跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 20:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉詠芳
研究生(外文):Yung-Fang Liu
論文名稱:In-situ掃描式電子穿隧顯微鏡在羥基及羧基硫醇單分子膜自組裝行為的研究
論文名稱(外文):Assembly Behavior and Monolayer Characteristics of OH- and COOH-terminated Alkanethiols: in-situ Scanning Tunneling Microscopy and Electrochemical Studies
指導教授:李玉郎
指導教授(外文):Yuh-Lang Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:162
中文關鍵詞:掃描式電子穿隧顯微鏡自組裝單分子膜
外文關鍵詞:self-assembled monolayerSTM
相關次數:
  • 被引用被引用:2
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
本實驗利用in-situ STM觀測羥基與羧基硫醇分子,包括HS(CH2)nOH (n = 3、6、11)、HS(CH2)nCOOH (n = 5、10)以及芳香羥基硫醇分子4-mercaptophenol(4-MPH),於金電極表面的自組裝吸附行為,並利用循環伏安法檢測單分子膜的性質。除了探討純成分系統中碳鏈長度及不同官能基的效應外,對於此二效應在混合硫醇單分子膜系統中的競爭吸附現象也作了初步的研究。實驗結果發現,碳鏈較短的硫醇分子(HSC3OH、HSC6OH、HSC5COOH)皆形成(3 × 2√3)的結構,而碳鏈較長的HSC11OH及HSC10COOH則是形成緊密的(√3 × √3)。此外,長碳鏈羧基分子(HSC10COOH)在吸附的初期容易受到電位的影響而改變吸附形態。由CV結果顯示,單分子膜的電子穿透性會隨碳鏈的增長而下降,脫附電位會隨著碳數的增加而往負偏移。4-MPH的自組裝行為與碳鏈羥基硫醇分子有顯著的差異,且單分子膜具有兩種不同結構:(2 × 2)、(2 × 4√3)。由CV的穩定性測試及電子穿透性發現,4-MPH單分子膜具有良好的電子穿透性,單分子膜脫附的特徵峰較寬。
觀察HSC11OH與HSC6OH兩者的競爭吸附發現,當電極電位小於0.3 V (vs. RHE)時,HSC11OH較具吸附優,但電位大於0.3 V (vs. RHE)時,則是HSC6OH較易於吸附。對於碳數相同、官能基不同的兩種硫醇分子(HSC11OH/HSC10COOH、C6OH/C5COOH)而言,羥基硫醇比羧基硫醇更具有吸附的優勢。
The adsorption behavior of OH- and COOH-terminated thiols , such as, 11-mercapto-1-undecanol (HSC11OH), 6-mercapto-1-hexanol (HSC6OH), 3-mercapto-1-propanol (HSC3OH), 4-mercaptophenol (4-MPH), 11-mercaptoundecanoic acid (HSC10COOH), 6-mercaptohexanoic acid (HSC5COOH), on Au(111) in 0.1 M HClO4 were studied by cyclic voltammetry (CV) and in-situ scanning tunneling microscopy (STM). The effects of chain length and the functional group of these thiols on the adsorption kinetic of the SAMs are investigated, as well as the competition between thiols with different chain length and with different functional group. The results show that the desorption potential negatively shift with the increase of chain length. Shorter chain-length thiols, HSC3OH, HSC6OH, and HSC5COOH, form an ordered structure identified as (3 × 2√3). Otherwise, SAMs compose of thiols with longer chain length, such as HSC11OH and HSC10COOH, have the condensed monolayer, (√3 × √3). The molecular conformation of HSC10COOH is influenced by electrode potential at the initial stage of its adsorption process.
The formation of 4-MPH monolayer under electrochemically controlled condition was monitored for the first time with STM. The adsorption behavior of 4-MPH is totally different from alkyl thiols. There are two different structures of the dense 4-MPH adlayer which are defined as (2 × 2) and (2 × 4√3). From the results of CV, the monolayer which is composed of aromatic thiol (4-MPH) has better electron penetration ability and broader desorption peak than alkyl thiols.
