorn, I. S., and Hoekstra, D., “Lipoplex formation under equilibrium conditions reveals a three-step mechanism,” Biophysical Journal 79, 1447-1454, 2000.
Panda, A. K., Possmayer, F., Petersen, N. O., Nag, K., and Moulik, S. P., “Physico-chemical studies on mixed oppositely charged surfactants: their uses in the preparation of surfactant ion selective membrane and monolayer behavior at the air water interface,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 264, 106-113, 2005.
Rädler, J. O., Koltover, I., Salditt, T., and Safinya, C. R., “Structures of DNA-cationic liposome complexes: DNA interaction in multilamellar membranes in distinct interhelical packing regimes,” Science 275, 810-814, 1997.
Rosa, M., Moran, M. D., Miguel, M. D., and Lindman, B., “The association of DNA and stable catanionic amino acid-based vesicles,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 301, 361-375, 2007
Salditt, T., Koltover, I., Radler, J.O., and Safinya, C.R. “Two-dimensional smectic ordering of linear DNA chains in self-assembled DNA-cationic liposome mixtures,” The American Physical Society 79, 2582-2585, 1997.
Segota, S. and Tezak, D. “Spontaneous formation of vesicles,” Advances in Colloid and Interface Science 121, 51-75, 2006.
Shaw, D. J., “Colloid and Surface Chemistry,” Butterworth-Heinemann, London, 156, 1980.
Song, Y. K., and Liu, D., “Free liposomes enhance the transfection activity of DNA/lipid complexes in vivo by intravenous administration,” Biochimica et Biophysica Acta 1372, 141-150, 1998.
Sternberg, B., Sorgi, F.K., and Huang, L., “New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy,” FEBS Letters 356, 361-366, 1994.
Stokes, R. J., and Evans, D. F., “Fundamentals of Interfacial Engineering,” Wiley-VCH Publishers, New York, 119-156, 1997.
Teixeira, C. V., Blanzat, M., Koetz, J., Rico-Lattes, I., and Brezesinski, G., “In-plane miscibility and mixed bilayer microstructure in mixtures of catanionic glycolipids and zwitterionic phospholipids,” Biochimica et Biophysica Acta 1758, 1797-1808, 2006
Tomasic, V., Stefanic, I., and Filipovic-Vincekovic, N., “Adsorption, association and precipitation in hexadecyltrimethylammonium bromide/sodium dodecyl sulfate mixtures,” Colloid and Polymer Science 277, 153-163, 1999.
Tondre, C., and Caillet, C., “Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis,” Advances in Colloid and Interface Science 93, 115-134, 2001.
Tsuruta, L. R., and Carmona-Ribeiro, A. M., “Counterion effects on colloids stability of cationic vesicles and bilayer-covered polystyrene microspheres,” Journal of Physical Chemistry 100, 7130-7134, 1996.
Vautrin, C., Zemb, T., Schneider, M., and Tanaka, M., “Balance of pH and ionic strength influences on chain melting transition in catanionic vesicles,” Journal of Physical Chemistry B 108, 7986-7991, 2004.
Virden, J. W., and Berg, J. C., “NaCl-induced aggregation of dipalmitoylphosphatidylglycerol small unilamellar vesicles with varying amounts of incorporated cholesterol,” Langmuir 8, 1532-1537, 1992.
Walker S. A., and Zasadzinski, A. J., “Electrostatic control of spontaneous vesicle aggregation,” Langmuir 13, 5076-5081, 1997.
Wang, C. Z., Tang, S. H., Huang, J. B., Zhang, X. R., and Fu, H. L., “Transformation from precipitates to vesicles in mixed cationic and anionic surfactant systems,” Colloid and Polymer Science 280, 770-774, 2002.
Wang, Y., Pereira, C. M., Marques, E. F., Brito, R. O., Ferreira, E. S., and Silva, F., “Catanionic surfactant films at the air-water interface,” Thin Solid Films 515, 2031-2037, 2006.
Wasungu, L., and Hoekstra, D., “Cationic lipids, lipoplexes and intracellular delivery of genes,” Journal of Controlled Release 116, 255-264, 2006.
Yeagle, P. L., “Cholesterol and the cell membrane,” Biochimica et Biophysica Acta 822, 267–287, 1985.
