跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 09:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅亦修
研究生(外文):Yi-Siou Lo
論文名稱:硫化鎘/硒化鎘之共增感效應在量子點敏化太陽能電池的應用
論文名稱(外文):Co-Sensitization Effect of CdS/CdSe on The Quantum-Dots Sensitized Solar Cells
指導教授:李玉郎
指導教授(外文):Yuh-Lang Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:109
中文關鍵詞:硫化鋅染料敏化太陽能電池量子點硫化鎘硒化鎘化學浸泡沉積法
外文關鍵詞:Chemical bath depositionZinc sulfideDye-sensitized solar cellsQuantum-dotsCadmium selenideCadmium sulfide
相關次數:
  • 被引用被引用:2
  • 點閱點閱:492
  • 評分評分:
  • 下載下載:133
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用化學浸泡沉積法 (chemical bath deposition, CBD)將硫化鎘 (CdS)和硒化鎘 (CdSe)量子點逐層組裝至TiO2表面作為染料敏化太陽能電池 (dye-sensitized solar cells, DSSC)的光敏化劑,藉此探討量子點之共增感效應及CBD層數對光電轉換效率之影響。研究結果顯示CdS和CdSe量子點對於光的吸收具有高度互補性,但是在光電轉換效率的表現卻因CdS和CdSe沉積的順序而有所差異。在TiO2/CdS/CdSe電極結構中,因為費米能階的重排效應,TiO2、CdS、CdSe的導帶及價帶能階呈階梯狀排列,使電子電洞能更有效率地注入及還原,研究結果發現在ITO/TiO2/CdS(3)/CdSe(4)之電極結構可以得到2.48%的光電轉換效率。此外,本研究亦於最佳CdS/CdSe電極外部沉積硫化鋅 (ZnS)量子點,實驗結果顯示光電極外層沉積ZnS可維持量子點的光穩定性,除此之外,ZnS能填補TiO2未被量子點吸附之空位防止漏電流的發生。其中以ITO/TiO2(13.55μm)/CdS(3)/CdSe(4)/ZnS電極結構可達最佳電池效率3.88%,此效率值已經超越文獻中量子點DSSC的最高紀錄。
In this study, cadmium sulfide (CdS) and cadmium selenide (CdSe) quantum dots (QDs) were used as sensitizers of dye-sensitized solar cells (DSSCs). This two QDs were sequentially assembled onto a nanocrystalline TiO2 film, using a chemical bath deposition (CBD) process, to prepare a CdS/CdSe co-sensitized photoelectrode for QDs-sensitized solar cell application. The effects of CBD cycles and the positions of QDs respected to TiO2 on the performance of QDs-DSSCs are studied. The results showed that CdS and CdSe QDs have complementary effect in the light harvest, but the performance of a QDs co-sensitized solar cell is strongly dependent on the order of CdS and CdSe respected to the TiO2. In the cascade structure of TiO2/CdS/CdSe electrode, the alignment of the Fermi level between CdS and CdSe forms a stepwise structure of band-edge levels which is advantageous to the electron injection and hole-recovery of CdS and CdSe QDs. An energy conversion efficiency of 2.48% has been achieved using a ITO/TiO2/CdS(3)/CdSe(4) electrode. Besides, we deposited Zinc sulfide (ZnS) QDs onto the TiO2/CdS/CdSe electrode. The experimental results showed that ZnS can avoid the occurrence of leakage current and increase photostability. An energy conversion efficiency of 3.88% has been achieved in this study using a ITO/TiO2(13.55μm)/CdS(3)/CdSe(4)/ZnS electrode.
