跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 18:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:丁涴屏
研究生(外文):Wang-Ping Ting
論文名稱:以新穎之光電-芬頓程序處理苯磺酸與2,6-二甲基苯胺
論文名稱(外文):Treatment of Benzene Sulfonic Acid and 2,6-Dimethylanine by Photoelectro Assisted Fenton Process Using a Novel Electro-Chemical Cell
指導教授:黃耀輝黃耀輝引用關係
指導教授(外文):Yao-Hui Huang
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:128
中文關鍵詞:光電-芬頓程序芳香族類化合物生物可分解中間產物反應動力模式
外文關鍵詞:kineticintermediatebiodegradabilityPhotoelectro-Fenton processaromatic compound
相關次數:
  • 被引用被引用:1
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
本團隊近年來致力於光電促進芬頓程序的相關發展與研究,發現以光電促進芬頓程序可有效提高芬頓程序的處理效能。其主要原因為傳統芬頓程序中的亞鐵在反應進行之初會快速與過氧化氫反應,一方面產生氫氧自由基氧化有機物,另一方面產生三價鐵離子與氫氧化鐵污泥。當系統中的鐵離子自二價氧化成三價後,可提供給過氧化氫的催化能力隨即大幅下降,並容易與副產物產生錯合,惟此類錯合物可接受光與電所提供的電子,再次還原成亞鐵離子供系統循環使用。是故欲提高氫氧自由基濃度,首先需提高系統中的鐵離子還原速率。
相關文獻指出芳香族類的化合物在經過傳統的芬頓程序氧化後,通常礦化效果不佳,污染物多半轉而以小分子型態的有機酸存在於系統中。研究發現這些有機酸多半為草酸及其他少量甲酸及醋酸,三價鐵易與此類副產物發生錯合反應,而這些錯合物在紫外光至可見光範圍的吸收度很高,故可接受光能量還原成亞鐵離子再次參與芬頓反應。研究中以電流及長波長紫外光源促進系統中的鐵還原反應,目標以節省能源為方向進行一系列的電化學反應槽篩選。
有鑑於過去與電解相關的電解槽裝置一般均為單一陰極與陽極相對,可提供的反應面積受限於陰陽極板相對之處。本研究以單、雙層陰極電解槽與極板間距為變因,評估反應槽效能與操作經費,尋求最佳電解槽設計參數,並透過反應時間、pH、Fe2+/H2O2莫爾比、電流與過氧化氫進藥模式等變因的探討,瞭解最適電-芬頓程序操作參數,最後以生物可分解程度(BOD/COD;BOD/TOC)對芬頓,電-芬頓與光電-芬頓程序進行評估。並於研究中分析污染物降解情形,以決定污染物在不同操作參數與氧化程序中之反應速率及速率常數,藉以瞭解相關設計參數,最後進行中間產物鑑定,推導污染物的氧化機制。
A new approach of photoelectro assisted Fenton process has been developed in our laboratory. It is found that the Fenton reaction can be efficiency enhanced in photoelectro assisted Fenton process since Fe(Ⅲ) may complex with certain target compounds or byproducts, especially those acting as ligands, produced by UVA light and current. The new design of our system came from the concept of promoting the ferric reduction rate, which can increase the amount of hydroxyl radicals.
Literatures reported that oxalic, formic and acetic acids are the major products of aromatic compound degradation, which can complex with ferric ions. These complexes typically have higher molar absorption coefficients in the UV and visible regions to generate ferrous ions. Meanwhile, the ferrous ion is regenerated via the reduction of ferric ion on the cathode. However, the reaction mechanism of ferric ion reduction is still unclear. Therefore, a functional reactor was designed to save energy and to clarify the mechanism of ferric reduction with UVA light and electricity.
A new electro-chemical cell was developed to increase the working area and promote the current efficiency. The operation parameters, such as single and double electrode effect, electrode distance, initial pH, Fe2+/H2O2 molar ratio, applied current, H2O2 feeding mode were investigated, firstly. Then the test of biodegradability (BOD/COD; BOD/TOC) was used to explore the effect of Fenton, electro-Fenton and photoelectro assisted Fenton process. Finally, in this dissertation, the intermediate of oxidation process was identified and the mechanisms were proposed.
