跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅佳凌
研究生(外文):Chia-Ling Lo
論文名稱:多壁奈米碳管/P3HT混合單分子膜在氣液界面的行為及其Langmuir-Blodgett膜特性的研究
論文名稱(外文):Behavior of Multi-Walled Carbon Nanotube/P3HT Mixed Monolayer at the Air/Water Interface and the Characteristic of their LB Films
指導教授:李玉郎
指導教授(外文):Yuh-Lang Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:120
中文關鍵詞:單分子層聚己基噻吩多壁奈米碳管
外文關鍵詞:monolayerLangmuir-Blodgett techniquemulti-walled carbon nanotubespoly(3-hexylthiophene)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用聚己基噻吩(P3HT)與多壁奈米碳管(MWNT)間的物理性作用力來改質多壁奈米碳管,使奈米碳管得以穩定的存在氣/液界面,並藉以探討MWNT/P3HT混合單分子層於氣液界面上的行為,及製備MWNT/P3HT混合LB薄膜。針對MWNT/P3HT混合單分子層於氣液界面上的行為,我們利用表面壓-分子佔據面積(��-A)等溫曲線、鬆弛行為、遲滯實驗,以及TEM影像圖來探討MWNT濃度效應的影響。由TEM圖像可證明P3HT可以幫助MWNT存在於氣/液界面上。單分子膜的鬆弛曲線及遲滯實驗顯示MWNT/P3HT混合單分子層於氣/液界面有良好的穩定性,但不佳的再分散性。此MWNT/P3HT混合單分子層可藉由水平沉積方式轉移至固體基板,製備多層的MWNT/P3HT混合薄膜。SEM影像及UV/vis光譜分析結果證實水平沉積可以得到均勻的MWNT/P3HT混合薄膜。利用恆電位儀對MWNT/P3HT混合薄膜進行電性分析,由電流-電壓曲線得知混合薄膜與金電極形成歐姆接觸,且實驗所產生之電流幾乎全是MWNT的貢獻。
We functionalize the sidewall structure of multi-walled carbon nanotubes (MWNTs) with poly(3-hexylthiophene) (P3HT) by a noncovalent method. P3HT plays an important role in dispersing MWNTs, and assists them to exist at the air/water interface. We study the behavior of MWNT/P3HT mixed monolayer on the air/water interface after getting the homogeneously dispersed solution. The effect of MWNT concentration was studied using the pressure-area (��-A) isotherm, relaxation curve, hysteresis behavior and transmission electron microscopy (TEM) observations. The MWNT/P3HT mixed monolayer was transferred onto a solid substrate using the Langmuir-Blodgett (LB) technique with horizontal or vertical deposition. The multilayer film was fabricated by repeated deposition of the ultrathin film. Scanning electron microscopy (SEM) images revealed the morphology of the MWNT/P3HT ultrathin films. UV/vis spectroscopy illustrates that the uniform deposition of MWNT/P3HT mixed monolayer to multilayer film was carried out by horizontal deposition. The current-voltage characteristic of the MWNT/P3HT ultrathin film shows that current increases linearly with the increasing voltage, which indicates that MWNT/P3HT film forms an ohmic contact with gold. And, the electric current is mainly contributed by MWNTs.
中文摘要 I
英文摘要 II
誌謝 III
總目錄 IV
表目錄 VI
圖目錄 VII
符號表 XIII

第一章 緒論 1
第二章 文獻回顧 5
2.1 奈米碳管 5
2.2 導電性高分子 17
2.3 奈米碳管與導電性高分子複合物 21
2.4 奈米碳管於氣/液界面上的相關研究 24
第三章 實驗 30
3.1 實驗藥品與儀器 30
3.2 儀器簡介 31
3.3 實驗步驟 43
第四章 結果與討論 52
4.1 奈米碳管/導電性高分子混合溶液的分散 52
4.2 奈米碳管/導電性高分子混合單分子層之等溫線 53
4.3 奈米碳管/導電性高分子混合單分子層之鬆弛曲線 63
4.4 奈米碳管/導電性高分子混合薄膜之表面型態 64
4.5 奈米碳管/導電性高分子混合單分子層之遲滯曲線 83
4.6 奈米碳管/導電性高分子混合薄膜之紫外/可見光光譜 101
4.7 奈米碳管/導電性高分子混合薄膜之電性分析 106
第五章 結論與建議 111
5.1 結論 111
5.2 建議 112
參考文獻 114
自述 120