中文摘要 …………………………………………………...…………..…….I
Abstract …………………………………………………………..………..…II
誌謝................................................................................................................ III
目錄 …………………………………………………………….…………..IV
表目錄 …………………………………………………….……...…..…..VIII
圖目錄 …………………………….………………..………..……...……...IX



第一章 緒論……………………………………………………...…………. 1
1-1 前言…………………………………………………...………….. 1
1-2 研究動機與目的……………………………………...………….. 2
第二章 實驗原理與文獻回顧………………………...………...………….. 5
2-1 DSSC之沿革及發展現況………..…………………...………….. 5
2-2 DSSC之工作原理……………..……………………...…………...8
2-3 DSSC之組成結構…….………………………..……..………….11
2-3.1 透明導電玻璃………………………………..…….......11
2-3.2 氧化物半導體…………...….……………..…………...12
2-3.3 染料光敏化劑………………………………..……..….13
2-3.4 電解液………………………………………..………...13
2-3.5 金屬/導電玻璃對電極………………...……..………...15
2-4 半導體奈米材料與量子點特性……..………………..……..…..16
2-4.1 量子侷限效應…………………………………..…….16
2-4.2 衝擊離子化效應、歐傑再結合效應與迷你傳送帶
效應……………………………...….…………...……21
2-5 化學浸泡沉積法組裝量子點………………………....…...…….24
2-6 量子點光敏化劑在DSSC之發展及其應用……………...……..26
2-6.1 量子點DSSC之發展現況……………………...…….26
2-6.2 逐層混合組裝量子點之共增感效應…………..…….31
2-6.3 硫化鋅在量子點DSSC光電極上之應用……...…….33
2-7 DSSC之電流電壓輸出特性…………………………….....…….35
第三章 實驗………………………….…………………………....……......40
3-1 儀器設備………………………………………………..........…..40
3-2 實驗藥品…………………………………………………..….….49
3-3 實驗流程………………………………………..………..………52
3-3.1 清洗透明導電玻璃基板……...……………..…..……53
3-3.2 TiO2膠體溶液的配製……………………..…..…........54
3-3.3 TiO2薄膜的製備……………………………..…….….55
3-3.4 化學浴沉積法合成並組裝量子點……………...........56
3-3.5 配製電解液…………………………………...…..…..58
3-3.6 組裝電池……………………………………………….59
第四章 實驗數據與結果討論…………………………………….……......61
4-1 TiO2薄膜特性分析…………………………….…….………..….61
4-2 量子點組裝在TiO2薄膜上之光學特性分析………………...…63
4-2.1 CdS量子點之光學特性分析..........................................63
4-2.2 CdSe量子點之光學特性分析.........................................65
4-2.3 CdS與CdSe量子點共組裝之光學特性分析 ................67
4-3 量子點敏化太陽能電池之效能測定………………….....……...71
4-3.1 有機染料DSSC之效能測定…………………………..71
4-3.2 TiO2/CdS、TiO2/CdSe系統之電池效能分析.................72
4-3.3 TiO2/CdS/CdSe、TiO2/CdSe/CdS系統之電池效能
分析.................................................................................74
4-3.4 不同量子點敏化系統IPCE及能階機制之探討……...78
4-4 ZnS保護層在量子點敏化太陽能電池的應用………………......81
4-4.1 利用CBD組裝ZnS之沉積時間最適化及其電池
效能之探討………………………………………...…..82
4-4.2 ZnS保護層之可見光吸收光譜分析…………………...85
4-4.3 ZnS保護層對電池效率增進效應之分析…………...…87
4-5 改變TiO2厚度之電池效能分析……..……….….……......….…91
第五章 結論………………………………………………….……………..94
第六章 未來工作及建議…………………………………….…………......95
參考文獻………………………………………………………….................98
自述………………………………………………………………...............109
1.H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye-Sensitized Zinc Oxide/Aqueous Electrolyte/Platinum Photocell” Nature 261, 402 (1976)
2.B. O’Regan and M. Grätzel, “A Low-Cost, High Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films” Nature 353, 737 (1991)
3.M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers” J. Am. Chem. Soc 127, 16835 (2005)
4.T. Miyasaka, M. Ikegami and Y. Kijitori, “Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania” Journal of The Electrochemical Society 154, A455 (2007)
5.C. H. Chang, Y. L. Lee, “Chemical Bath Deposition of CdS Quantum Dots onto Mesoscopic TiO2 Films for Application in Quantum-Dot-Sensitized Solar Cells” Applied Phyisics Letters 91, 053503 (2007)
6.張啟修, “硫化鎘量子點在染料敏化太陽能電池應用的研究” 國立成功
大學化學工程學系碩士論文 民國96年
7.A. Hagfeldt and M. Grätzel, “Molecular Photovoltaics” Acc. Chem. Res 33, 269 (2000)
8.M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Photons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cells” J. Phys. Chem. B 107, 8981 (2003)
9.M.Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells” Inorg. Chem. 44, 6841 (2005)
10. A. F. Nogueira and M. D. Paoli, “A Dye Sensitized TiO2 Photovoltatic Cell Constructed with an Elastomeric Electrolyte” Solar Energy Materials & Solar Cells 61, 135 (2000)
11. W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki,
K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, “Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells: Effective Charge Transport in
Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine” J. Phys. Chem. B 105, 12809 (2001)
12. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros and P. Falaras, “Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly
Efficient Nanocrystalline TiO2 Photoelectrochemical Cells” Nano Lett. 2, 1259 (2002)
13. P. Malik, M. Castro and C. Carrot, “Thermal Degradation During Melt Processing of Poly(ethylene oxide), Poly(vinylidenefluoride-co-hexafluoropropylene) and Their Blends in the Presence of Additives, for Conducting Applications” Polymer Degradation and Stability 91, 634 (2006)
14. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin,T. Sekiguchi and M. Grätzel, “A Stable Quasi-Solid-State Dye-Sensitized Solar Cell with an Amphiphilic Ruthenium Sensitizer and Polymer Gel Electrolyte” Nature Materials 2, 402 (2003)
15. P. Wang, S. M. Zakeeruddin, M. Grätzel, “Solidifying Liquid Electrolytes with Fluorine Polymer and Silica Nanoparticles for Quasi-Solid Dye-Sensitized Solar Cells” Journal of Fluorine Chemistry 125, 1241 (2004)
16. P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane and M. Grätzel, “Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell” J. Am. Chem. Soc 126, 13590 (2004)
17. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, “A Channel Flow Cell System Specifically Designed to Test the Effciency of Redox Shuttles in Dye Sensitized Solar Cells” Solar Energy Materials & Solar Cells 70, 85 (2001)
18. N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J. Frank, “Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells” J. Phys. Chem. B 107, 11307 (2003)
19. D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, “Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells: Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells” Nano Lett. 6, 669 (2006)
20. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, “ Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy” J. Am. Chem. Soc. 127, 3456 (2005)
21. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Müller, P. Liska, N. Vlachopoulos and M. Grätzel, “Conversion of Light to Electricity by cis-XzBis( 2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium( 11) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes” J. Am. Chem. Soc. 115, 6382 (1993)
22. P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, “High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte” Chem. Commun, 2972 (2002)
23. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, “Quasi-Solid-State Dye-Sensitized Solar Cells Using Room Temperature
Molten Salts and a Low Molecular Weight Gelator” Chem. Commun, 374 (2002)
24. N. Mohmeyer, D. Kuang, P. Wang, H. W. Schmidt, S. M. Zakeeruddin and M. Grätzel, “ An Efficient Organogelator for Ionic Liquids to Prepare Stable Quasi-Solidstate Dye-Sensitized Solar Cells” J. Mater. Chem. 16, 2978 (2006)
25. 高濂, 鄭珊, 張青紅, 奈米光觸媒, 五南圖書, 2004.
26. W. W. Yu and X. Peng, “Formation of High-Quality CdS and Other II -VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers” Angew. Chem. Int. Ed. 41, 2368 (2002)
27. W. W. Yu, L. Q. W. Guo and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals” Chem. Mater. 15, 2854 (2003)
28. R. He, X. Qian, J. Yin, H. Xi, L. Bian and Z. Zhu, “Formation of Monodispersed PVP-Capped ZnS and CdS Nanocrystals under Microwave Irradiation” Colloids and Surfaces A: Physicochem. Eng. Aspects 220, 151 (2003)
29. Y. Wang and N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties,” J. Phys. Chem. 95, 525 (1991)
30. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics” Science 307, 538 (2005)
31. A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion,” Inorganic Chemistry 44, 6893 (2005)
32. A. J. Nozik, “Quantum Dot Solar Cells” Physica E 14, 115 (2002)
33. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510 (1961)
34. I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisatos, “Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution” Science 310, 462 (2005)
35. S. K. Haram, A. J. Bard, “Scanning Electrochemical Microscopy. 42.
Studies of the Kinetics and Photoelectrochemistry of Thin Film
CdS/Electrolyte Interface” J. Phys. Chem. B 105, 8192 (2001)
36. M. L. Breen, J. T. Woodward, IV, D. K. Schwartz, “Direct Evidence for an Ion-by-Ion Deposition Mechanism in Solution Growth of CdS Thin Films” Chem. Mater. 10, 710 (1998)
37. P. O’Brien, J. McAleese, “Developing an Understanding of the Processes
Controlling the Chemical Bath Deposition of ZnS and CdS” J. Mater. Chem. 8(11), 2309 (1998)
38. J. L. Blackburn, D. C. Selmarten, A. J. Nozik,“Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in-situ Chemical Bath Deposition” J. Phys. Chem. B 107, 14154 (2003)
39. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, J. R. Heath,
“Reversible Tuning of Silver Quantum Dot Monolayers Trough the
Metal-Insulator Transition” Science 277, 1978 (1997)
