跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭敬達
研究生(外文):Jing-Da Xiao
論文名稱:蛇紋石製氫氧化鎂封存二氧化碳之研究及矽酸鋰型二氧化碳吸收劑的開發
論文名稱(外文):Magnesium Hydroxide Extracted from a Magnesium-Rich Mineral for CO2 Sequestration and Development of Lithium orthosilicate-type CO2 Absorbent
指導教授:鄧熙聖
指導教授(外文):Hsisheng Teng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:89
中文關鍵詞:固定化反應氫氧化鎂矽酸鋰二氧化碳
外文關鍵詞:Lithium orthosilicateFixation reductionCarbon dioxideMagnesium hydroxide
相關次數:
  • 被引用被引用:7
  • 點閱點閱:610
  • 評分評分:
  • 下載下載:124
  • 收藏至我的研究室書目清單書目收藏:0
溫室氣體是當前重點問題之一,各國都開始了二氧化碳減量的研究工作。減少二氧化碳主要有下列三種方法:1.高效率的能源利用2.低碳或無碳能源之開發利用3.藉由封存來減少二氧化碳的技術。
研究從礦藏豐富之蛇紋石出發,由於蛇紋石與氣態二氧化碳進行吸收無法達到很好的效率,改從蛇紋石中得到氫氧化鎂取代之,並和商用的氫氧化鎂做比較。以恆溫和非恆溫之熱重分析方法與固定化反應器分析研究氫氧化鎂之吸收和脫附,反應出自製的Mg(OH)2較商業化有更好的吸收效率,因此證實自製Mg(OH)2在對於固定二氧化碳有較好的優勢。可以證實計算出的邊界的表面積對二氧化碳的吸收量有決定性的影響,並了解此反應可能為單層二氧化碳吸收。
為了彌補高溫區段的不足,製備了高溫吸收劑,矽酸鋰。分別以固態反應法及溶膠凝膠法在不同溫度下鍛燒不同時間。可以由SEM圖看出商用及溶膠凝膠法製備的矽酸鋰為片狀堆疊,而固態法的為整顆的顆粒。製備出的矽酸鋰的最佳吸收溫度為625℃,而在700℃可以完全脫附。而不同方法在鍛燒時間越久均會造成吸收量下降,且因為當鍛燒時間愈久,造成氧空缺的濃度下降,造成O2-傳遞的量下降,減少CO2的吸收量。
Greenhouse gas is one important issue in the world, every country begins the study of decreasing amount of CO2. There are three approaches to decrease the CO2:1.high efficiency of fossil energy usage 2.development of energy sources with lower or no carbon source 3. by mineral carbonation technology. Using the vast natural abundance serpentine, but it is unable to reach a very good efficiency with CO2 . So we attempt to utilize magnesium hydroxide(Mg(OH)2) extracted from serpentine to replace it, and compare to the commercial magnesium hydroxide. In isothermal and nonisothermal thermorgravimetric analyses and fix bed reactor , reflected serpentine-drived Mg(OH)2 compares commercial to have the better efficiency in absorption. Proving the specific grain-boundary are critical factor to affect the amount of absorption。And understanding that it was likely a monolayer of CO2 molecules absorbed on the Mg(OH)2 specimens.
In order to complement the range for high temperature absorption, we prepare the absorbent, lithium orthosilicate(Li4SiO4) by solid state reaction and sol-gel mothod calcined at different temperature and time at the same time compared to the commercial one. From the SEM image, we can see the Li4SiO4 for commercial and sol-gel mothod are slice-like and solid state are particle-like. The best absorption temperature is 625℃ and completely desorption is 700℃. We found by different methods calicination time is longer the amount of absorption is smaller. Maybe this is because increasing the calicination time makes the concentration of oxygen vacancy decrease.So by the mechanism decreasment of the transfer of O2- makes the smaller amount of CO2 absorption.
