跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 04:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃保銘
研究生(外文):Bau-Ming Huang
論文名稱:自組裝量子點單分子膜在量子點敏化太陽能電池的製備及應用
論文名稱(外文):The Application of Self-Assembled Monolayer of Quantum-Dots in Dye-Sensitized Solar Cells
指導教授:李玉郎
指導教授(外文):Yuh-Lang Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:115
中文關鍵詞:自組裝單分子膜硒化鎘硫化鎘量子點硫化鋅染料敏化太陽能電池化學浴沉積法
外文關鍵詞:Quantum DotsSelf-assembly monolayerZinc sulfideCadmium seleniumCadmium sulfideDye-sensitized solar cellsChemical bath deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:149
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用硫化鎘與硒化鎘量子點(quantum dots)作為染料敏化太陽能電池(DSSCs)的光敏化劑,主要是利用一自組裝CdS量子點單分子膜(SAM)作為前驅層,來增進後續化學浴沉積法(CBD)組裝程序中CdS或CdSe的成長,使量子點可以完整覆蓋在TiO2光電極的表面。藉由CBD層數對電池效率的探討發現,若利用CBD方法直接將三層CdS與CdSe沉積至TiO2表面,所能達到的效率分別為0.63及0.95%。若在自組裝CdS前驅層後,再沉積CdS及CdSe,則效率可分別提升至1.07及1.98%。這些結果顯示,自組裝CdS前驅層的存在,有利於CBD程序中,形成覆蓋率較佳的量子點層,降低界面上電子電洞再結合的機率。比較TiO2/Q-CdS SAM/CdS與TiO2/Q-CdS SAM/CdSe兩電極,發現後者有較佳的光電轉化效率,主要是因為CdSe有較寬廣的光吸收範圍。若於TiO2/Q-CdS SAM/CdSe電極上,再沉積一層硫化鋅(ZnS)作為量子點的保護層,則電池效率可再提升至2.89%。
In this study, cadmium sulfide and cadmium selenide quantum dots (CdS and CdSe QDs) were used as sensitizers for QD-sensitized Solar cells (Q-DSSCs) applications. Colloidal CdS QDs were first self-assembled on the TiO2 surface using bifunctional linker molecules, followed by chemical bath deposition (CBD) to replenish the incorporated amount of QDs. The self-assembled layer of CdS QD (SAM CdS QDs) plays a role to induce the growth of CdS or CdSe in the following CBD process, anticipating to attain a well-covered QDs layer on TiO2 surface. The results show that, if 3 layers of QDs were directly deposited by CBD without the presence of SAM CdS QD, the efficiency measured for the QD-DSSC were 0.63% and 0.95%, respectively, for CdS and CdSe. At the presence of a SAM CdS QD layer, the efficiencies of CdS and CdSe devices increase to 1.07% and 1.98%, respectively. These results showed that the SAM CdS QD layer can help formation a well-covered layer which has superior ability in inhibiting the recombination of charges at the interface. Comparison between TiO2/Q-CdS SAM/CdS and TiO2/Q-CdS SAM/CdSe, the latter had a higher efficiency due to its broader light-absorption range. If zinc sulfide (ZnS) is further deposited on a TiO2/Q-CdS SAM/CdSe electrode as a passivation layer of QDs, the cell efficiency can be increased to 2.89%.