40. Z. Y. Pan, X. J. Liu, S. Y. Zhang, G. J. Shen, L. G. Zhang, Z. H. Lu, J. Z.
Liu, “Controlled Growth of the Ordered Cadmium Sulfide Particulate
Films and the Photoacoustics Investigation” J. Phys. Chem. B 101, 9703
(1997)
41. A. Samokhvalov, R. W. Gurney, M. Lahav, R. Naaman, “Electronic
Properties of Hybrid Organic/Inorganic Langmuir-Blodgett Films
Containing CdS Quantum Particles” J. Phys. Chem. B 106, 9070 (2002)
42. A. Samokhvalov, R. W. Gurney, M. Lahav, S. Cohen, H. Cohen, R.
Naaman, “Charge Transfer between a Gold Substrate and CdS
Nanoparticles Assembled in Hybrid Organic-Inorganic Films” J. Phys.
Chem. B 107, 4245 (2003)
43. P. Jiang, Z. F. Liu, S. M. Cai, “Growing Monodispersed PbS
Nanoparticles on Self-Assembled Monolayers of 11-Mercaptoundecanoic
Acid on Au(111) Substrate” Langmuir 18, 4495 (2002)
44. M. Sastry, M. Rao, K. N. Ganesh, “Electrostatic Assembly of
Nanoparticles and Biomarcromolecules” Acc. Chem. Res. 35, 847 (2002)
45. L. Sheeney-Haj-Ichia, S. Pogorelova, Y. Gofer, I. Willner, “Enhanced
Photoelectrochemistry in CdS/Au Nanoparticle Bilayers” Adv. Funct.
Mater. 14(5), 416 (2004)
46. L. Sheeney-Haj-Ichia, J. Wasserman, I. Willner, “CdS-Nanoparticle
Architectures on Electrodes for Enhanced Photocurrent Generation” Adv.
Mater. 14(18), 1323 (2002)
47. L. Sheeney-Haj-Ichia, B. Basnar, I. Willner, “Efficient Generation of
Photocurrents by Using CdS/Carbon Nanotube Assemblies on Electrodes”
Angew. Chem. Int. Ed. 44, 78 (2005)
48. M. Lahav, V. H. Shabtai, J. Wasserman, E. Katz, I. Willner, H. Dürr, Y. Z.
Hu, S. H. Bossmann, “Photoelectrochemistry with Integrated
Photosensitizer-Electron Acceptor and Au-Nanoparticle Arrays” J. Am.
Chem. Soc. 122, 11480 (2000)
49. S. Besson, T. Gacoin, C. Ricolleau, C. Jacquiod, J. P. Boilot, “3D
Quantum Dot Lattice Inside Mesoporous Silica Films” Nano Lett. 2(4),
409 (2002)
50. S. C. Lin, Y. L. Lee, C. H. Chang, Y. L. Shen and Y. M. Yang, “Quantum
Dot-Sensitized Solar Cells: Assembly of CdS Quantum Dots Coupling
Techniques of Self-Assembly Monolayer and Chemical Bath Deposition”
Appl. Phys. Lett. 90, 143517 (2007)
51. L. M. Peter, D. J. Riley, E. J. Tull and K. G. U. Wijayantha, “Photosensitization of Nanocrystalline TiO2 by Self-Assembled Layers of
CdS Quantum Dots” Chem. Commun., 1030 (2002)
52. K.G. U. Wijayanthaa, L. M. Petera and L.C. Otley, “Fabrication of CdS
Quantum Dot Sensitized Solar Cells via a Pressing Route,” Solar Energy
Materials & Solar Cells 83, 363 (2004)
53. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, “Quantum Dot Solar
Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly
Linked to Mesoscopic TiO2 Films” J. Am. Chem. Soc. 128, 2385 (2006)
54. Q. Shen and T. Toyoda, “Characterization of Nanostructured TiO2 Electrodes Sensitized with CdSe Quantum Dots Using Photoacoustic and Photoelectrochemical Current Methods” Japanese Journal of Applied Physics 43, 2946 (2004)
55. A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots” Langmuir 14, 3153 (1998)
56. J. L. Blackburn, D. C. Selmarten, R. J. Ellingson, M. Jones, O. Mićić and A. J. Nozik, “Electron and Hole Transfer from Indium Phosphide Quantum Dots” J. Phys. Chem. B 109, 2625 (2005)
57. P. Hoyer and R. Könenkamp, “Photoconduction in porous TiO2 sensitized
by PbS quantum dots” Appl. Phys. Lett. 66, 349 (1995)
58. R. Plass, S. Pelet, J. Krueger and M. Grätzel, “Quantum Dot Sensitization
of Organic-Inorganic Hybrid Solar Cells” J. Phys. Chem. B 106, 7578
(2002)
59. R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication
in PbSe Nanocrystals: Implications for Solar Energy Conversion” Phys.