表目錄
表3. 1 實驗藥品 30
表3. 2 實驗儀器與耗材 30
表3. 3 四種多壁奈米碳管/聚己基噻吩混合溶液 44
表4. 1 垂直沉積1∼5層MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合薄膜的轉移率數值紀錄(實驗設定單數層向上沉積,偶數層向下沉積) 106
表4. 2 使用LB水平沉積技術得到1∼5層MWNT(1.5 mg/ml)/P3HT (0.2 mg/ml)混合膜之薄膜電阻數值。 110




















圖目錄
圖2. 1 自然界中碳的同素異構物 7
圖2. 2 多壁奈米碳管的三種層結構:(A)同心圓;(B)同心多邊形;(C)蛋捲造型結構。 7
圖2. 3 單壁奈米碳管參數的幾何意義 8
圖2. 4 三種類型的單壁奈米碳管的幾何結構 9
圖2. 5 於離子液體存在下將單壁奈米碳管官能化之實驗流程簡圖 11
圖2. 6 官能基化單壁奈米碳管之AFM分析影像圖 11
圖2. 7 (A)未經修飾的單壁奈米碳管;(B)官能基化之單壁奈米碳管的拉曼光譜。 12
圖2. 8 修飾單壁奈米碳管之實驗流程示意圖 13
圖2. 9 (A)未經修飾的單壁奈米碳管;(B)官能基化單壁奈米碳管之拉曼光譜。 13
圖2. 10 官能基化多壁奈米碳管之SEM分析影像 14
圖2. 11 不同比例之多壁奈米碳管/高分子之紫外-可見光光譜 14
圖2. 12 1-pyrenebutanoic acid, Succinimidyl ester;結構式1 15
圖2. 13 物理性改質單壁奈米碳管並固定化蛋白質之實驗簡圖 16
圖2. 14 (A)無;(B)存在單壁奈米碳管溶液之1H NMR光譜 16
圖2. 15 常見的導電性高分子 18
圖2. 16 Head-to-tail結構式示意圖 21
圖2. 17 Head-to-head;tail-to-tail結構式示意圖 21
圖2. 18 利用LB技術得到的單壁奈米碳管薄膜之AFM圖像 24
圖2. 19 PmPV結構示意圖 25
圖2. 20 改質後的SWNT單分子層於氣液界面上的遲滯曲線 26
圖2. 21 具有位向性排列SWNT薄膜的AFM分析圖像 26
圖2. 22 不同LB沉積技術所產生的不同機制,與SWNT薄膜位向性之間的關係示意圖。 27
圖2. 23 直接從溶液中製備drop-and-dry SWNT薄膜 27
圖2. 24 1∼5層多壁奈米碳管的紫外-可見光吸收光譜(A)吸收度-沉積層數圖;(B)在250 NM的吸收度-層數圖。 28
圖2. 25 單層多壁奈米碳管薄膜的電流-電壓特性圖 29
圖3. 1 LB沉積裝置示意圖 32
圖3. 2 Langmuir單分子層的形成(A)將單分子層分佈於氣液界面上;(B)移動阻隔棒,單分子層被壓縮而整齊地排列於氣液界面上。 32
圖3. 3 威氏平板法 33
圖3. 4表面壓-每分子佔據面積等溫線示意圖 34
圖3. 5 利用(A)親水基板(B)疏水基板之LB膜沉積方法示意圖 35
圖3. 6 蒸發源材料與鍍膜材料濕潤狀態 37
圖3. 7 真空蒸鍍系統簡圖 39
圖3. 8 LSV 之電位-時間關係圖,直線斜率為掃描速率�� 41
圖3. 9 LSV 之電流-電位關係圖 41
圖3. 10 實驗流程架構圖 43
圖3. 11 Langmuir-Blodgett (A)垂直;(B)水平沉積實驗示意圖 48
圖3. 12 梳狀電極幾何形狀示意圖 50
圖3. 13 多層MWNT/P3HT混合薄膜電性分析方法示意圖 51
圖4. 1 沒有經過處理的MWNT於不同濃度下(0.2、0.5、1.0及1.5 mg/ml)的表面壓-面積等溫曲線。 54
圖4. 2 經過初步純化的MWNT,於不同濃度下(0.2、0.5、1.0及1.5 mg/ml)的表面壓-面積等溫線。 55
圖4. 3 於壓縮面積最小利用LB垂直沉積技術得到不同濃度(a) 0.2 (b) 0.5及(c) 1.0 mg/ml的單層MWNT薄膜。 56
圖4. 4 純P3HT (0.2 mg/ml)與不同比例MWNT (0.2、0.5、1.0及1.5 mg/ml)/P3HT (0.2 mg/ml)單分子層的表面壓-高分子重複單位佔據面積等溫線。 59
圖4. 5 不同倍率下純P3HT (0.2 mg/ml)單層薄膜之TEM圖 62
圖4. 6純P3HT (0.2 mg/ml)與不同比例的MWNT (0.5、1.0及1.5 mg/ml)/P3HT (0.2 mg/ml)混合單分子層之鬆弛曲線。 64
圖4. 7 不同倍率MWNT(0.2 mg/ml)/P3HT(0.2 mg/ml)混合膜TEM圖 67
圖4. 8不同倍率MWNT(0.5 mg/ml)/P3HT(0.2 mg/ml)混合膜TEM圖 69
圖4. 9不同倍率MWNT(1.0 mg/ml)/P3HT(0.2 mg/ml)混合膜TEM圖 71