CHAPTER 1 INTROUCTION 1
1.1. Background 1
1.2. Research Objective 5
CHAPTER 2 LITERATURE REVIEW 7
2.1. The use of hydrogen peroxide 7
2.2. Fenton’s reagent 9
2.2.1. Fundamental chemistry of the Fenton reaction 9
2.2.2. Kinetic scheme 9
2.2.3. Stoichiometric relationship 11
2.3. Electrochemical oxidation processes 15
2.3.1. Anodic oxidation mechanism 18
2.3.2. Electro-Fenton method 22
2.4. The photo assisted Fenton reaction 24
2.4.1. Photolysis of aquated Fe(III) species 25
2.4.2. Photolysis of Fe(III) complexes with organic ligands 26
2.4.3. Contribution of different photochemical reactions to the enhancement of the Fenton reaction 27
2.5. The photo assisted electro-Fenton reaction 29
2.5.1. Fundamental chemistry of the Fenton reaction 29
2.5.2. Overview of the earlier work of the photoelectro-Fenton process 30
CHAPTER 3 EXPERIMENTAL METHODS 35
3.1 Chemicals and analytical methods 35
3.1.1 Chemicals 35
3.1.2 Analytical methods 35
3.2 Experimental apparatus 40
3.3 Experiment procedures 40
3.3.1 Fenton process 40
3.3.2 Electrolysis process 40
3.3.3 Electro-Fenton process 41
3.3.4 Photoelectro-Fenton process 41
CHAPTER 4 RESULTS AND DISCUSSION 44
4.1. Enhancement of the Ferric Reduction Efficiency by Using Different Electrode Geometries 45
4.1.1. Performance of Fe2+ generation 45
4.1.2. Energy consumption with different electrode distance 52
4.1.3. Effect of hydrogen peroxide feeding mode 54
4.1.4. Summary 57
4.2. Kinetics of 2,6-DMA degradation by electro-Fenton process 58
4.2.1. Effect of pH 58
4.2.2. Effect of Fe2+ loading 62
4.2.3. Effect of H2O2 molar concentration 64
4.2.4. Effect of current density 66
4.2.5. Degradation performance 69
4.2.6. The factors on the oxidation of 2,6-DMA 71
4.2.7. Summary 75
4.3. Treatment of BSA and 2,6-DMA by Different Oxidation Processes 76
4.3.1. Oxidation of BSA in different processes 76
4.3.2. Mineralization of BSA in different processes 78
4.3.3. Intermediate products of BSA 81
4.3.4. Degradation of 2,6-DMA in different processes 84
4.3.5. Mineralization of 2,6-DMA in different processes 87
4.3.6. Intermediate products of 2,6-DMA 89
4.3.7. Summary 92
4.4. Contribution of the Fenton, Electro-Fenton and Photoelectro-Fenton Processes to the Biodegradation of 2,6-DMA 93
4.4.1. Biodegradability of 2,6-DMA in different oxidation processes 93
4.4.2. Reaction pathway for 2,6-DMA mineralization 99
4.4.3. Summary 101
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 102
5.1. Conclusions 102
5.2. Recommendations 104
ACKNOWLEDGMENTS 105
REFERENCES 106
APPENDIX 122
VITA 125
Abad, L.V., Saiki, S., Kudo, H., Muroya, Y., Katsumura, Y., de la Rosa, A.M., Rate constants of reactions of κ-carrageenan with hydrated electron and hydroxyl radical, Nucl. Instrum. Meth. B. 265, 410-413, 2007.
Alonso, M.C., Tirapu, L., Ginebreda, A., Barcelo, D., Monitoring and toxicity of sulfonated derivatives of benzene and naphthalene in municipal sewage treatment plants, Environ. Pollut. 137, 253-262, 2005.
Al Momani, F., Shawaqfeh, A., Shawaqfeh, M., Solar wastewater treatment plant for aqueous solution pf pesticide, Sol. Energy. 81, 1213-1218, 2007.
Andreozzi, R., Caprio, V., Insola, A., Marotta, R., Advanced oxidation processes (AOP) for water purification and recovery, Catal. Today. 53, 51-59, 1999.
Andrianirinaharivelo, S., Mailhot, G., and Bolte, M., Photodegradation of organic pollutants induced by complexation with transition metals (Fe3+ and Cu2+) present in natural waters, Solar Energy Mater. Solar Cells. 38, 459-474, 1995.
APHA, Standard methods for the examination of water and wastewater, 20th ed., American Public Health Association, Washington, D.C., USA, 1998.
Arienzo, M., Chiarenzelli, J., Scrudato, R., Remediation of metal-contaminated queous systems by electrochemical peroxidation: An experimental investigation, J. Haz. Mater. 87, 187-198, 2001a.
Arienzo, M., Chiarenzelli, J., Scrudato, R., Pagano, J., Falanga, L., Connor, B., Iron-mediated reactions of polychlorinated biphenyls in electrochemical peroxidation rocess (ECP), Chemosphere. 44, 1339-1346, 2001b.
Badellino, C., Rodrigues, C.A., Bertazzoli, R., Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: Study for the degradation of 2,4-dichlorophenoxyacetic acid, J. Hazard. Mater. 137, 856-864, 2006.