Rev. Lett. 92, 186601 (2004)
60. T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A.
Fujimoto, T. Hirakawa and S. Fukuzumi, “Photovoltaic Cells Using
Composite Nanoclusters of Porphyrins and Fullerenes with Gold
Nanoparticles” J. Am. Chem. Soc. 127, 1216 (2005)
61. K. George and P. V. Kamat, “Chromophore-Functionalized Nanoparticles”
Acc. Chem. Res. 36, 888 (2003)
62. Y. Tian and T. Tatsuma, “Mechanisms and Applications of
Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold
Nanoparticles,” J. Am. Chem. Soc. 127, 7632 (2005)
63. R. Vogel, P. Hoyer, and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous
Wide-Bandgap Semiconductors” J. Phys. Chem. 98, 3183 (1994)
64. S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargrnt, “Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics” Nature Materials 4, 138 (2005)
65. S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori and C. A. Bignozzi,
“Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient
Electron-Transfer Mediators in Dye-Sensitized Solar Cells” J. Am. Chem.
Soc. 124, 11215 (2002)
66. S. Cazzanti, S. Caramori, R. Argazzi, C. M. Elliott and C. A. Bignozzi,
“Efficient Non-Corrosive Electron-Transfer Mediator Mixtures for
Dye-Sensitized Solar Cells” J. Am. Chem. Soc. 128, 9996 (2006)
67. T. Nakanishi, B. Ohtani and K. Uosakin, “Effect of Immobilized Electron
Relay on the Interfacial Photoinduced Electron Transfer at a Layered
Inorganic–Organic Composite Film on Gold” Journal of Electroanalytical
Chemistry 455, 229 (1998)
68. L. Sheeney-Haj-Ichia, S. Pogorelova, Y. Gofer and I. Willner, “Enhanced
Photoelectrochemistry in CdS/Au Nanoparticle Bilayers” Adv. Funct.
Mater. 14, 416 (2004)
69. M. Grätzel, “Photoelectrochemical Cells” Nature 414, 338 (2001)
70. Y. Tachibana, S. A. Haque, I. P. Mercer, J. E. Moser, D. R. Klug and J. R.
Durrant, “Modulation of the Rate of Electron Injection in Dye-Sensitized
Nanocrystalline TiO2 Films by Externally Applied Bias” J. Phys. Chem. B
105, 7424 (2001)
71. O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D. Cahen and G. Hodes, “Chemical Bath Deposited CdS/CdSe-Sensitized Porous TiO2 Solar Cells,” Journal of Photochemistry and Photobiology A: Chemistry 181, 306 (2006)
72. N. C. Greenham, X. Peng and A. P. Alivisatos, “Charge Separation and
Transport in Conjugated-Polymer/Semiconductor-Nanocrystal Composites studied by Photoluminescence Quenching and Photoconductivity” Phys. Rev. B 54, 628 (1996)
73. W. U. Huynh, X. Peng, and A. P. Alivisatos, “CdSe Nanocrystal
Rods/Poly(3-hexylthiophene) Composite Photovoltaic Devices” Adv.
Mater. 11, 923 (1999)
74. T. Kitamura, M. Maitani, M. Matsuda, Y. Wada and S. Yanagida,
“Improved Solid-State Dye Solar Cells with Polypyrrole Using a
Carbon-Based Counter Electrode” Chemistry Letters, 1054 (2001)
75. D. J. Milliron, I. Gur and A. P. Alivisatos, “Hybrid Organic–Nanocrystal Solar Cells” Mrs Bulletin30, 41 (2005)
76. B. O’Regana, “Efficient Dye-Sensitized Charge Separation in
Wide-Band-Gap p-n Heterojunction” J. Appl. Phys. 80, 4749 (1996)
77. K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, K. G. U. Wijayantha and V. P. S. Perera, “A Solid-State Photovoltaic Cell Sensitized with a Ruthenium Bipyridyl Complex” J. Phys. D: Appl. Phys. 31, 1492 (1998)
78. B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin and M. Grätzel,
“Electrodeposited Nanocomposite n-p Heterojunctions for Solid-State
Dye-Sensitized Photovoltaics” Adv. Mater. 12, 1263 (2000)