The results of the mixed OH-terminated alkyl thiols system (HSC11OH/HSC6OH) shows that HSC11OH has the superiority to adsorption on Au(111) at potential lower than 0.3 V (relative to RHE). At a higher potential (0.32 V), HSC6OH is more ascendant. From the results of the mixed HSC11OH/HSC10COOH systems, HSC10COOH can be replaced by HSC11OH. Indicating that OH-terminated thiol is the more preferred-adsorption species.
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VIII
圖目錄 IX
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
第2章 文獻回顧 5
2.1 自組裝單分子膜(Self - Assembled Monolayers, SAMs)的介紹 5
2.1.1 自組裝單分子膜系統的發展及起源 5
2.1.2 自組裝單分子膜系統的分類 5
2.1.3 自組裝現象及分子的特性 7
2.1.4 硫醇分子於金(111)電極之相關研究 8
2.1.5 自組裝分子薄膜的應用 15
2.2 金屬基材對SAMs排列之影響 16
2.3 多成分的自組裝單分子膜(Multicomponent Self-Assembled Monolayers) 16
第3章 實驗部分 20
3.1 藥品 20
3.2 氣體及耗材 21
3.3 儀器設備 21
3.3.1 掃描式電子穿隧顯微鏡(Scanning Tunneling Microscopy, STM) 21
3.3.2 循環伏安儀(Cyclic Voltammogram,CV) 29
3.4 實驗步驟 33
3.4.1 STM部分 33
3.4.2 循環伏安儀掃描的前處理 35
3.4.3 自組裝單分子膜的製備 36
第4章 結果與討論 37
4.1 金(111)電極的重排現象 37
4.1.1 金(111)電極在0.1 M過氯酸中之循環伏安圖 37
4.1.2 STM觀察金(111)電極的重排現象 39
4.2 羥基硫醇 (Hydroxylic Thiols) 單分子膜吸附特性之觀察 43
4.2.1 利用循環伏安儀(CV)檢測單分子膜的電化學特性 43
4.2.1.1單分子膜活性的測試 43
4.2.1.2循環伏安圖 50
4.2.1.3單分子膜在鹼性溶液之脫附曲線 55
4.2.1.4 硫醇分子碳鏈長度對於單分子膜電化學性質的影響 60
4.2.1.5苯環對有機硫醇單分子膜電化學性質的影響 64
4.2.2 In-situ STM觀測硫醇分子在金(111)電極上的自組裝行為 67
4.2.2.1 11-mercapto-1-undecanol (HSC11OH)修飾金(111)電極 67
4.2.2.2 6-mercapto-1-hexanol (HSC6OH) 修飾金(111)電極 78
4.2.2.3 3-mercapto-1-propanol (HSC3OH) 修飾金(111)電極 87
4.2.2.44-mercaptophenol (4-MPH) 修飾金(111)電極 94
4.2.2.5 不同碳鏈長度硫醇分子與芳香基硫醇單分子膜自組裝行為的差異 103
4.3 碳鏈長度不同之羥基硫醇分子的競爭吸附行為 106
4.3.1 In-situ STM觀測HSC11OH與HSC6OH混合單分子膜之競爭吸附行為 106
4.4 羧基硫醇 (Carboxylic Thiols) 單分子膜吸附特性之觀察 119
4.4.1 STM觀測6-mercaptohexanoic acid (HSC5COOH)於金(111) 之吸附 119
4.4.2 STM觀測11-mercaptoundecanoic acid (HSC10COOH)於金(111)之吸附 126
4.5 硫醇分子尾端官能基不同之探討 137
4.5.1 羥基與羧基對於硫醇分子脫附電位的影響 137
4.5.2 STM觀察羥基與羧基硫醇分子的競爭吸附行為 140
4.5.2.1HSC10COOH與HSC11OH的競爭吸附行為 140
4.5.2.2HSC5COOH與HSC6OH的競爭吸附行為 144
第5章 結論 150
5.1.1 碳鏈長短不同對於硫醇單分子膜之影響 150
5.1.2 芳香基硫醇與碳鏈硫醇單分子膜之差異 151
5.1.3 羥基與羧基硫醇分子在金(111)的行為 151
參考文獻 153
1.W. C. Bigelow, D. L. Pickett, and W. A. Zisman, "Oleophobic monolayers : I. Films adsorbed from solution in non-polar liquids," Journal of Colloid Science 1, 513 (1946).