摘要 I
Abstract II
誌謝 III
總目錄 IV
表目錄 VII
圖目錄 VIII


第一章 緒論 1
第二章 文獻回顧 3
2.1. 二氧化碳減量 3
2.2. 二氧化碳的特性 3
2.3. 二氧化碳的影響 3
2.4. 二氧化碳固定化技術 4
2.4.1. 封存技術簡介 5
2.4.1.1. 礦物封存方法 5
2.4.1.2. 非礦物封存法 8
2.4.2.  物理與化學吸收(absorption) 11
2.4.3.  物理與化學吸附(adsorption) 11
2.5. 吸附劑的選擇 13
2.6. 矽酸鹽礦石溶解 13
2.6.1. 矽酸鹽礦石簡介 13
2.6.2. 蛇紋石簡介 14
2.6.3. 矽酸鹽礦石溶解條件 15
2.6.4. 矽酸鹽基本熱力學性質 16
2.6.5. 氫氧化鎂與二氧化碳之反應 17
2.7. 高溫吸附粉末合成方法簡介 18
2.7.1. 固相反應法 18
2.7.2. 溶膠凝膠法 18
2.8. 矽酸鋰簡介 20
2.8.1. 矽酸鋰導論 20
2.8.2. 合成方法 20
2.8.3. 吸收二氧化碳的基本熱力學 21
2.8.4. 吸收計循環使用的構想 22
2.8.5. 吸收劑的反應方程式及反應機構 23
第三章 實驗方法 25
3.1. 實驗藥品與設備 25
3.1.1. 實驗氣體 25
3.1.2. 實驗藥品 25
3.1.3. 實驗設備 26
3.2. 樣品的製備 27
3.2.1. 氫氧化鎂 27
3.2.2. 矽酸鋰的製備 29
3.3. 二氧化碳固定化反 31
3.3.1.  以固定床反應器測試Mg(OH)2 31
3.3.2.  以熱重分析儀測試Mg(OH)2 31
3.3.3. 以熱重分析儀測試矽酸鋰 33
3.3.4. 以固定床反應器測試矽酸鋰吸收的產物 33
3.4. 分析儀器與方法 35
3.4.1. 氮氣物理吸附分析 35
3.4.2. X光繞射 42
3.4.3. 熱重分析儀 43
3.4.4. Ca.R.Ine crystallography 44
3.4.5. 穿透式電子顯微鏡 44
3.4.6. 掃描式電子顯微鏡 45
第四章 結果與討論 46
4.1. Mg(OH)2物理特性分析 46
4.1.1. XRD分析 46
4.1.2. 表面活性 49
4.1.3. BET分析 49
4.1.4. Mg(OH)2吸收二氧化碳 50
4.1.5. TGA分析 51
4.2. Li4SiO4物理特性分析 55
4.2.1. XRD分析 55
4.2.2. BET 分析 62
4.2.3. TEM分析 68
4.2.4. EDS分析 71
4.2.5. SEM分析 73
4.2.6. 矽酸鋰吸收二氧化碳探討 76
4.2.6.1 最佳吸收溫度 76
4.2.6.2製備方法及鍛燒溫度對吸收量的影響 77
第五章 結論 81
參考文獻 82



表目錄
表2-1 CO2 封存技術整理 6
表2-2 不同礦物封存二氧化碳的特性 6
表2-3 CO2 sorbent performance 12
表2-4 假設性化學反應系統 16
表2-5 合成反應的熱力學計算結果 19
表2-6 吸附反應的熱力學計算結果 22
表4-1 Serpentine-derived Mg(OH)2 (designated as SD)及 reagent-grade Mg(OH)2 (designed as RG)的物理表徵Serpentine-derived Mg(OH)2 (designated as SD) reagent-grade Mg(OH)2 (designed as RG)的物理表徵………………………….47
表4-2 在10% CO2/N2、325 °C、2 h的條件下Mg(OH)2 之二氧化碳吸收量…………………………………………………… 54
表4-3 由Debye-Scherrer’s equation計算出矽酸鋰之grain size…… 59
表4-4 矽酸鋰的BET數據整理…………………………67


圖目錄
圖2-1 The geological carbon cycle. 7
圖2-2 水滑石之3-D及2-D結構圖 10
圖2-3 以溶膠凝膠法製備Li4SiO4的反應機制 21
圖2-4 吸收劑循環使用的構想示意圖 22
圖2-5 Li4SiO4吸收二氧化碳的Double-shell mechanism 24
圖3-1 氫氧化鎂的製備流程 28
圖3-2 高溫高壓反應器(autoclave) 28
圖3-3 以固態法製備矽酸鋰的製備流程 29
圖3-4 以溶膠-凝膠法製備矽酸鋰的製備流程 30
圖3-5 以固定床反應器測試Mg(OH)2吸收CO2流程 31
圖3-6 固化反應器裝置圖 32
圖3-7 TGA裝置圖 32
圖3-8 以TGA測試Mg(OH)2吸收CO2流程 33
圖3-9 以固定化床反應器測試矽酸鋰吸收CO2流程 34
圖3-10 自動化物理吸附分析儀示意圖 39
圖3-11 吸附曲線的六種型態 40
圖3-12 遲滯曲線的四種型態 41
圖3-13 圓柱型孔洞示意圖 41
圖3-14 XRD繞射示意圖 42
圖3-15 EDS示意圖 45
圖4-1 XRD繞射圖 (a) serpentine-derived的Mg(OH)2 (b) reagent-grade Mg(OH)2 (c) standard Mg(OH)2 (JCPDS 83-0114)…………….47
圖4-2 單位晶格(unit cell)及結晶結構(crystal structure) (a) Mg(OH)2 (b)
MgCO3 (c) MgO………………………………………… 48
圖4-3 Mg(OH)2之BET的氮氣吸脫附實驗圖 52
圖4-4 Mg(OH)2之TGA分析(a)質量變化 (b)質量損失速率 52