Baeyens, J., Hosten, L., Van Vaerenbergh, E., Wastewater Treatment, Kluwer Academic Publishers, The Netherlands, 876, 1997.
Baeyens, J., Van Puyvelde, F., The incineration of sewage sludge: a strategy for the design, J. Hazard. Mater. 37179-190, 1994.
Balzani, V., Carassiti, V., Photochemistry of coordination compounds, Academic ress, New York, 1970.
Balanosky, E., Herrera, F., Lopez, A., Kiwi, J., Oxidative degradation of textile aste water. Modeling reactor performance, Wat. Res. 34, 582-596, 2000.
Bandara, J., Morrison, C., Kiwi, J., Pulgarin, C., Peringer, P.J., Degradation/ decoloration of concentrated solutions of orange II. Kinetics and quantum yield for sunlight induced reactions via Fenton type reagents, Photochem. Photobiol. A Chem. 99, 57-66, 1996.
Bandara, J., Nadtochenko, V. Kiwi, J., Pulgarin, C., Dynamics of oxidant addition s a parameter in the modelling of dye mineralization (orange II) via advanced oxidation technologies, Water Sci. Technol. 35, 87-93, 1997.
Benitez, F.J., Acero, J.L., Real, F.J., Rubio, F.J., Leal, A.I., The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions, Wat. Res. 35, 1338-1343, 2001a.
Benitez, F.J., Beltran-Heredia, J., Rea, F., Acero, J.L., Phenolic contaminant acids oxidation by Fenton's reagent, Fresenius Environ. Bull. 9, 144-151, 2000b.
Benkelberg, H.J., Warneck, P., Photodecomposition of iron(III) hydroxo and sulfato complexes in aqueous solution: Wavelength dependence of OH and SO" quantum yields, J. Phys. Chem. 99, 5214-5221, 1995.
Bielski, B.H.J., Cabelli, D.E., Arudi, R.L., Reactivity of H2O2/O2-radicals in aqueous solution, J. Phys. Chem. Ref. Data 14, 1041-1100, 1985.
Bonfatti, F., Ferro S., Lavezzo, F., Malacarne, M., Lodi, G., De Battisti, A., Electrochemical incineration of glucose as a model organic subtrate. Part 2: Role of the active chlorine mediation, Electrochem. Soc. 147, 592-596, 2000.
Bossmann, S.H., Oliveros, E., Göb, S., Siegwart, S., Dahlen, E.P., Payawan, L., Straub, J.M., Wörner, M., Braun, A.M., New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions, J. Phys. Chem. A. 102, 5542-5550, 1998.
Boudenne, J.L., Cerclier, O., Galea, J., Vlist, E.V., Appl. Catal. A-Gen. 143, 185-202, 1996.
Boudenne, J.L., Cerclier, O., Performance of carbon black slurry electrodes for 4-chlorophenol oxidation, Water Res. 33, 494-504, 1999.
Boye, B., Dieng, M.M., Brillas, E., Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods, Environ. Sci. Technol. 36, 3030-3035, 2002.
Boye, B., Dieng, M.M., Brillas, E., Anodic oxidation, electro-Fenton and photoelectro-Fenton treatments of 2,4,5-trichlorophenoxyacetic acid, J. Electroanal. Chem. 557, 135–146, 2003.
Boye, B., Brillas, E., Buso, A., Farnia, G., Flox, C., Giomo, M., Sandona, G., Electrochemical removal of gallic acid from aqueous solutions, Electrochim. Acta 52, 256–262, 2006.
Brand, N., Mailhot, G., Bolte, M., Degradation photoinduced by Fe(III): Method of alkylphenolethoxylates removal in water, Environ. Sci. Tecbnol. 32, 2715-2720, 1998.
Braun, A.M., Maurette, M.T., Oliveros, E., Photochemical Technology, Wiley & Sons, New York, 77-81, 1991 (and references cited therein.)
Brillas, E., Mur, E., Sauleda, R., Sanchez, L., Peral, J., Domenech, X., Casado, J., Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes, Appl. Catal. B: Environ. 16, 31-42, 1998.
Brillas, E., Calpe, J.C., Casado, J., Mineralization of 2,4-D by advanced electrochemical oxidation processes, Wat. Res. 34, 2253-2262, 2000.
Brillas, E., Casado, J., Aniline degradation by Electro-Fenton(R) and peroxi-coagulation processes using a flow reactor for wastewater treatment, Chemosphere. 47, 241-248, 2002.
Brillas, E., Baños, M.Á., Garrido, J.A., Mineralization of herbicide 3,6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton, Electrochimica. Acta. 48, 1697-1705, 2003a.