圖4. 10不同倍率MWNT(1.5 mg/ml)/P3HT(0.2 mg/ml)混合膜TEM圖 74
圖4. 11 不同倍率下水平沉積所得單層MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合薄膜之SEM圖。 77
圖4. 12 不同倍率下水平沉積所得3層MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合薄膜之SEM圖。 78
圖4. 13 不同倍率下水平沉積所得5層MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合薄膜之SEM圖。 79
圖4. 14 不同倍率下垂直沉積所得單層MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合薄膜之SEM圖。 80
圖4. 15 不同倍率下垂直沉積所得3層MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合薄膜之SEM圖。 81
圖4. 16 不同倍率下垂直沉積所得5層MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合薄膜之SEM圖。 82
圖4. 17純P3HT (0.2 mg/ml)單分子層於氣液界面上的遲滯曲線 86
圖4. 18純P3HT (0.2 mg/ml)單分子層於氣液界面上的遲滯曲線 87
圖4. 19 MWNT (0.5 mg/ml)/P3HT (0.2 mg/ml)混合單分子層於氣液界面上的遲滯曲線。 88
圖4. 20 MWNT(0.5 mg/ml)/P3HT(0.2 mg/ml)混合單分子層遲滯曲線 89
圖4. 21 MWNT (1.0 mg/ml)/P3HT (0.2 mg/ml)混合單分子層於氣液界面上的遲滯曲線。 90
圖4. 22 MWNT (1.0 mg/ml)/P3HT (0.2 mg/ml)混合單分子層遲滯曲線 91
圖4. 23 MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合單分子層於氣液界面上的遲滯曲線。 92
圖4. 24 MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合單分子層遲滯曲線 93
圖4. 25 遲滯曲線實驗過程中的觀察示意圖 94
圖4. 26 (a)(c)直接於 20 mN/m取膜;(b)(d)經過遲滯實驗後於相同表面壓取膜之MWNT (0.5 mg/ml)/P3HT (0.2 mg/ml)混合薄膜TEM圖。 96
圖4. 27 (a)(c)直接於 20 mN/m取膜;(b)(d)經過遲滯實驗後於相同表面壓取膜之MWNT (1.0 mg/ml)/P3HT (0.2 mg/ml)混合薄膜TEM圖。 98
圖4. 28 (a)(c)直接於 20 mN/m取膜;(b)(d)經過遲滯實驗後於相同表面壓取膜之MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合薄膜TEM圖。 100
圖4. 29 水平沉積得到1∼5層MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合薄膜的紫外/可見光光譜(baseline為經過矽烷改質之石英基板)。 102
圖4. 30 【圖4.29】中波長250 nm的吸收度-層數關係作圖 103
圖4. 31 水平沉積得到1∼5層MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合薄膜的照片。 103
圖4. 32垂直沉積得到1∼5層MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合薄膜的紫外/可見光光譜(baseline為經過矽烷改質之石英基板)。 104
圖4. 33 【圖4.32】中波長250 nm的吸收度-層數關係作圖 105
圖4. 34垂直沉積得到1∼5層MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合薄膜的照片。 105
圖4. 35水平沉積得到1∼5層MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合薄膜之電流-電壓分析特徵圖。 108
圖4. 36 水平沉積得到1、5層純P3HT (0.2 mg/ml)薄膜與單層MWNT (1.5 mg/ml)/P3HT (0.2 mg/ml)混合薄膜之電流-電壓分析特徵圖的比較。 109
圖4. 37計算薄膜電阻所需梳狀電極參數(W/L)的示意圖 110
1S. Iijima, "Helical microtubules of graphitic carbon," Nature 354, 56 (1991).