圖4-5 Mg(OH)2在800℃下脫附二氧化碳 53
圖4-6 矽酸鋰單位晶格(unit cell)及結晶結構(crystal structure) 56
圖4-7 固態法(SS)在800℃下製備矽酸鋰之XRD圖(1)(a)10h (b)4h (c)2h (d)商用矽酸鋰(e)標準物(2) 900℃(f) 10h(g)4h(h)2h(d)商用矽酸鋰(e)標準物…………………………………………57
圖4-8 溶膠凝膠法製備矽酸鋰之XRD圖(1) 800℃(a)10h(b)4h(c)2h(d)商用矽酸鋰(e)標準物(2) 900℃下(f) 10h (g) 4h (h) 2h (d)商用矽酸鋰(e)標準物 58
圖4-9 固態法(SS)製備-- Grain size和鍛燒時間的關係.........................60
圖4-10 溶膠凝膠法製備-- Grain size和鍛燒時間的關係........................61
圖4-11 固態法在800℃鍛燒溫度的(a)氮氣吸脫附(b)孔徑分怖圖 63
圖4-12 固態法在900℃鍛燒溫度的(a)氮氣吸脫附(b)孔徑分怖圖 64
圖4-13 溶膠凝膠法在800℃鍛燒溫度的(a)氮氣吸脫附(b)孔徑分怖圖.. 66
圖4-14 溶膠凝膠法在900℃鍛燒溫度的(a)氮氣吸脫附(b)孔徑分怖圖.. 66
圖4-15 (a)固態法(b)溶膠凝膠在800及900℃的surface area....................66
圖4-16 商用矽酸鋰SEM圖…………………68
圖4-17 固態法製備的矽酸鋰SEM圖………69
圖4-18 溶膠凝膠法製備的矽酸鋰SEM圖…70
圖4-19 EDS測試結果(a)商用矽酸鋰 (b)固態法製備的矽酸鋰 c)溶膠凝膠法製備的矽酸鋰………………………72
圖4-20 SEM圖(1)商用矽酸鋰-(a)×2700 (b)×8000 (c)×15000 (d)×35000 (2)固態法製備之矽酸鋰-(e)×2700 (f)×5000 (g)×9500 (h)×30000(3) 溶膠凝膠法製備之矽酸鋰- (a)×1000 (b)×2700 (c)×20000(d)×33000 ……………75
圖4-21 非恆溫吸收二氧化碳……………………………78
圖4-22 固態法製備之矽酸鋰恆溫TGA圖(a)800℃(b)900℃...................70
圖4-23 溶膠凝膠法製備之矽酸鋰恆溫TGA圖(a)800℃(b)900℃............78圖4-24恆溫吸收二氧化碳重量變化對時間變化圖(a)800℃(b)900……80
[1]Maroto-Valer M.M, Fauth D.J, Kuchta M.E., Zhang Y., Andresen J.M. , “Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration,” Fuel precessing technology 86(2005) 1627-1645
[2]陳彥宇,“常見室內植物對甲醛及二氧化碳的之吸收及反應”,碩士論文,國立台灣大學,台灣(2007)
[3]Danae A. Voormeij, George J. Simandl., “Geological and mineral CO2 sequestration options: a technical review”Geological Fieldwork 2002, 265-275
[4]郭斌 “溫室氣體二氧化碳的回收與資源化”,污染防治技術,2007,20(1):56-59
[5]張秀君.“植物與溫室效應"生物學通報,2007,42(2):16-18
[6]Abdus Salem M D, Noguchi T. “Impact of Human Activities on Carbon Dioxide (CO2) Emissions : A Statistical Analysis”,The Environmentalist ,2005,25(1):19-30
[7]Krishnan P,Swain D K,Chandra Bhaskar et al. “Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies”,Agriculture, Ecosystems & Environment,2007,122(2):233-242
[8]Klaus S. Lackner, Christopher H. Wendt, Darryl P. Butt, Edward L. Joyce, JR., David H. Sharpe “Carbon dioxide disposal in carbonate minerals,” Energy vol.20.No.11,pp.1153-1170,1995
[9]Marco Mazzotti, “Mineral carbonation and industrial uses of carbon dioxide“IPCC Special Report on Carbon dioxide Capture and Storage,320-335
[10]Klaus S. Lackner, Christopher H. Wendt, Darryl P. Butt, “Pogress on binding CO2 in mineral substrates,” Energy convers. mgmt vol. 38 S259-S264,1997