Brillas, E., Boye, B., Dieng, M.M., General and UV-assisted cathodic Fenton treatments for the mineralization of herbicide MCPA, J. Electrochem. Soc. 150, 583–589, 2003b.
Brillas, E., Baños, M.Á., Skoumal, M., Cabot, P.L., Garrido, J.A., Rodríguez, R.M., Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes, Chemosphere. 68, 199-209, 2007.
Buxton, G.V., Greenstock, C.L., Critical review of rate constants for reactions of hydrated electrons, J. Phys. Chem. Ref. Data 17, 513-886, 1988.
Calabrese, E.J., Kostecki, P.T., Petroleum contaminated soil, remediation technologies, Environmental Fate, Risk Assessment, Analytical Methodologies, vol. 2, Lewis Publishers Inc., Chelsea, MI, 1989.
Casado, J., Fornaguera, J., Galán, M.I., Mineralization of aromatics in water by sunlight-assisted electro-Fenton technology in a pilot reactor, Environ. Sci. Technol. 39, 1843-1847, 2005.
Comninellis, Ch., Electro catalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment, Electrochimica Acta. 39, 1857-1862, 1994.
Comninellis, Ch., Nerini, A., Anode oxidation of phenol in the presence of NaCl for wastewater treatment, Appl. Electrochem. 25, 23-28, 1995.
Comninellis, Ch., De Battisti, A., Electrocatalysis in anodic oxidation of organics with simultaneous oxygen evolution, Chim. Phys. 93, 673-679, 1996.
Comninellis, Ch., Plattner, E., Electrochemical wastewater treatment, Chimia. 42, 250-252, 1988.
Contreras, S., Rodríguez, M., Al Momani, F., Sans, C., Esplugas, S., Contribution of the ozonation pre-treatment to the biodegradability of aqueous solution of 2,4-dichlorophenol, Wat. Rew. 13, 3164-3171, 2003.
Chamarro, E., Marco, A., Esplugas, S., Use of Fenton reagent to improve organic chemical biodegradability. Wat. Res. 35, 1047-1051, 2001.
Chen, R., Pignatello, J.J., Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds, Environ. Sci. Technol. 31, 2399-2406, 1997.
Chen, G., Electrochemical technologies in wastewater treatment, Sep. Purif. Technol. 38, 11-41, 2004.
Chou, S., Huang, Y.H., Lee, S.N., Huang, G.H., Huang, C., Treatment of high strength hexamine-containing wastewater by electro-Fenton method, Water Res. 33, 751-759, 1999.
De Laat, J., Gallard, H., Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueoussolutions: mechanism and kinetic modelling, Environ. Sci. Technol. 33, 2726-2732, 1999.
Elizardo, K., Fighting pollution with hydrogen peroxide, Pollution Engineering. September, 106-109, 1991.
Esplugas, S., Ollis, D.F., Economic aspects of integrated (chemical+biological) processes for water treatment, J. Adv. Oxid. Technol. 2, 197-186, 1997.
Exposito, E., Sanchez-Sanchez, C.M., Montiel, V., Mineral iron oxides as iron source in electro-Fenton and photoelectro-Fenton mineralization processes, J. Electrochem. Soc. 154, E116-E122, 2007.
Faust, B.C., Hoigne, J., Photolysis of Fe(III)-hydroxyl complexes as sources of OH radicals in clouds, fog, and rain, Atmos. Environ. 24A, 79-89, 1990.
Flox, C., Ammar, S., Arias, C., Brillas, E., Vargas-Zavala, A.V., Abdelhedi, R., Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium, Appl. Catal. B: Environ. 67, 93–104, 2006.
Flox, C., Garrido, J.A., Rodríguez, R.M., Cabot, P.L., Centellas, F., Arias, C., Brillas, E., Mineralization of herbicide mecoprop by photoelectro-Fenton with UVA and solar light, Catal. Today. 129, 29-36, 2007.
Foti, G., Gandini, D., Comninellis, Ch., Anodic oxidation of organics on. thermally prepared oxide electrodes, Curr. Top. Electrochem. 5, 71-91, 1997.
Grimm J., Bessarabov D.G., Maier W., Storck S., Sanderson R.D., Sol-gel film-preparation of novel electrodes for the electrocatalytic oxidation of organic pollutants in water, Desalination. 115, 295-302, 1998.
Harrington, T., Pletcher, D., The removal of low levels of organics from aqueous solutions using Fe(II) and hydrogen peroxide formed in situ at gas diffusion electrodes, J. Electrochem. Soc. 146, 2983-2989, 1999.
Hatchard, C.G., Parker, C.A., A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer, Proc. Roy. Soc. A235, 518-536, 1956.
Hislop, K.A., Bolton, J.R., The photochemical generation of hydroxyl radicals in the UV-vis/ferrioxalate/H2O2 System, Environ. Sci. Technol. 33, 3119-3126, 1999.