中文摘要..................................................................................................... I
Abstract....................................................................................................... II
誌謝............................................................................................................. III
目錄............................................................................................................. IV
表目錄......................................................................................................... VIII
圖目錄......................................................................................................... IX



第一章 緒論............................................................................................... 1
1-1前言............................................................................................. 1
1-2研究動機與目的......................................................................... 2
第二章 實驗原理與文獻回顧................................................................... 4
2-1太陽能電池的簡介..................................................................... 4
2-1.1結晶矽太陽能電池........................................................ 4
2-1.2非晶矽太陽能電池........................................................ 5
2-1.3銅銦鎵二硒太陽能電池................................................ 5
2-1.4染料敏化太陽能電池.................................................... 6
2-2 DSSC的發展現況...................................................................... 7
2-3 DSSC之工作原理與組成的結構.............................................. 10
2-3.1透明導電玻璃................................................................ 12
2-3.2氧化物半導體................................................................ 12
2-3.3染料-光敏化劑.............................................................. 13
2-3.4電解液............................................................................ 14
2-3.5金屬/導電玻璃對電極.. ............................................... 16
2-4量子點之特性…......................................................................... 17
2-4.1量子侷限效應............................................................... 17
2-4.2衝擊離子化效應與歐傑再結合效應........................... 21
2-5量子點合成及組裝技術............................................................. 24
2-5.1微乳化法合成量子點.................................................... 24
2-5.2自組裝單分子膜............................................................ 28
2-5.3化學浴沉積法............................................................... 29
2-5.4同時結合自組裝單分子膜與化學浴沉積技術之組裝法……....................................................................................

30
2-6量子點應用在DSSC之沿革及發展現況................................ 32
2-7多硫成份電解液......................................................................... 37
2-8 DSSC之電流電壓輸出特性...................................................... 39
第三章 實驗儀器與方法........................................................................... 45
3-1儀器設備..................................................................................... 45
3-2實驗藥品..................................................................................... 52
3-3實驗流程..................................................................................... 55
3-3.1 CdS量子點的合成........................................................ 57
3-3.2 TiO2薄膜的製備…………........................................... 59
3-3.3 SAM組裝CdS量子點.................................................. 61
3-3.4 CBD方法沉積CdS、CdSe以及ZnS….....................
61
3-3.5組裝電池....................................................................... 63
第四章 實驗數據與結果討論................................................................... 65
4-1 CdS量子點的合成與特性分析................................................. 65