[11]Hongqun Yang, Zhenghe Xu, Maohong Fan, Rajender Gupta, Rachid B Slimane, Alan E Bland, Ian Wright “Progress in carbon dioxide separation and capture:A review,” Journal of Enviornmental sciences vol 20(2008) 14-27
[12]Lackner, K.S.; Went, C.H.; Butt, D.P.; Joyce, Jr.E.L.; Sharp, D.H., “Carbon dioxide disposal in carbonate minerals”, Energy 11, 1153, 1995.
[13]Wu, J.C.S.; Sheen, J.D.; Chen, S.Y. & Fan, Y.C., “Feasibility of CO2 fixation via artificial rock weathering”, Ind. Eng. Chem. Res., 40(18), 3902, 2001.
[14]林俊佑,“矽酸鹽礦物石溶於水溶液中吸收二氧化碳之研究”,碩士論文,國立台灣大學,台灣(2007)
[15]台灣省礦物局 , “台灣主要礦物與岩石”, 1996。
[16]戚啟勳,“地球科學”,1978。
[17]Xiong Rentian. “Novel Inorganic Sorbent for High Temperature Carbon Dioxide Separation“ The USA, the University of Cincinnati,2003
[18]Ranjani V. Siriwardane, Shen Ming Shing et al.“Adsorption of CO2 on molecular sieves and activated carbon”Energy & Fuel:2001,15(1):279-284
[19]趙基鋼,劉紀昌,孫輝.“無機膜的製備及應用”化工科技,2005,13:(5)68-72
[20]Fuertes A.B, Nevskaia D.M, Centeno T A, “Carbon composite membrances from Matrimida and Kaptona polyimides for gas separation”Microporous and Mesoporous Materials, 1999(33):115-125
[21]Andrews R.,“Separation of CO2 from flue gases by carbon-multiwall carbon nanotube membrances”University Coal Research Contractors Review Meeting, Pittsburgh, PA, June 6-7, 2001
[22]Amine Khelifa, Leila Benchehida, Zoubir Derriche. “Adsorption of carbon dioxide by X zeolites exchanged with Ni2+ and Cr3+:isotherms and isosteric heat”Journal of Colloid and Interface Science, 2004, 278:9-17
[23]Na Byung Ki, Lee Hwanug, Koo Kee Kahb, et al.“Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon” Ind. Eng. Chem. Res. 2002, 41(1):5498-5503
[24]Vincent G. Gomes, Kevin W.K. Yee.“Pressure swing adsorption for carbon dioxide sequestration from exhaust gases”Separation and Purification Technology, 2002,28(1):161-171
[25]Cao Dapeng, Wu Jianzhong. “Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide”Carbon, 2005, 43(1):1364-1370
[26]Kyaw K, Shibata T., Watamabe F., et al .Energy Convers Mgmt, 1997, 38(10-13):1025-1033
[27]Quincoces, C.E., Dicundo, S.A., Alvarez, M , et al, Materials Letters, 2001,50:21-27
[28]Sarkar, S. C.; Bose, A. Energy Convers Mgnt, 1997,38:S105-S110
[29]Prasetyo, I.; Chemical Engineering Science, 1998, 53(19):3459-3467
[30]Yong Z, Mata V, Rodrigues A E.“Adsorption of carbon dioxide at high temperature-a review”Separation and Purification Technology,2002,26(1):195-205
[31]Vaccari Angelo.“Preparation and catalytic properties of cationic and anionic clay”Catalysis Today, 1998,41(1-3)53-71