79. G. R. R. A. Kumara, A. Konno, G. K. R. Senadeera, P. V. V. Jayaweera, D.
B. R. A. De Silva and K. Tennakone, “Dye-Sensitized Solar Cell with the
Hole Collector p-CuSCN Deposited from a Solution in n-Propyl Sulphide” Solar Energy Materials & Solar Cells 69, 195 (2001)
80. B. O’Regan, F. Lenzmann, R. Muis and J. Wienke, “A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics” Chem. Mater. 14, 5023 (2002)
81. B. O’Regan, F. Lenzmann, R. Muis and J. Wienke, “A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics” Chem. Mater. 14, 5023 (2002)
82. R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément, B. O’Regan, V. Muňoz-Sanjosé, “ZnO/CdTe/CuSCN, a Promising Heterostructure to Act as Inorganic Eta-Solar Cell” Thin Solid Films 483, 372 (2005)
83. B. C. O’Regan and F. Lenzmann, “Charge Transport and Recombination in a Nanoscale Interpenetrating Network of n-Type and p-Type Semiconductors: Transient Photocurrent and Photovoltage Studies of TiO2/Dye/CuSCN Photovoltaic Cells” J. Phys. Chem. B 108, 4342 (2004)
84. St. Kutzmutz, G. Láng and K. E. Heusler, “The Electrodeposition of CdSe
from Alkaline Electrolytes” Electrochimica Acta 47, 955 (2001)
85. C. L. Clément, R. T. Zaera, M. A. Ryan, A. Katty and G. Hodes, “CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterojunction” Adv. Mater. 17, 1512 (2005)
86. I. Gur, N. A. Fromer, M. L Geier and A. P. Alivisatos1, “Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution,” Science 310, 462 (2005)
87. S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang and L. Jiang, “High Photostability and Quantum Yield of Nanoporous TiO2 Thin Film Electrodes Co-Sensitized with Capped Sulfides” J.Mater. Chem. 12, 1459 (2002)
88. R. S. Mane, S. J. Roh, O.S. Joo, C. D. Lokhande, S. H. Han, “Improved Performance of Dense TiO2/CdSe Coupled Thin Films by Low Temperature Process” Electrochimica Acta 50, 2453 (2005)
89. X. D. Ma, X. F. Qian, J. Yin, H. A. Xi, Z. K. Zhu, “Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature” Journal of Colloid and Interface Science 252, 77 (2002)
90. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Grätzel,
“Investigation of Sensitizer Adsorption and the Influence of Protons on
Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”
J. Phys. Chem. B 107, 8981 (2003)
91. Princeton Applied Research, “Basics of Electrochemical Impedance
Spectroscopy”
92. L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev,
G. Redmond, N. J. Shaw and I. Uhlendorf, “Dynamic Response of
Dye-Sensitized Nanocrystalline Solar Cells: Characterization by
Intensity-Modulated Photocurrent Spectroscopy” J. Phys. Chem. B 101,
10281 (1997)
93. S. G. Hickey and D. J. Riley, “Photoelectrochemical Studies of CdS
Nanoparticle-Modified Electrodes” J. Phys. Chem. B 103, 4599 (1999)
94. J. Bisquert, “Influence of the Boundaries in the Impedance of Porous Film
Electrodes” Phys. Chem. Chem. Phys. 2, 4185 (2000)
95. J. Bisquert and V. S. Vikhrenko, “Interpretation of the Time Constants
Measured by Kinetic Techniques in Nanostructured Semiconductor
Electrodes and Dye-Sensitized Solar Cells” J. Phys. Chem. B 108, 2313
(2004)
96. Q. Wang, J. E. Moser and M. Grätzel, “Electrochemical Impedance
Spectroscopic Analysis of Dye-Sensitized Solar Cells” J. Phys. Chem. B
109, 14945 (2005)
97. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata and S. Isoda, “Determination
of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using
Electrochemical Impedance Spectroscopy” J. Phys. Chem. B 110, 13872
(2006)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