Yokouchi, Y., Tsunoda, T., Imura, T., Yamauchi, H., Yokoyama, S., Sakai, H., and Abe, M., “Effect of adsorption of bovine serum albumin on liposomal membrane characteristics,” Colloids and Surfaces B: Biointerfaces 20, 95-103, 2001.
Yokoyama, S., Inagaki, A., Imura, T., Ohkubo, T., Tsubaki, N., Sakai, H., and Abe, M., “Membrane properties of cationic liposomes composed of dipalmitoylphosphatidylcholine and dipalmityldimethylammonium bromide,” Colloids and Surfaces B: Biointerfaces 44, 204-210, 2005.
Yu, W.-Y., Yang, Y.-M., and Chang, C.-H., “Cosolvent effects on the spontaneous formation of vesicles from 1:1 anionic and cationic surfactant mixtures,” Langmuir 21, 6185-6193, 2005.
Zabner, J., Fasbender, A. J., Moninger, T., Poellinger, K. A., and Welsh, M., “Cellular and molecular barriers to gene-transfer by a cationic lipid,” Journal of Biological Chemistry 270, 18997-19007, 1995.
Zhang, X. R., Huang, J. B., Mao, M., Tang, S. H. and Zhu, B. Y., “From precipitation to vesicles: a study on self-organized assemblies by alkylammonium and its mixtures in polar solvents,” Colloid and Polymer Science 279, 1245-1249, 2001.
Zhou, X. H., and Huang, L., “DNA transfection mediated by cationic liposomes containing lipopolylysine-characterization and mechanism of action,” Biochimica et Biophysica Acta 1189, 195-200, 1994.
Zhou, X. H., Klibanov, A. L., and Huang, L., “Lipophilic polylysines mediate efficient DNA transfection in mammalian-cells,” Biochimica et Biophysica Acta 1065, 8-14, 1991.
Zuidam, N. J., and Barenholz, Y., “Electrostatic parameters of cationic liposomes commonly used for gene delivery as determined by 4-heptadecyl-7-hydroxycoumarin,” Biochimica et Biophysica Acta 1329, 211-222, 1997.
李雅鈺,“含膽固醇之陰陽離子液胞穩定性及包覆行為的研究,” 國立成功大學化學工程學系碩士論文,2004。
李威達,未發表的研究成果,國立成功大學化學工程學系,2007。
呂奇達,“帶正電的陰陽離子液胞與DNA之結合行為的探討,” 國立成功大學化學工程學系碩士論文,2005。
吳國彰,“陰陽離子液胞穩定性及包覆/釋放行為的研究,” 國立成功大學化學工程學系碩士論文,2006。
林奕萍,“高轉染能力之新穎性奈米微粒設計,”國立台灣大學醫學院生物化學暨分子生物研究所,2003。
林冠豪,“帶電的陰陽離子液胞之製備及物理穩定性研究,” 國立成功大學化學工程學系碩士論文,2004。
徐立銘,“陰陽離子液胞包覆行為之探討,” 國立成功大學化學工程學系碩士論文,2002。
陳柏瑋,“白蛋白存在下帶正電陰陽離子液胞穩定性的探討,” 國立成功大學化學工程學系碩士論文,2007。
游文月,“共溶劑促進陰陽離子液胞自發性形成之研究,” 國立成功大學化學工程學系碩士論文,2004。
黃鉦琳,“帶電陰陽離子液胞的形成及其膠化之研究,” 國立成功大學化學工程學系碩士論文,2007。
葉紹任,“共溶劑對陰陽離子液胞穩定性的影響,” 國立成功大學化學工程學系碩士論文,2003。
廖怡芬,“長碳鏈醇類添加劑對帶電陰陽離子液胞物理穩定性的影響,” 國立成功大學化學工程學系碩士論文,2006。
鍾依玲,“陰/陽離子液胞自發性形成之探討,” 國立成功大學化學工程學系碩士論文,2002。
簡振龍,“陰/陽離子界面活性劑的混合增效作用之研究,” 國立成功大學化學工程學系碩士論文,2000。
德芮克國際股份有限公司,“Nano ZS雷射光散射法粒徑及界面電位測定儀儀器相關說明,”台南,2005。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