[32]Xiu Guo hua, Li Ping, Rodrigues A E.“Sorption-enhanced reaction process with reactive regeneration”Chemical Engineering Science,2003,58(15):3425-3437
[33]Yong Z, Rodrigues A E.“Hydrotalcite-like compounds as adsorbents for carbon dioxide”Energy Conversion and Management,2002,43(14):1865-1876
[34]Nakagawa K, Ohashi T. J. Electrochem. Soc. 1998,145:1344-1346
[35]Essaki K, Nakagawa K, Kato M. J. Ceram. Soc. Jan. 2001,109:829-833
[36]Nakagawa K, Ohashi T. Proceedings-Electrochemical Society 1998,11:370-376
[37]Ohashi T, Nakagawa K. Mat. Res. Soc. Symp. Proc. 1999, 547 :249-254
[38]Nakagawa K. Ceram. Jap. 2002, 37 :876-879
[39]Kato M, Nakagawa K. Journal of the Ceramic Society of Japan, 2001, 21 :485-487
[40]Alan L. Chaffee, Gregory P. Knowles, Zhijian Liang , Jun Zhang, Penny Xiao, Paul A. Webley “CO2 capture by adsorption: Material and process development”International Journal of Greenhouse Gas control (2007) 11-18
[41]Zou Yong, Vera Mata, Alìrio E. Rodrigues“Adsorption of carbon dioxide at high temperature¬¬-a reiew”Separation Purification Technology 26 (2002) 195-205
[42]Blackburn, D.; Nagamori, M., “Slurry Filtration and Cake Washing after HCl-Leach of Magnesite and Serpentine--Continuous Washing Model”, Metallurgical and Materials TransactionsB 25B, 321, 1994.
[43]Maroto-Valer M.M.; Fauth, D.J.; Kuchta, M.E.; Zhang, Y.; Andrésen, J.M., “Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration”, Fuel Processing Technology 86, 1627, 2005.
[44]Pokrovesky, O.S.; Schott J., “Kinetics and mechanism of forsterite dissolution at 25°C and pH from 1 to 12”, Geochim. Cosmochim. Acta. 64(19), 3313, 2000.
[45]Goldberg, P.; Z-Y Chen, O’Connor, W.; Walters, R.; Ziock, H., “CO2 mineral sequestration studies in US,” presented at the First National Conference on Carbon Sequestration, Washington, 2001, DC, May 14-17
[46]Kojima, T.; Nagamine, A.; Ueno, N. & Uemiya, S., “Absorption and fixation of carbon dioxide by rock weathering”, Energy Conversion and Management 38, S461, 1997.
[47]Butt, D.P.; Lackner, K.S.; Wendt, C.H.; Conzone, S.D.; Kung, H.; Liu, Y. C.; Bremser, J.K., “Kinetics of thermal dehydroxylation and carbonation of magnesium hydroxide”, J. Am. Soc. 79, 1892, 1996.
[48]McKelvy, M.J.; Sharma, R.; Chizmeshya, A.V.G.; Carpenter, R.W. and Streib, K., “Magnesium Hydroxide Dehydroxylation: In Situ Nanoscale Observations of Lamellar Nucleation and Growth”, Chem. Mater., 13, 921, 2001.