4-2 TiO2薄膜特性分析..................................................................... 67
4-3 CdS量子點之光學特性分析…................................................. 69
4-3.1以CBD方法沉積CdS之光學分析............................ 69
4-3.2結合SAM與CBD組裝技術沉積CdS於光電極…. 71
4-4 CdSe量子點之光學特性分析................................................... 74

4-4.1以CBD方法沉積CdSe之光學分析............................. 74
4-4.2結合SAM與CBD組裝技術沉積CdSe於光電極....... 76
4-5量子點敏化太陽能電池之效能分析......................................... 77
4-5.1有機染料DSSC之效能測定........................................ 77
4-5.2 CdS量子點太陽能電池之效能分析............................ 78
4-5.3 CdSe量子點太陽能電池之效能分析…...…………... 85
4-5.4 CdS與CdSe量子點太陽能電池之效能比較….......... 91
4-5.5保護層ZnS在CdSe量子點DSSC的應用..……….. 95
第五章 結論............................................................................................... 100
第六章 未來工作及建議........................................................................... 101
參考文獻..................................................................................................... 103
作者自述..................................................................................................... 115
1.M. Gr�鱸zel, “Powering the Planet” Nature 403, 363 (2000)
2.B. O’Regan, M. Gr�鱸zel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films” Nature 353, 737 (1991)
3.M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Gr�鱸zel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers” J. Am. Chem. Soc 127, 16835 (2005)
4.T. Miyasaka, M. Ikegami and Y. Kijitori, “Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania” Journal of The Electrochemical Society 154, A455 (2007)
5.W. Shockley, H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells” J. Appl. Phys. 32, 510 (1961)
6.H. Tsubomura, M. Matsumura, Y, Nomura, T. Amamiya, “Dye-Sensitized Zinc Oxide/Aqueous Electrolyte/Platinum Photocell” Nature 261, 402 (1976)
7.A. Hagfeldt, M. Gr�鱸zel, “Molecular Photovoltaics” Acc. Chem. Res. 33, 269 (2000)
8.Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gr�鱸zel, “Investigation of Sensitizer Adsorption and the Influence of Photons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell” J. Phys. Chem. B 107, 8981 (2003)
9.M. Gr�鱸zel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells” Inorg. Chem. 44, 6841 (2005)
10.G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells” Nano Lett. 6, 215 (2006)
11.S. G. Chen, S. Chappel, Y. Diamant, A. Zaban, “Preparation of Nb2O5 Coated TiO2 Nanoporous Electrodes and their Application in Dye-Sensitized Solar Cells” Chem. Mater. 13, 4629 (2001)
12.H. Alarc�曝, G. Boschloo, P. Mendoza, J. L. Solis, A. Hagfeldt, “Dye-Sensitized Solar Cells Based on Nanocrystalline TiO2 Films Surface Treated with Al3+ Ions: Photovoltage and Electron Transport Studies” J. Phys. Chem. B 109, 18483 (2005)
13.R. He, X. Qian, J. Yin, H. Xi, L. Bian, Z. Zhu, “Formation of Monodispersed PVP-Capped ZnS and CdS Nanocrystals under Microwave Irradiation” Colloids and Surface A: Physicochem. Eng. Aspects 220, 151 (2003)
14.A. J. Nozik, “Quantum Dot Solar Cells” Physica E 14, 115 (2002)
15.G. Wolfbauer, A. Bond, J. C. Eklund, D. R. MacFarlane, “A Channel Flow Cell System Specially Designed to Test the Efficiency of Redox Shuttles in Dye Sensitized Solar Cell” Solar Energy Mater. & Solar Cells 70, 85 (2001)
16.N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J. Frank, “Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells” J. Phys. Chem. B 107, 11307 (2003)
17.D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Gr�鱸zel, “Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells: Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells” Nano Lett. 6, 669 (2006)
18.S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, “ Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy” J. Am. Chem. Soc. 127, 3456 (2005)