2A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, "Crystalline Ropes of Metallic Carbon Nanotubes," Science 273, 483 (1996).

3K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, "Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes," Science 306, 1362 (2004).

4J. M. Moon, K. H. An, Y. H. Lee, Y. S. Park, D. J. Bae, and G. S. Park, "High-Yield Purification Process of Singlewalled Carbon Nanotubes," Journal of Physical Chemistry B 105, 5677 (2001).

5S. J. Tans, A. R. M. Verschueren, and C. Dekker, "Room-temperature transistor based on a single carbon nanotube," Nature 393, 49 (1998).

6T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber, "Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing," Science 289, 94 (2000).

7P. G. Collins, M. S. Arnold, and P. Avouris, "Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown," Science 292, 706 (2001).

8A. G. Ryabenko, T. V. Dorofeeva, and G. I. Zvereva, "UV-VIS-NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and Van-der-Waals SWNT/SWNT interaction. Verification of the SWNT content measurements by absorption spectroscopy," Carbon 42, 1523 (2004).

9M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, "Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization," Science 301, 1519 (2003).

10M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, "Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes," Science 297, 593 (2002).

11W. Zhao, C. Song, and P. E. Pehrsson, "Water-Soluble and Optically pH-Sensitive Single-Walled Carbon Nanotubes from Surface Modification," Journal of the American Chemical Society 124, 12418 (2002).

12E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Lozano, J. Liu, R. E. Smalley, R. H. Hauge, and J. L. Margrave, "Solvation of Fluorinated Single-Wall Carbon Nanotubes in Alcohol Solvents," Journal of Physical Chemistry B 103, 4318 (1999).

13Y. Maeda, S. Kimura, Y. Hirashima, M. Kanda, Y. Lian, T. Wakahara, T. Akasaka, T. Hasegawa, H. Tokumoto, T. Shimizu, H. Kataura, Y. Miyauchi, S. Maruyama, K. Kobayashi, and S. Nagase, "Dispersion of Single-Walled Carbon Nanotube Bundles in Nonaqueous Solution," Journal of Physical Chemistry B 108, 18395 (2004).

14C. Richard, F. Balavoine, P. Schultz, T. W. Ebbesen, and C. Mioskowski, "Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes," Science 300, 775 (2003).

15O. Matarredona, H. Rhoads, Z. Li, J. H. Harwell, L. Balzano, and D. E. Resasco, "Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS," Journal of Physical Chemistry B 107, 13357 (2003).

16V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, J. Schmidt, and Y. Talmon, "Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants," Nano Letters 3, 1379 (2003).

17M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, and R. E. Smalley, "Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping," Chemical Physics Letters 342, 265 (2001).

18M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, and N. G. Tassi, "DNA-assisted dispersion and separation of carbon nanotubes," Nature Materials 2, 338 (2003).

19C. A. Mitchell, J. L. Bahr, S. Arepalli, J. M. Tour, and R. Krishnamoorti, "Dispersion of Functionalized Carbon Nanotubes in Polystyrene," Macromolecules 35, 8825 (2002).