2.R. G. Nuzzo and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," Journal of the American Chemical Society 105, 4481 (1983).
3.A. Ulman, "Formation and Structure of Self-Assembled Monolayers," Chem. Rev. 96, 1533 (1996).
4.H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, "Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers," Journal of the American Chemical Society 115, 9389 (1993).
5.G. E. Poirier, W. P. Fitts, and J. M. White, "Two-Dimensional Phase Diagram of Decanethiol on Au(111)," Langmuir 17, 1176 (2001).
6.W. P. Fitts, J. M. White, and G. E. Poirier, "Low-Coverage Decanethiolate Structure on Au(111): Substrate Effects," Langmuir 18, 1561 (2002).
7.W. P. Fitts, J. M. White, and G. E. Poirier, "Thermodynamics of Decanethiol Adsorption on Au(111): Extension to 0 ºC," Langmuir 18, 2096 (2002).
8.J. Zhang, Q. J. Chi, and J. Ulstrup, "Assembly Dynamics and Detailed Structure of 1-Propanethiol Monolayers on Au(111) Surfaces Observed Real Time by in situ STM," Langmuir 22, 6203 (2006).
9.T. Baunach, V. Ivanova, D. A. Scherson, and D. M. Kolb, "Self-Assembled Monolayers of 4-Mercaptopyridine on Au(111): A Potential-Induced Phase Transition in Sulfuric Acid Solutions," Langmuir 20, 2797 (2004).
10.K. Seo and E. Borguet, "Potential-Induced Structural Change in a Self-Assembled Monolayer of 4-Methylbenzenethiol on Au(111)," The Journal of Physcial Chemistry C 111, 6335 (2007).
11.M. J. Esplandiu, H. Hagenstrom, and D. M. Kolb, "Functionalized Self-Assembled Alkanethiol Monolayers on Au(111) Electrodes: 1. Surface Structure and Electrochemistry," Langmuir 17, 828 (2001).
12.J. Zhang, A. Bilic, J. R. Reimers, N. S. Hush, and J. Ulstrup, "Coexistence of Multiple Conformations in Cysteamine Monolayers on Au(111)," The Journal of Physcial Chemistry B 109, 15355 (2005).
13.I. Taniguchi, K. Toyosawa, H. Yamaguchi, and K. Yasukouchi, "Reversible Electrochemical Reduction and Oxidation of Cytochrome c at a Bis(4-pyridyl) Disulphide-modified Gold Electrode," Journal of the Chemical Socciety, Chemical Communications 1032 (1982).
14.I. Taniguchi, K. Toyosawa, H. Yamaguchi, and K. Yasukouchi, "Voltammetric response of horse heart cytochrome c at a gold electrode in the presence of sulfur bridged bipyridines," Journal of Electroanalytical Chemistry 140, 187 (1982).
15.R. M. Crooks and A. J. Ricco, "New Organic Materials Suitable for Use in Chemical Sensor Arrays," Accounts of Chemical Research 31, 219 (1998).
16.H. O. Finklea and D. D. Hanshew, "Electron-transfer kinetics in organized thiol monolayers with attached pentaammine(pyridine)ruthenium redox centers," Journal of the American Chemical Society 114, 3173 (1992).
17.R. J. Forster and L. R. Faulkner, "Electrochemistry of Spontaneously Adsorbed Monolayers. Equilibrium Properties and Fundamental Electron Transfer Characteristics," Journal of the American Chemical Society 116, 5444 (1994).
18.C. E. D. Chidsey, C. R. Bertozzi, T. M. Putvinski, and A. M. Mujsce, "Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: electroactive self-assembled monolayers," Journal of the American Chemical Society 112, 4301 (1990).