19.M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. M�刜ler, P. Liska, N. Vlachopoulos and M. Gr�鱸zel, “Conversion of Light to Electricity by cis-XzBis( 2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium( 11) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes” J. Am. Chem. Soc. 115, 6382 (1993)
20.P. Wang, S. M. Zakeeruddin, I. Exnar and M. Gr�鱸zel, “High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte” Chem. Commun, 2972 (2002)
21.W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, “Quasi-Solid-State Dye-Sensitized Solar Cells Using Room Temperature Molten Salts and a Low Molecular Weight Gelator” Chem. Commun, 374 (2002)
22.N. Mohmeyer, D. Kuang, P. Wang, H. W. Schmidt, S. M. Zakeeruddin and M. Gr�鱸zel, “ An Efficient Organogelator for Ionic Liquids to Prepare Stable Quasi-Solid-State Dye-Sensitized Solar Cells” J. Mater. Chem. 16, 2978 (2006)
23.張啟修, “硫化鎘量子點在染料敏化太陽能電池應用的研究” 國立成功大學化學工程學系碩士論文 民國96年
24.W. W. Yu, X. Peng, “Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers” Angew. Chem. Int. Ed. 41, 2368 (2002)
25.Y. Wang, N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties” J. Phys. Chem. 95, 525 (1991)
26.R. Rossetti, J. L. Ellison, J. M. Gibson, L. E. Brus, “Size Effects in the Excited Electronic States of Small Colloidal CdS Crystallites” J. Chem. Phys. 80, 4464 (1983)


27.W. W. Yu, L. Qu, W. Guo, X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals” Chem. Mater. 15, 2854 (2003)
28.X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics” Science 307, 538 (2005)
29.A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion” Inorganic Chemistry 44, 6893 (2005)
30.I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisatos, “Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution” Science 310, 462 (2005)
31.S. K. Haram, A. J. Bard, “Scanning Electrochemical Microscopy. 42. Studies of the Kinetics and Photoelectrochemistry of Thin Film CdS/Electrolyte Interface” J. Phys. Chem. B 105, 8192 (2001)
32.M. L. Breen, J. T. Woodward, IV, D. K. Schwartz, “Direct Evidence for an Ion-by-Ion Deposition Mechanism in Solution Growth of CdS Thin Films” Chem. Mater. 10, 710 (1998)
33.P. O’Brien, J. McAleese, “Developing an Understanding of the Processes Controlling the Chemical Bath Deposition of ZnS and CdS” J. Mater. Chem. 8, 2309 (1998)
34.J. L. Blackburn, D. C. Selmarten, A. J. Nozik, “Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by In-Situ Chemical Bath Deposition” J. Phys. Chem. B 107, 14154 (2003)
35.C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, J. R. Heath, “Reversible Tuning of Silver Quantum Dot Monolayers through the Metal-Insulator Transition” Science 277, 1978 (1997)



36.Z. Y. Pan, X. J. Liu, S. Y. Zhang, G. J. Shen, L. G. Zhang, Z. H. Lu, J. Z. Liu, “Controlled Growth of the Ordered Cadmium Sulfide Particulate Films and the Photoacoustics Investigation” J. Phys. Chem. B 101, 9703 (1997)
37.A. Samokhvalov, R. W. Gurney, M. Lahav, R. Naaman, “Electronic Properties of Hybrid Organic/Inorganic Langmuir-Blodgett Films Containing CdS Quantum Particles” J. Phys. Chem. B 106, 9070 (2002)
38.A. Samokhvalov, R. W. Gurney, M. Lahav, S. Cohen, H. Cohen, R. Naaman, “Charge Transfer between a Gold Substrate and CdS Nanoparticles Assembled in Hybrid Organic-Inorganic Films” J. Phys. Chem. B 107, 4245 (2003)
39.P. Jiang, Z. F. Liu, S. M. Cai, “Growing Monodispersed PbS Nanoparticles on Self-Assembled Monolayers of 11-Mercaptoundecanoic Acid on Au(111) Substrate” Langmuir 18, 4495 (2002)
40.L. Sheeney-Haj-Ichia, S. Pogorelova, Y. Gofer, I. Willner, “Enhanced Photoelectrochemistry in CdS/Au Nanoparticle Bilayers” Adv. Funct. Mater. 14, 416 (2004)