Hickey, W.J., Arnold, S.M., Harris, R.F., Degradation of atrazine by Fenton’s reagent: condition optimization and product quantification, Environ. Sci. Technol. 29, 2083-2089, 1995.
Hofseth, C.S., Chapman, T.W., Electrochemical destruction of dilute cyanide by copper-catalyzed oxidation in a flow-through porous electrode, Electrochem. Soc. 146, 199-207, 1999.
Houghton, J.I., Quarmby, J., Stephenson, T., Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer, Wat. Sci. Technol. 44, 373-379, 2001.
Hsaio, Y.L., Nobe, K., Oxidative reactions of phenol and chlorobenzene with in situ electrogenerated Fenton's reagent, Chem. Eng. Commun. 126, 97-110, 1993.
Huang, C.P., Dong, C., Tang, Z., Advanced chemical oxidation: its present role and potential future in hazardouswaste treatment, Waste Mgmt. 13, 361–377, 1993.
Huang, Y.H., Chou, S., Perng, M.G., Huang, G.H., Cheng, S.S., Case study on the bioeffluent of petrochemical wastewater by electro-Fenton method, Water Sci. Technol. 39, 145-149, 1999.
Huston, P.L., Pignatello, Jj., Reduction of perchloroalkanes by ferrioxalategenerated carboxylate radical preceding mineralization by the photo-Fenton reaction, Environ. Sci. Technol. 30, 3457-3463, 1996.
Irmak, S., Yavuz, H.I., Erbatur, O., Degradation of 4-chloro-2-methylphenol in aqueous solution by electro-Fenton and photoelectro-Fenton processes, Appl. Catal. B: Environ. 63, 243–248, 2006.
Jorand, F., Bouge-Bigne, F., Block, J.C., Urbain, V., Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances, Wat. Sci. Technol. 37, 307-316, 1998.
Juttner, K., Galla, U., Schmieder, H., Environmental Electrochemistry: Fundamentals and applications in pollution abatement, Electrochim. Acta. 45, 2575-2594, 2000.
Kang, S.F., Liao, C.H., Hung, H.O., Peroxidation treatment of dye manufacturing wastewater in the presence of ultraviolet light and ferrous ions, J. Hazard. Mater. 65, 317-333, 1999.
Kannan, N., Karthikeyan, G., Tamilselvan, N., Comparison of treatment potential of electrocoagulation of distillery effluent with and without activated Areca catechu nut carbon, J. Hazard. Mater. 137, 1803-1809, 2006.
Kawaguchi, H., Inagaki, A., Kinetics of ferric ion promoted photodecomposition of 2-chlorophenol, Chemosphere 28, 57-62, 1994.
Kitis, M., Adams, C.D., Daigger, G.T., The effects of Fenton’s reagent pretreatment on the biodegradability ofnon-ionic surfactants, Wat. Res. 33, 2561-2568, 1999.
Kiwi, J., Pulagarin, C., Peringer, P., Effect of Fenton and photo-Fenton reactions on the degradation and biodegradability of 2- and 4-nitrophenols in water treatment, Appl. Catal. B Environ. 3, 335-350, 1994.
Kurt, U., Apaydin, O., Gonullu, M.T., Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process, J. Hazard. Mater. 143, 33-40, 2007.
Kusvuran, E., Irmak, S., Yavuz, H.I., Samil, A., Erbatur, O., Comparison of the treatment methods efficiency for decolorization and mineralization of Reactive Black 5 azo dye, J. Hazard. Mater. 119, 109-116, 2005.
L’air Liquide, Department Chimique, H2O2, Antipollution Clean Technology, Paris, France.
Larson, R.A., Schlauch, M.B., Marley, K.A., Ferric ions promoted photodecomposition of triazines, J. Agric. Food Chem. 39, 2057-2062, 1991.
Langford C.H., Carey, J.H., The charge transfer photochemistry of the hexaaquoiron( III) ion, the chloropentaaquoiron(III) ion, and the /-dihydroxy dimer explored with tert-butyl alcohol scavenger, Can. J. Chem. 53, 2430-2435, 1975.
Lei, L., Hu, X., Yue, P.L., Bossmann, S.H., G6b, S., Braun, A.M., Oxidative degradation of polyvinyl alcohol by the photochemically enhanced Fenton reaction, J. Photocbem. Photobiol. A Chem. 116, 159-166, 1998.
Li, C.W., Chen, Y.M., Chiou, Y.C., Liu, C.K., Dye wastewater treated by Fenton process with ferrous ions electrolytically generated from iron-containing sludge, J. Hazard. Mater. 144, 570-576, 2007.