19.M. A. Schneeweiss and D. M. Kolb, "The initial stages of copper deposition on bare and chemically modified gold electrodes," Physica Status Solidi a-Applied Research 173, 51 (1999).
20.G. E. Poirier, "Mechanism of Formation of Au Vacancy Islands in Alkanethiol Monolayers on Au(111)," Langmuir 13, 2019 (1997).
21.H. O. Finklea, S. Avery, M. Lynch, and T. Furtsch, "Blocking oriented monolayers of alkyl mercaptans on gold electrodes," Langmuir 3, 409 (1987).
22.T. Smith, "The hydrophilic nature of a clean gold surface," Journal of Colloid and Interface Science 75, 51 (1980).
23.P. E. Laibinis and G. M. Whitesides, "陉-Terminated alkanethiolate monolayers on surfaces of copper, silver, and gold have similar wettabilities," Journal of the American Chemical Society 114, 1990 (1992).
24.P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold," Journal of the American Chemical Society 113, 7152 (1991).
25.A. J. Guiomar, J. T. Guthrie, and S. D. Evans, "Use of Mixed Self-Assembled Monolayers in a Study of the Effect of the Microenvironment on Immobilized Glucose Oxidase," Langmuir 15, 1198 (1999).
26.C. Cotton, A. Glidle, G. Beamson, and J. M. Cooper, "Dynamics of the Formation of Mixed Alkanethiol Monolayers: Applications in Structuring Biointerfacial Arrangements," Langmuir 14, 5139 (1998).
27.C. Roberts, C. S. Chen, M. Mrksich, V. Martichonok, D. E. Ingber, and G. M. Whitesides, "Using Mixed Self-Assembled Monolayers Presenting RGD and (EG)3OH Groups To Characterize Long-Term Attachment of Bovine Capillary Endothelial Cells to Surfaces," Journal of the American Chemical Society 120, 6548 (1998).
28.R. G. Nuzzo and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," Journal of the American Chemical Society 105, 4481 (1983).
29.H. Schonherr, H. Ringsdorf, M. Jaschke, H. J. Butt, E. Bamberg, H. Allinson, and S. D. Evans, "Self-Assembled Monolayers of Symmetrical and Mixed Alkyl Fluoroalkyl Disulfides on Gold. 2. Investigation of Thermal Stability and Phase Separation," Langmuir 12, 3898 (1996).
30.C. D. Bain, J. Evall, and G. M. Whitesides, "Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent," Journal of the American Chemical Society 111, 7155 (1989).
31.C. D. Bain and G. M. Whitesides, "Formation of monolayers by the coadsorption of thiols on gold: variation in the length of the alkyl chain," Journal of the American Chemical Society 111, 7164 (1989).
32.L. Sun and J. A. Gardella, "Oxidation-Assisted Secondary Ion Mass Spectrometry Methodology to Quantify Mixed Alkylthiol Self-Assembled Monolayers on Gold: Applications to Competitive Chemical Adsorption," Langmuir 18, 9289 (2002).
33.M. L. Carot, V. A. Macagno, P. Paredes-Olivera, and E. M. Patrito, "Structure of Mixed Carboxylic Acid Terminated Self-Assembled Monolayers: Experimental and Theoretical Investigation," The Journal of Physcial Chemistry C 111, 4294 (2007).
34.D. Hobara, S. Imabayashi, and T. Kakiuchi, "Preferential Adsorption of Horse Heart Cytochrome c on Nanometer-Scale Domains of a Phase-Separated Binary Self-Assembled Monolayer of 3-Mercaptopropionic Acid and 1-Hexadecanethiol on Au(111)," Nano Letter 2, 1021 (2002).
35.L. Yan, C. Marzolin, A. Terfort, and G. M. Whitesides, "Formation and Reaction of Interchain Carboxylic Anhydride Groups on Self-Assembled Monolayers on Gold," Langmuir 13, 6704 (1997).
36.S. i Imabayashi, N. Gon, T. Sasaki, D. Hobara, and T. Kakiuchi, "Effect of Nanometer-Scale Phase Separation on Wetting of Binary Self-Assembled Thiol Monolayers on Au(111)," Langmuir 14, 2348 (1998).