41.L. Sheeney-Haj-Ichia, J. Wasserman, I. Willner, “CdS-Nanoparticle Architectures on Electrodes for Enhanced Photocurrent Generation” Adv. Mater. 14, 1323 (2002)
42.L. Sheeney-Haj-Ichia, B. Basnar, I. Willner, “Efficient Generation of Photocurrents by Using CdS/Carbon Nanotube Assemblies on Electrodes” Angew. Chem. Int. Ed. 44, 78 (2005)
43.M. Lahav, V. H. Shabtai, J. Wasserman, E. Katz, I. Willner, H. D�卣r, Y. Z. Hu, S. H. Bossmann, “Photoelectrochemistry with Integrated Photosensitizer-Electron Acceptor and Au-Nanoparticle Arrays” J. Am. Chem. Soc. 122, 11480 (2000)


44.S. C. Lin, Y. L. Lee, C. H. Chang, Y. L. Shen and Y. M. Yang, “Quantum Dot-Sensitized Solar Cells: Assembly of CdS Quantum Dots Coupling Techniques of Self-Assembly Monolayer and Chemical Bath Deposition” Appl. Phys. Lett. 90, 143517 (2007)
45.A. L. Rogach, A. Kornowski, M. Gao, A. Eychm�刜ler and H. Weller, “Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals” J. Phys. Chem. B 103, 3065 (1999)
46.M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution” Adv. Mater. 15, 1844 (2003)
47.X. D. Ma, X. F. Qian, J. Yin, H. A. Xi and Z. K. Zhu, “Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature” Journal of Colloid and Interface Science 252, 77 (2002)
48.J. M. Nedeljković, O. I. Mićić, S. P. Ahrenkiel, A. Miedaner and A. J. Nozik, “Growth of InP Nanostructures via Reaction of Indium Droplets with Phosphide Ions: Synthesis of InP Quantum Rods and InP-TiO2 Composites” J. Am. Chem. Soc. 126, 2632 (2004)
49.L. Manna, D. J. Milliron, A. Meisel, E. C. Scher and A. P. Alivisatos, “Controlled Growth of Tetrapod-Branched Inorganic Nanocrystals”, Nature Materials 2, 382 (2003)
50.K. W. Jun, P. K. Khannaa, K. B. Honga, J. O. Baeg and Y. D. Suha, “Synthesis of InP Nanocrystals from Indium Chloride and Sodium Phosphide by Solution Route” Materials Chemistry and Physics 96 494 (2006)
51.M. R. Greenberg, W. Chen, B. N. Pulford, G. A. Smolyakov, Y. B. Jiang, S. D. Bunge, T. J. Boyle and Marek Osiński, “Synthesis and Characterization of InP and InN Colloidal Quantum Dots” Proc. of SPIE 5705, 68 (2005)
52.Q. Lu, F. Gao, D. Zhao, “The Assembly of Semiconductor Sulfide Nanocrystallites with Organic Reagents as Templates” Nanotechnology 13, 741 (2002)
53.A. Agostiano, M. Catalano, M. L. Curri, M. D. Monica, L. Manna, L. Vasanelli, “Synthesis and Structural Characterization of CdS Nanoparticles Prepared in a Four-Components Water-in-Oil Microemulsion” Micron 31, 253 (2000)
54.J. Zhang, L. Sun, C. Liao, C. Yan, “Size Control and Photoluminescence Enhancement of CdS Nanoparticles Prepared via Reverse Micelle Method” Solid State Comm. 124, 45 (2002)
55.A. R. Loukanov, C. D. Dushkin, K. I. Papazova, A. V. Kirov, M. V. Abrashev, E. Adachi, “Photoluminescence Depending on the ZnS Shell Thickness of CdS/ZnS Core-Shell Semiconductor Nanoparticles” Colloids and Surface A: Physicochem. Eng. Aspects 245, 9 (2004)
56.E. Caponetti, L. Pedone, D. C. Martino, V. Panto, V. T. Liveri, “Synthesis, Size Control, and Passivation of CdS Nanoparticles in Water/AOT/n-Heptane Microemulsions” Mater. Sci. and Eng. C 23, 531 (2003)
57.M. L. Curri, A. Agostiano, F. Mavelli, M. D. Monica, “Reverse Micellar System: Self Organized Assembly as Effective Route for the Synthesis of Colloidal Semiconductor Nanocrystals” Mater. Sci. and Eng. C 22, 423 (2002)
58.H. Sato, N. Asaji, I. Komasawa, “A Population Balance Approach for Particle Coagulation in Reverse Micelles” Ind. Eng. Chem. Res. 39, 328 (2000)
59.J. Wu, G. Li, Z. Zhang, G. Zhou, K. Ji, “A Study of the Microstructure of CTAB/1-Butanol/Octane/Water System by PGSE-NMR, Conductivity and Cryo-TEM” Colloids and Surface A: Physicochem. Eng. Aspects 191, 269 (2001)

60.W. Xu, D. L. Akins, “Reverse Micellar Synthesis of CdS Nanoparticles and Self-Assembly into a Superlattice” Mater. Lett. 58, 2623 (2004)