Lin, S.H., Wu, C.L., Electrochemical nitrite and ammonia oxidation in sea water, Environ. Sci. Health, Part A. 32, 2125-2138, 1997.
Lipczynska-Kochany, E., Sprah, G., Harms, S., Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction, Chemosphere, 9-20, 1995.
Lu, M.C., Chen, J.N., Chang, C.P., Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst, J. Hazard. Mater. B65, 277-288, 1999.
Lu, M.C., Lin, C.J., Liao, C.H., Ting, W.P., Huang, R.Y., Influence of pH on the dewatering of activated sludge by Fenton’s reagent, Water. Sci. Technol. 44, 327-332, 2001.
Lu, M.C., Lin, C.J., Liao, C.H., Huang, R.Y., Ting, W.P., Dewatering of activated sludge by Fenton’s reagent, Adv. Environ. Res. 7, 667-670, 2003.
Lu, M.C., Ting, W.P., Huang, Y.H., A new approach for double cathode reactor design of wastewater treatment by photoelectro-chemical method, ROC patent: 323472, 2007.
Mailhot, G., Astruc, M., Bolte, M., Degradation of tributyltin chloride in water photoinduced by iron(III), Organomet. Chem. 13, 53-61, 1999.
Manahan, S.E., Environmental chemistry, Lewis Publishers, Boca Raton, USA. 223-240, 1994.
Marselli, B., Garcia-Gomez, J., Michaud P.A., Rodrigo, M.A., Comninellis, Ch., Electrochemical synthesis and engineering electrogeneration of hydroxyl radicals on boron-doped diamond electrodes, Journal of the Electrochemical Society. 150, 79-83, 2003.
Mazellier, P., Mailhot, G., Bolte, M., Photochemical behavior of the iron(III)/2,6- dimethylphenol system, N.J. Chem. 21, 389-397, 1997.
Mazellier, P., Sulzberger, B., Diuron degradation in irradiated, heterogeneous iron/oxalate systems: The rate-determining step, Environ. Sci. Tecbnol. 35, 3314-3320, 2001.
Metelitsa, D.I., Mechanisms of the hydroxylation of aromatic compounds, Russ. Chem. Rev. 40, 563-580, 1971.
Metcalf and Eddy Inc, Wastewater engineering treatment, disposal and reuse, 3rd ed. New York, USA: McGraw-Hill, 1985.
Muruganandham, M., Swaminathan, M., Decolourisation of reactive orange 4 by Fenton and photo-Fenton oxidation technology, Dyes. Pigments. 63, 315-321, 2004.
Murphy, O.J., Hitchens, G.D., Kaba, L., Verostko, C.E., Direct electrochemical oxidation of organics for wastewater treatment, Wat.Res. 26, 443-451, 1992.
Mustranta, A., Viikari, L., Dewatering of activated sludge by an oxidative treatment, Wat. Sci. Technol. 28, 213–221, 1993.
Naumczyk, J., Szpyrkowicz, L., Grandi, F.Z., Electrochemical treatment of texitile wasterwater, Water Sci. Technol. 33, 17-24, 1996.
Neyens, E., Baeyens, J., Weemaes, M., De heyder, B., Advanced biosolids treatment using H2O2-oxidation, Environ. Eng. Sci. 19, 27-35, 2002.
Ollis D.F. and Al-Ekabi, H., Removal of Low concentration Air pollutions through photoassisted heterogeneous catalysis, Photocatalytic purification and treatment of water and air, Elsevier: Amsterdam, 375-379, 1993.
Oturan, M.A., Oturan, N., Lahitte, C., Trevin, S., Production of hydroxyl radicals by electrochemically assisted Fenton's reagent-Application to the mineralization of an organic micropollutant, pentachlorophenol, J. Electroanal. Chem. 507, 96-102, 2001.
Pere, J., Alen, R., Viikari, L., Eriksson, L., Characterisation and dewatering of activated sludge from the pulp and paper industry, Water Sci. Technol. 28, 193-201, 1993.
Pignatello, J.J., Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide, Environ. Sci. Technol. 26, 944-951, 1992.
Pignatello, J.J., Oliveros, E., Mackay, A., Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Env. Sci. Tec. 36, 1-84, 2006.
Pletcher, D., Indirect oxidations using electrogenerated hydrogen peroxide, Acta Chem. Scand. 53, 745-750, 1999.
Polcaro, A.M., Palmas, S., Electrochemical oxidation of chlorophenols, Ind. Eng. Chem. Res. 36, 1791-1798, 1997.
Pratap, K., Lemley, A.T., Electrochemical peroxide treatment of aqueous herbicide solutions, J. Agric. Food Chem. 42, 209-215, 1994.