20J. Zhu, J. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku, and E. V. Barrera, "Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization," Nano Letters 3, 1107 (2003).

21J. E. Fischer, K. I. Winey, F. Du, "Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability," Journal of Polymer Science Part B: Polymer Physics 41, 3333 (2003).

22K. K. Kim, D. J. Bae, C. M. Yang, K. H. An, J. Y. Lee, and Y. H. Lee, "Nanodispersion of Single-Walled Carbon Nanotubes Using Dichloroethane " Journal of Nanoscience and Nanotechnology 5, 1055 (2005).

23C. A. Furtado, U. J. Kim, H. R. Gutierrez, L. Pan, E. C. Dickey, and P. C. Eklund, "Debundling and Dissolution of Single-Walled Carbon Nanotubes in Amide Solvents," Journal of the American Chemical Society 126, 6095 (2004).

24D. H. Napper, "Polymeric Stabilization of Colloidal Dispersion," Academic Press, London (1983).

25M. B. Lewis and J. Smith Stephen, "Electron Affinity of Atomic Sulfur and Empirical Affinities of the Light Elements," The Journal of Chemical Physics 25, 598 (1956).

26K. K. Kim, S. M. Yoon, J. Y. Choi, J. Lee, B. K. Kim, J. M. Kim, J. H. Lee, U. Paik, M. H. Park, C. W. Yang, K. H. An, Y. Chung, and Y. H. Lee, "Design of Dispersants for the Dispersion of Carbon Nanotubes in an Organic Solvent," Advanced Functional Materials 17, 1775 (2007).

27W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, "Solid C60: a new form of carbon," Nature 347, 354 (1990).

28S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature 363, 603 (1993).

29R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, "Carbon Nanotubes--the Route Toward Applications," Science 297, 787 (2002).

30D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, "Chemistry of Carbon Nanotubes," Chemical Reviews 106, 1105 (2006).

31S Amelinckx, A Lucas, and P Lambin, "Electron diffraction and microscopy of nanotubes," Reports on Progress in Physics 62, 1471 (1999).

32C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, and M. S. Dresselhaus, "Size Effects in Carbon Nanotubes," Physical Review Letters 81, 1869 (1998).

33成會明,"奈米碳管 Carbon Nanotubes",五南圖書出版股份有限公司,台北市,(2004)。
34B. K. Price, J. L. Hudson, and J. M. Tour, "Green Chemical Functionalization of Single-Walled Carbon Nanotubes in Ionic Liquids," Journal of the American Chemical Society 127, 14867 (2005).

35B. K. Price and J. M. Tour, "Functionalization of Single-Walled Carbon Nanotubes "On Water"," Journal of the American Chemical Society 128, 12899 (2006).

36B. K. Kuila, S. Malik, S. K. Batabyal, and A. K. Nandi, "In-Situ Synthesis of Soluble Poly(3-hexylthiophene)/Multiwalled Carbon Nanotube Composite: Morphology, Structure, and Conductivity," Macromolecules 40, 278 (2007).

37R. J. Chen, Y. Zhang, D. Wang, and H. Dai, "Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization," Journal of the American Chemical Society 123, 3838 (2001).

38N. Nakashima, Y. Tomonari, and H. Murakami, "Water-Soluble Single-Walled Carbon Nanotubes via Noncovalent Sidewall- Functionalization with a Pyrene-Carrying Ammonium Ion," Chemistry Letters 31, 638 (2002).

39A. O. Patil, A. J. Heeger, and Fred Wudl, "Optical properties of conducting polymers," chemical Reviews 88, 185 (1988).

40K. C. Persaud, "Polymers for chemical sensing," Materials Today 8, 38 (2005).

41H. S. Nalva, "Handbook of Conductive Molecules and Polymers," John Wiley & Sons Ltd: Chichester 1-4 (1997).

42K. Potje-Kamloth, B. J. Polk, M. Josowicz, and J. Janata, "Doping of Polyaniline in the Solid State with Photogenerated Triflic Acid," Chemistry of Materials 14, 2782 (2002).