61.P. Calandra, A. Longo, V. T. Liveri, “Synthesis of Ultra-Small ZnS Nanaparticles by Solid-Solid Reaction in the Confined Space of AOT Reversed Micelles” J. Phys. Chem. B 107, 25 (2003)
62.M. L. Curri, A. Agostiano, L. Manna, M. D. Monica, M. Catalano, L. Chiavarone, V. Spagnolo, M. Lugar��, “Synthesis and Characterization of CdS Nanoclusters in a Quaternary Microemulsion: the Role of the Cosurfactant” J. Phys. Chem. B 104, 8391 (2000)
63.M. Giustini, G. Palazzo, G. Colafemmina, M. D. Monica, M. Giomini, A. Ceglie, “Microstructure and Dynamics of the Water-in-Oil CTAB/n-Pentanol/n-Hexane/Water Microemulsion: A Spectroscopic and Conductivity Study” J. Phys. Chem. B 100, 3190 (1996)
64.J. Lin, W. Zhou, C. J. O’Connor, “Formation of Ordered Arrays of Gold Nanoparticles from CTAB Reverse Micells” Mater. Lett. 49, 282 (2001)
65.B. A. Harruff, C. E. Bunker, “Spectral Properties of AOT-Protected CdS Nanaparticles: Quantum Yield Enhancement by Photolysis” Langmuir 19, 893 (2003)
66.R. B. Khomane, A. Manna, A. B. Mandale, B. D. Kulkarni, “Synthesis and Characterization of Dodecanethiol-Capped Cadmium Sulfide Nanoparticles in a Winsor II Microemulsion of DiethylEther/AOT/Water” Langmuir 18, 8237 (2003)
67.H. Haick, M. Ambrico, T. Ligonzo, D. Cahen, “Discontinuous Molecular Films Can Control Metal/Semiconductor Junctions” Adv. Mater. 16, 2145 (2004)
68.A. Vilan, A. Shanzer, D. Cahen, “Molecular Control over Au/GaAs Diodes” Nature 404, 166 (2000)
69.L. M. Peter, D. J. Riley, E. J. Tull and K. G. U. Wijayantha, “Photosensitization of Nanocrystalline TiO2 by Self-Assembled Layers of CdS Quantum Dots” Chem. Commun., 1030 (2002)
70.K.G. U. Wijayanthaa, L. M. Petera and L.C. Otley, “Fabrication of CdS Quantum Dot Sensitized Solar Cells via a Pressing Route,” Solar Energy Materials & Solar Cells 83, 363 (2004)
71.I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films” J. Am. Chem. Soc. 128, 2385 (2006)
72.Q. Shen and T. Toyoda, “Characterization of Nanostructured TiO2 Electrodes Sensitized with CdSe Quantum Dots Using Photoacoustic and Photoelectrochemical Current Methods” Japanese Journal of Applied Physics 43, 2946 (2004)
73.A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots” Langmuir 14, 3153 (1998)
74.J. L. Blackburn, D. C. Selmarten, R. J. Ellingson, M. Jones, O. Mićić and A. J. Nozik, “Electron and Hole Transfer from Indium Phosphide Quantum Dots” J. Phys. Chem. B 109, 2625 (2005)
75.P. Hoyer and R. K�圢enkamp, “Photoconduction in Porous TiO2 Sensitized by PbS Quantum Dots” Appl. Phys. Lett. 66, 349 (1995)
76.R. Plass, S. Pelet, J. Krueger and M. Gr�鱸zel, “Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells” J. Phys. Chem. B 106, 7578 (2002)
77.R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion” Phys. Rev. Lett. 92, 186601 (2004)
78.T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa and S. Fukuzumi, “Photovoltaic Cells Using Composite Nanoclusters of Porphyrins and Fullerenes with Gold Nanoparticles” J. Am. Chem. Soc. 127, 1216 (2005)

79.K. George and P. V. Kamat, “Chromophore-Functionalized Nanoparticles” Acc. Chem. Res. 36, 888 (2003)
80.Y. Tian and T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles” J. Am. Chem. Soc. 127, 7632 (2005)
81.R. Vogel, P. Hoyer, and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors” J. Phys. Chem. 98, 3183 (1994)
82.S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargrnt, “Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics” Nature Materials 4, 138 (2005)
83.C. H. Chang and Y. L. Lee, “Chemical Bath Deposition of CdS Quantum Dots onto Mesoscopic TiO2 Films for Application in Quantum-Dot-Sensitized Solar Cells” Appl. Phys. Lett. 91, 053503 (2007)