Pratap, K., Lemley, A.T. Fenton electrochemical treatment of aqueous atrazine and metachlor, J. Agric. Food Chem. 46, 3285-3291, 1998.
Qiang, Z., Chang, J.H., Huang, C.P., Electrochemical regeneration of Fe2+ in Fenton oxidation processes, Water Res. 37, 1308-1319, 2003.
Rao, N.N., Bose, G., Khare, P., Kaul, S.N., Fenton and electro-Fenton methods for oxidation of H-acid and Reactive Black 5, J. Environ. Eng.-ASCE. 132, 367–376, 2006.
Rao, N.N., Somasekhar, K.M., Kaul, S.N. Szpyrkowicz, L.J., Electrochemical oxidation of tannery wastewater, Chem. Technol. Biotechnol. 76, 1124-1131, 2001.
Rajalo, G., Petrovskaya, T., Selective electrochemical oxidation of sulphides in tannery wastewater, Environ. Technol. 17, 605-612, 1996.
Rajeshwar, K., Ibanez, J.G., Electrochemistry and environment. Appl. Electrochem. 24, 1077-1091, 1994.
Rajeshwar, K., Ibanez, J.G., Environmental Electrochemistry: Fundamentals and applications in pollution abatement; Academic Press: San Diego, CA, 1997.
Rigg, T., Taylor, W., Weiss, J., The rate constant of the reaction between hydrogen peroxide and ferrous ions, J. Chem. Phys. 22, 575-577, 1954.
Roe, B.A., Lemnley, A.T., Treatment of two insecticides in an electrochemical Fenton system, J. Environ. Sci. Health. 32, 261-281, 1997.
Ronco, S.E., Aymonino, P.J., Kinetics of the thermal and photochemical decomposition of aquapentacyanoferrate(III) in aqueous solution, Transition Met. Chem. 12, 174-178, 1987.
Roland, S., Ingbert, S., Hans-Henning, S., Fluorometric determination of low concentrations of H2O2 in water: Comparison with two other methods and application to environmental samples and drinking-water treatment, Wat. Res. 31, 1371–1378, 1997.
Ruppert, G., Bauer, R., Mineralization of cyclic organic water contaminants by the photo-Fenton reaction: influence of structure and substituents, Chemosphere, 271339-1347, 1993.
Safarzadeh-Amiri, A., Bolten, J.R., Cater, S.R., The use of iron in advanced oxidation processes, J. Adv. Oxid. Technol. 1, 18-26, 1996.
Safarzadeh-Amiri, A., Bolton, J.R., Cater, J.R., Ferrioxalate-mediated photodegradaation of organic pollutants in contaminated water, Wat. Res. 31, 787-798, 1997.
Savall, A. Electrochemical treatment of industrial organic effluents, Chimia 49, 23-27, 1995.
Sengil, I.A., ozacar, M., Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes, J. Hazard. Mater. 137, 1197-1205, 2006.
Shen, Z., Yang, J., Hu, X., Lei, Y., Ji, X., Jia, J., Wang, W., Dual electrodes oxidation of dye wastewater with gas diffusion cathode, Environ. Sci. Tecbnol. 39, 1819-1826, 2005.
Sima, J., Makanova, J., Photochemistry of iron(III) complexes, Coord. Chem. Rev. 160, 161-189, 1997.
Sirés, I., Arias, C., Cabot, P.L., Centellas, F., Garrido, J.A., Rodríguez, R.M., Brillas, E., Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton, Chemosphere. 66, 1660-1669, 2007a.
Sirés, I., Garrido, J.A., Rodrígues, R.M., Brillas, E., Oturan, N., Oturan, M.A., Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene, Appl. Catal. B-Environ. 72, 382-394, 2007b.
Snoeyink, V.L., Jenkins, D., Water Chemistry, Wiley, New York, 1982.
Sudoh, M., Kodera, T., Sakai, K., Zhang, J.Q., Koide, K., Oxidative degradation of aqueous phenol effluent with electrogenerated Fenton's reagent, J. Chem. Eng. Jpn. 19, 513-518, 1986.
Sun, Y., Pignatello, J.J., Activation of hydrogen peroxide by iron(III) chelates for abiotic degradation of herbicides and insecticides in water,J. Agric. Food Chem. 41,308-312, 1993a.
Sun, Y., Pignatello, J.J., Organic intermediates in the degradation of 2,4-dichlorophenoxyacetic acid by Fe3+/H2O2 and Fe3+/ H2O2/UV, J. Agric. Food Chem. 41, 1139-1142, 1993b.
Sun, Y., Pignatello, J.J., Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV, Environ. Sci. Tecbnol. 27, 304-310, 1993c.
Sun, J.H., Sun, S.P., Fan, M.H., Guo, H.Q., Qiao, L.P., Sun, R.X., A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process, J. Hazard. Mater. 148, 172-177, 2007.