37.C. Zhou and A. V. Walker, "Dependence of Patterned Binary Alkanethiolate Self-Assembled Monolayers on "UV-Photopatterning" Conditions and Evolution with Time, Terminal Group, and Methylene Chain Length," Langmuir 22, 11420 (2006).
38.H. Ma, L. Y. O. Yang, N. Pan, S. L. Yau, J. Jiang, and K. Itaya, "Ordered Molecular Assemblies of Substituted Bis(phthalocyaninato) Rare Earth Complexes on Au(111): In Situ Scanning Tunneling Microscopy and Electrochemical Studies," Langmuir 22, 2105 (2006).
39.C. Vericat, G. Andreasen, M. E. Vela, H. Martin, and R. C. Salvarezza, "Following transformation in self-assembled alkanethiol monolayers on Au(111) by in situ scanning tunneling microscopy," The Journal of Chemical Physics 115, 6672 (2001).
40.S. Yoshimoto, M. Yoshida, S. Kobayashi, S. Nozute, T. Miyawaki, Y. Hashimoto, and I. Taniguchi, "Electrochemical study on competitive adsorption of pyridinethiol with sulfide onto Au(111) surfaces," Journal of Electroanalytical Chemistry 473, 85 (1999).
41.S. B. Darling, A. W. Rosenbaum, Y. Wang, and S. J. Sibener, "Coexistence of the (23 × √3) Au(111) Reconstruction and a Striped Phase Self-Assembled Monolayer," Langmuir 18, 7462 (2002).
42.C. H. Shue, L. Y. OuYang, S. L. Yau, and K. Itaya, "In-Situ Scanning Tunneling Microscopy of Carbon Monoxide Adsorbed on Au(111) Electrode," Langmuir 21, 1942 (2005).
43.J. Noh and M. Hara, "Final Phase of Alkanethiol Self-Assembled Monolayers on Au(111)," Langmuir 18, 1953 (2002).
44.B. M. Ocko, Jia Wang, Alison Davenport, and Hugh Isaacs, "In situ x-ray reflectivity and diffraction studies of the Au(001) reconstruction in an electrochemical cell," Physical Review Letters 65, 1466 (1990).
45.A. M. El-Aziz, L. A. Kibler, and D. M. Kolb, "The potentials of zero charge of Pd(111) and thin Pd overlayers on Au(111)," Electrochemistry Communications 4, 535 (2002).
46.Y. C. Yang, Y. P. Yen, L. Y. OuYang, S. L. Yau, and K. Itaya, "Elucidation of the Deposition Processes and Spatial Structures of Alkanethiol and Arylthiol Molecules Adsorbed on Pt(111) Electrodes with in Situ Scanning Tunneling Microscopy," Langmuir 20, 10030 (2004).
47.C. Miller, P. Cuendet, and M. Graetzel, "Adsorbed 陉-hydroxy thiol monolayers on gold electrodes: evidence for electron tunneling to redox species in solution," The Journal of Physcial Chemistry 95, 877 (1991).
48.G. Poirier, "Characterization of Organosulfur Molecular Monolayers on Au(111) using Scanning Tunneling Microscopy," Chemical Review 97, 1117 (1997).
49.Y. C. Yang, T. Y. Chang, and Y. L. Lee, "Adsorption Behavior of 11-Mercapto-1-undecanol on Au(111) Electrode in an Electrochemical System," The Journal of Physcial Chemistry C 111, 4014 (2007).
50.D. M. Kolb, "Reconstruction phenomena at metal-electrolyte interfaces," Progress in Surface Science 51, 109 (1996).
51.J. V. Barth, H. Brune, G. Ertl, and R. J. Behm, "Scanning tunneling microscopy observations on the reconstructed Au(111) surface: Atomic structure, long-range superstructure, rotational domains, and surface defects," Physical Review B 42, 9307 (1990).
52.H. Gronbeck, A. Curioni, and W. Andreoni, "Thiols and Disulfides on the Au(111) Surface: The Headgroup-Gold Interaction," Journal of the American Chemical Society 122, 3839 (2000).