84.S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori and C. A. Bignozzi, “Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells” J. Am. Chem. Soc. 124, 11215 (2002)
85.S. Cazzanti, S. Caramori, R. Argazzi, C. M. Elliott and C. A. Bignozzi, “Efficient Non-Corrosive Electron-Transfer Mediator Mixtures for Dye-Sensitized Solar Cells” J. Am. Chem. Soc. 128, 9996 (2006)
86.T. Nakanishi, B. Ohtani and K. Uosakin, “Effect of Immobilized Electron Relay on the Interfacial Photoinduced Electron Transfer at a Layered Inorganic–Organic Composite Film on Gold” Journal of Electroanalytical Chemistry 455, 229 (1998)



87.S. M. Yang, C.H. Huang, J. Zhai, Z. S. Wang and L. Jiang, “High Photostability and Quantum Yield of Nanoporous TiO2 Thin Film Electrodes Co-Sensitized with Capped Sulfides” J. Mater. Chem. 12, 1459 (2002)
88.B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin and M. Gr�鱸zel, “Electrodeposited Nanocomposite n-p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics” Adv. Mater. 12, 1263 (2000)
89.B. O’Regan, F. Lenzmann, R. Muis and J. Wienke, “A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics” Chem. Mater. 14, 5023 (2002)
90.B. C. O’Regan and F. Lenzmann, “Charge Transport and Recombination in a Nanoscale Interpenetrating Network of n-Type and p-Type Semiconductors: Transient Photocurrent and Photovoltage Studies of TiO2/Dye/CuSCN Photovoltaic Cells” J. Phys. Chem. B 108, 4342 (2004)
91.C. L. Cl�聱ent, R. T. Zaera, M. A. Ryan, A. Katty and G. Hodes, “CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterojunction” Adv. Mater. 17, 1512 (2005)
92.N. C. Greenham, X. Peng and A. P. Alivisatos, “Charge Separation and Transport in Conjugated-Polymer/Semiconductor-Nanocrystal Composites Studied by Photoluminescence Quenching and Photoconductivity” Phys. Rev. B 54, 628 (1996)
93.W. U. Huynh, X. Peng, and A. P. Alivisatos, “CdSe Nanocrystal Rods/Poly(3-hexylthiophene) Composite Photovoltaic Devices” Adv. Mater. 11, 923 (1999)
94.T. Kitamura, M. Maitani, M. Matsuda, Y. Wada and S. Yanagida, “Improved Solid-State Dye Solar Cells with Polypyrrole Using a Carbon-Based Counter Electrode” Chemistry Letters, 1054 (2001)

95.D. J. Milliron, I. Gur and A. P. Alivisatos, “Hybrid Organic–Nanocrystal Solar Cells” Mrs Bulletin 30, 41 (2005)
96.M. Gr�鱸zel, “Photoelectrochemical Cells” Nature 414, 338 (2001)
97.C. H. J. Liu, J. Olsen, D. R. Saunders and J. H. Wang, “Photoactivation of CdSe Films for Photoelectrochemical Cells” J. Electrochem. Soc.: Electrochemical Science and Technology 128, 1224 (1981)
98.Y. Ueno, H. Minoura, T. Nishikawa and M. Tsuiki, “Electrophoretically Deposited CdS and CdSe Anodes for Photoelectrochemical Cells” J. Electrochem. Soc.: Electrochemical Science and Technology 130, 43 (1983)
99.J. F. Reder and M. Rusek, “Photochemical Hydrogen Production with Platinized Suspensions of Cadmium Sulfide and Cadmium Zinc Sulfide Modified by Silver Sulfide” J. Phys. Chem. 90, 824 (1986)
100.S. Licht, “A Desription of Energy Conversion in Photoelectrochemical Solar Cells” Nature 330, 148 (1987)
101.G. Milczareka, A. Kasuyab, S. Mamykinb, T. Araib, K. Shinodab and K. Tohji, “Optimization of a Two-Compartment Photoelectrochemical Cell for Solar Hydrogen Production” International Journal of Hydrogen Energy 28, 919 (2003)
102.Y. Bessekhouada, M. Mohammedib and M. Trari, “Hydrogen Photoproduction from Hydrogen Sulfide on Bi2S3 Catalyst” Solar Energy Materials & Solar Cells 73, 339 (2002)
103.林昇志, “量子點的組裝及其在染料敏化太陽能電池的應用” 國立成功大學化學工程學系碩士論文 民國95年
104.R. S. Mane, S. J. Roh, O.S. Joo, C. D. Lokhande, S. H. Han, “Improved Performance of Dense TiO2/CdSe Coupled Thin Films by Low Temperature Process” Electrochimica Acta 50, 2453 (2005)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