Takada H. and Ishiwatari R., Biodegradation experiments of linear alkylbenzenes (LABs): isomeric composition LABs as an indicator of the degree of LAB degradation in the aquatic environment, Environ. Sci. Technol. 24, 86-91, 1990.
Takeo, M., Nagayama, T., Takatani, K., Maeda, Y., Nakaoka, M., Mineralization and desulfonation of 3-nitrobenzenesulfonic acid by alcaligenes sp. GA-1, J. Ferment. Bioeng. 83, 505-509, 1997.
Tahar, N.B., Savall, A., Mechanistic aspects of phenol electrochemical degradation by oxidation on Ta/PbO2 anode, Electrochem Soc. 145, 3427-3434, 1998.
Tang, W.Z., Tassos, S., Oxidation kinetics and mechanisms of trihalomethanes by Fenton’s reagent,Wat. Res. 31, 1117-1125, 1997.
Ting, W.P., Huang, Y.H., Lu, M.C., Catalytic treatment of petrochemical wastewater by electroassisted Fenton technologies, React. Kinet. Catal. L. 92, 41-48, 2007.
Ting W.P., Lu, M.C., Huang, Y.H., The reactor design and comparison of Fenton, electro-Fenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA), J. Hazard. Mater. doi:10.1016/j.jhazmat.2007.12.031, 2006.
Ting, W.P., Huang, Y.H., Lu, M.C., A double cathode reactor design of wastewater treatment by electro-chemical method, ROC patent: 316259, 2007.
Urbain, V., Block, J.C., Manem, J., Bioflocculation in activated sludge: an analytical approach, Water Res. 27, 829-838, 1993.
Van der Zee, J., Krootjes, B.B.H., Chignell, C.F., Dubbelman, T.M.A.R., Van Steveninck, J., Hydroxyl radical generation by a light dependent Fenton reaction, Free Radical Biol. Med. 14, 105-113, 1993.
Valentine, R.L., Wang, H.C.A., Iron oxide surface catalyzed oxidation of quinoline by hydrogen peroxide, J. Environ. Eng. 124, 31-38, 1998.
Venkatadri, R., Peters, R.W., Chemical oxidation technologies: ultraviolet light/hydrogen peroxide, Fenton’sreagent and titanium dioxide-assisted photocatalysis, Hazard. Waste. Hazard. Mater. 10, 107-149, 1993.
Walling, C., Kato, S., The oxidation of alcohols by Fenton’s reagent: the effect of copper ion, J. Am. Chem.Soc. 93, 4275-4281, 1971.
Walling, C., Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide: effects of organic substrate, J. Am. Chem. Soc. 95, 2987-2991, 1973.
Walling, C., Fenton's reagent revisited, Acc. Chem. Res. 8, 121-131, 1975.
Wagner, R., Ruck, W., Determination of hydrogen peroxide and other peroxo compounds, Z. Wasser. Abwass. For. 17, 262-267, 1984.
Wang, Q.Q., Lemley, A.T., Kinetic model and optimization of 2,4-D degradation by anodic Fenton treatment, Environ. Sci. Technol. 35, 4509-4514, 2001.
Wells, C.F., Salam, M.A., Complex formation between iron(II) and inorganic anions. Part I. Effect of simple and complex halide ions on the reaction of Fe(II)+H2O2 reaction, Trans. Faraday Soc. 63, 620-629, 1967.
Wells, C.F., Salam, M.A., The effect of pH on the kinetics of the reaction of iron(II) with hydrogen peroxide in perchlorate media, J. Chem. Soc. A 24-29, 1968a.
Wells, C.F., Salam, M.A., Complex formation between iron(II) and inorganic anions. Part II. The effect of oxyanions on the reaction of iron(II) with hydrogen peroxide, J. Chem. Soc. A 308-315, 1968b.
Yoon, J., Cho, S., Cho, Y., Kim, S., The characteristics of coagulation of Fenton reaction in the removal of landfill leachate organics, Wat. Sci. Technol. 38, 209-214, 1998.
Yoon, J., Lee, Y., Kim, S., Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment, Wat. Sci. Technol. 44, 15-21, 2001.
Zhang, H., Zhang, D., Zhou, J., Removal of COD from landfill leachate by electro-Fenton method, J. Hazard. Mater. 135, 106-111, 2006.
Zhang, H., Fei, C., Zhang, D., Tang, F., Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method, J. Hazard. Mater. 145, 227-232, 2007.
Zhan, X.M., Wang, J.L., Wen, X.H., Qian, Y., Indirect electrochemical treatment of saline dye stuff wastewater, Environ. Technol. 22, 1105-1111, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top