53.H. Tomohiro, M. Yoshitada, and N. Hisakazu, "Adsorption state of dimethyl disulfide on Au(111): Evidence for adsorption as thiolate at the bridge site," The Journal of Chemical Physics 114, 7615 (2001).
54.G. E. Poirier, "Coverage-Dependent Phases and Phase Stability of Decanethiol on Au(111)," Langmuir 15, 1167 (1999).
55.S. S. Li, L. P. Xu, L. J. Wan, S. T. Wang, and L. Jiang, "Time-Dependent Organization and Wettability of Decanethiol Self-Assembled Monolayer on Au(111) Investigated with STM," The Journal of Physcial Chemistry B 110, 1794 (2006).
56.M. Peter, C. S. Dan, and J. T. Yates, Jr., "Gold-Adatom-Mediated Bonding in Self-Assembled Short-Chain Alkanethiolate Species on the Au(111) Surface," Physical Review Letters 97, 146103 (2006).
57.R. Mazzarello, A. Cossaro, A. Verdini, R. Rousseau, L. Casalis, M. F. Danisman, L. Floreano, S. Scandolo, A. Morgante, and G. Scoles, "Structure of a CH[sub 3]S Monolayer on Au(111) Solved by the Interplay between Molecular Dynamics Calculations and Diffraction Measurements," Physical Review Letters 98, 016102 (2007).
58.N. Camillone, C. E. D. Chidsey, P. Eisenberger, P. Fenter, J. Li, K. S. Liang, G. Y. Liu, and G. Scoles, "Structural defects in self-assembled organic monolayers via combined atomic beam and x-ray diffraction," The Journal of Chemical Physics 99, 744 (1993).
59.J. R. I. Lee, T. Y. J. Han, T. M. Willey, D. Wang, R. W. Meulenberg, J. Nilsson, P. M. Dove, L. J. Terminello, T. vanBuuren, and J. J. DeYoreo, "Structural Development of Mercaptophenol Self-Assembled Monolayers and the Overlying Mineral Phase during Templated CaCO3 Crystallization from a Transient Amorphous Film," Journal of the American Chemical Society 129, 10370 (2007).
60.Y. Miao, N. Bovet, J. S. Christopher, S. Bengio, R. J. Lovelock Kevin, P. K. Milligan, G. Jones Robert, D. P. Woodruff, and V. Dhanak, "True Nature of an Archetypal Self-Assembly System: Mobile Au-Thiolate Species on Au(111)," Physical Review Letters 97, 166102 (2006).
61.C. W. J. Bol, C. M. Friend, and X. Xu, "Role of Intermolecular Interactions in Determining Structure and Reactivity on Surfaces: Benzenethiol on Rh(111)," Langmuir 12, 6083 (1996).
62.C. M. Whelan, C. J. Barnes, C. G. H. Walker, and N. M. D. Brown, "Benzenethiol adsorption on Au(111) studied by synchrotron ARUPS, HREELS and XPS," Surface Science 425, 195 (1999).
63.Q. Jin, J. A. Rodriguez, C. Z. Li, Y. Darici, and N. J. Tao, "Self-assembly of aromatic thiols on Au(111)," Surface Science 425, 101 (1999).
64.M. Petri, D. M. Kolb, U. Memmert, and H. Meyer, "Adsorption of mercaptopropionic acid onto Au(111): Part I. Adlayer formation, structure and electrochemistry," Electrochimica Acta 49, 175 (2003).
65.J. Lahann, S. Mitragotri, T. N. Tran, H. Kaido, J. Sundaram, I. S. Choi, S. Hoffer, G. A. Somorjai, and R. Langer, "A Reversibly Switching Surface," Science 299, 371 (2003).
66.T. Kakiuchi, M. Iida, S.-i. Imabayashi, and K. Niki, "Double-Layer-Capacitance Titration of Self-Assembled Monolayers of 陉-Functionalized Alkanethiols on Au(111) Surface," Langmuir 16, 5397 (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