43B. J. Polk, K. Potje-Kamloth, M. Josowicz, and J. Janata, "Role of Protonic and Charge Transfer Doping in Solid-State Polyaniline," Journal of Physical Chemistry B 106, 11457 (2002).

44B. Johan, "Conducting Polymer-Based Solid-State Ion-Selective Electrodes," Electroanalysis 18, 7 (2006).

45M. R. Bryce, A. C. P. Kathirgamanathan, D. Parker, and N. R. M. Smitha, "Soluble, Conducting Polymers from 3-Substituted Thiophenes and Pyrroles," Journal of the Chemical Society, Chemical Communications 6, 466 (1987).

46L. Dai, P. Soundarrajan, and T. Kim, "Sensors and sensor arrays based on conjugated polymers and carbon nanotubes," Pure and Applied Chemistry 74, 1753 (2002).

47M. Baibarac, I. Baltog, S. Lefrant, J. Y. Mevellec, and O. Chauvet, "Polyaniline and Carbon Nanotubes Based Composites Containing Whole Units and Fragments of Nanotubes," Chemistry of Materials 15, 4149 (2003).

48X. Yan, Z. j Han, Y. Yang, and B. k Tay, "Fabrication of Carbon Nanotube-Polyaniline Composites via Electrostatic Adsorption in Aqueous Colloids," Journal of Physical Chemistry C 111, 4125 (2007).

49Y. Wanna, N. Srisukhumbowornchai, A. Tuantranont, A. Wisitsoraat, N. Thavarungkul, and P. Singjai, "The Effect of Carbon Nanotube Dispersion on CO Gas Sensing Characteristics of Polyaniline Gas Sensor " Journal of Nanoscience and Nanotechnology 6, 3893 (2006).

50J. Zeng, X. Gao, W. Wei, X. Zhai, J. Yin, L. Wu, X. Liu, K. Liu, and S. Gong, "Fabrication of carbon nanotubes/poly(1,2-diaminobenzene) nanoporous composite via multipulse chronoamperometric electropoly- merization process and its electrocatalytic property toward oxidation of NADH," Sensors and Actuators B: Chemical 120, 595 (2007).

51X. Li, L. Zhang, X. Wang, I. Shimoyama, X. Sun, W. S. Seo, and H. Dai, "Langmuir-Blodgett Assembly of Densely Aligned Single-Walled Carbon Nanotubes from Bulk Materials," Journal of the American Chemical Society 129, 4890 (2007).

52Y. Kim, N. Minami, W. Zhu, S. Kazaoui, R. Azumi, and M. Matsumoto, "Langmuir–Blodgett Films of Single-Wall Carbon Nanotubes: Layer-by-layer Deposition and In-plane Orientation of Tubes " Japanese Journal of Applied Physics 42, 7629 (2003).

53J. Matsui, K. Yamamoto, N. Inokuma, H. Orikasa, T. Kyotani, and T. Miyashita, "Fabrication of densely packed multi-walled carbon nanotube ultrathin films using a liquid–liquid interface," Journal of Materials Chemistry 17, 3806 (2007).

54J. Matsui, S. Yoshida, T. Mikayama, A. Aoki, and T. Miyashita, "Fabrication of Polymer Langmuir-Blodgett Films Containing Regioregular Poly(3-hexylthiophene) for Application to Field-Effect Transistor," Langmuir 21, 5343 (2005).

55H. I. Elim, W. Ji, G. H. Ma, K. Y. Lim, C. H. Sow, and C. H. A. Huan, "Ultrafast absorptive and refractive nonlinearities in multiwalled carbon nanotube films," Applied Physics Letters 85, 1799 (2004).

56W. J. Xu, H. Z. Chen, M. M. Shi, Y. G. Huang, and M. Wang, "Poly(triphenylamine) related copolymer noncovalently coated MWCNT nanohybrid: fabrication and observation of enhanced photoconductivity," Nanotechnology 17, 728 (2006).

57H. Ago, M. S. P. Shaffer, D. S. Ginger, A. H. Windle, and R. H. Friend, "Electronic interaction between photoexcited poly(p-phenylene vinylene) and carbon nanotubes," Physical Review B 61, 2286 (2000).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top