[49]Hui S, Petric A.“Conductivity and stability of SrVO3 and mixed perovskite at low oxygen partial pressure” Solid State Lonics,2001,143(3-4):275-283
[50]Gorelove V P, Bronin D I, Sokolova J V, et al.“The effect of doping and processing conditions on properties of La1-xSrxGa1-yMgyO3-�唌汞ur. Ceram. Soc, 2001, 21(13):2311-2317
[51]Luyten J, Buekenhoudt A, Adriansens W, et al.“Preparation of LaSrCoFeO3-x membrances”Solid State Lonics, 2000,135(1-4):637-642
[52]Gautam C R., Dwivedi R K, Kumar D, et al.“Synthesis and electrical conduction behavior of strontium yttrium titanium cobalt oxide(Sr1-xYxTi1-yCoyO3)”Mater. Lett.,2001,50(4):254-258
[53]Bell R J, Millar G J, Drennan J.“Influence of synthesis route on the catalytic properties of La1-xSrxMnO3” Solid State Lonics,2000,131(3-4):211-220
[54]Jin W, Li S, Huang P, et al.“Preparation of an asymmetric perovskite-type membrance and its oxygen permeability”Membr. Sci.2001,185(2):237-243
[55]Akther Hossain, Cohen L F, Damay F, et al.“Influence of grain size on magnetoresistance properties of bulk La0.6Ca0.4MnO3-�唌決agn, 1999,192(2):263-270
[56]Jin Z, Zhang J, Tang W, et al.“New synthesis of polycrystalline La0.7(SrxCa1-x)0.3MnO3 by mechanical alloying”Solid State Commum.1998,108,(11):867-871
[57]陳寶丞,“以溶膠凝膠法製備用於一氧化氮還原反應之奈米及觸媒”,國立成功大學化學工程系碩士論文
[58]B. Jirhennsons, M.E. Staumanis, McMillan Co. New York 1962
[59]陳慧英,“溶膠凝膠法在薄膜製備上之應用”,化工技術, 1999, 80
[60] Livage J, Henry M., “Ultrastructure Processing of Advanced Ceramics”,Wiley, New York, 1988, 183
[61]Bradley D.C., Mehrotra R.C., Gaur D.P, Academic Press, London,1978
[62]Zarzycki J, Phalipon J., J. Mater. Sci.1982,17,3371
[63]Binker C.J., Scherer G.W., J.Non-Cryst. Solids 1985,70,301
[64]Guo-qiang LV, Wang Hua, Wen-hui MA, GAO Guo-dong, AN Min, Industrial heating, 35,2007,5:4-7
[65]Essaki K., Kato M.,“Influence of temperature and CO2 concentration on the CO2 absorption properties of lithium silicate pellets”Journal of materials science,2005
[66]Escobedo Bretado M., Guzman Velderrain V., Lardizabal Gutierrez D., Collins-Martinz V., Lopez Ortiz A.,“A new synthesis route to Li4SiO4 as CO2 catalytic/sorbent”Catalysis Today 107-108 (2005) 863-867
[67]Toshiyuki Ohashi et. al ,“Method for manufacturing a carbon dioxide gas absorbent”Patent No.: US 6,271,172 B2
[68]Kato Masahiro et. al ,“Carbon dioxide gas absorbent containing lithium silicate”Patent No.: US 6,3871,845 B1
[69]Heriberto Pfeiffer, Pedro Bosch, Silivia Bulbulian“Synthesis of lithium silicates”Journal of Nuclear Materials 257(1998) 309-317
[70]Chang C.C., Wang C.C.,. Kumta P.N, “Chemical synthesis and characterization of lithium orthosilicate (Li4SiO4)”Materials & Design 22(2001)617-623
[71]Xiong Rentian, Ida Junichi, Lin Y S. “Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate”Separation and Purification technology, 2003(58):4377-4385
[72]Ida Junichi, Lin Y S.“Synthesis and CO2 sorption properties of pure and modified lithium zirconate”Separation and Purification Technology, 2004(36):41-51
[73]Ida Junichi, Lin Y S.“Mechanism of High-Temperature CO2 Sorption on Lithium Zirconate” Environ. Sci. Technol,2003(37):1999-2004
[74]Butt, D. P.;Lackner, K.S.;Wendt, C.H.;Penner.,L.R.;Rush, H.“Ex situ aqueous minerals for CO2 sequestration.”Envior. Sci.Technol.2007,41,2587
[75]Klug, H. P.;Alexander, L.E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials;Wiley: New York, 1974
[76]McKelvy, M. J.; Sharma, R.; Chizmeshya, A. V. G.; Carpenter, R. W.; Streib, K. Magnesium hydroxide dehydoxylation: in situ nanoscale observations of lamellar nucleation and growth. Chem. Mater. 2001, 13, 921.
[77]Lackner, K. S.; Butt, D. P.; Wendt, C. H. “Progress on binding CO2 in mineral substrates.” Energy Convers. Mgmt. 1997, 38, 259.
[78]Khan, N.; Dollimore, D.; Alexander, K.; Wilburn, F. W. “The origin of the exothermic peak in the thermal decomposition of basic magnesium carbonate. ”Thermochimica Acta 2001, 367-368, 321.
[79]Zhang, Z.; Zheng, Y.; Ni, Y.; Liu, Z.; Chen, J.; Liang, X. “Temperature- and pH-dependent morphology and FT-IR analysis of magnesium carbonate hydrates. ”J. Phys. Chem. B 2006, 110, 12969.
[80]Zhi Xu and Jonathan F. Stebbins “Cation dynamics and diffusion in lithium orthosilicate: Two-Dimensional lithium-6 NMR”Science vol.270. 24 November 1995
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