跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/06 04:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊曜嘉
研究生(外文):Yaw-Chia Yang
論文名稱:電化學即時掃描式電子穿隧顯微鏡對硫醇與有機半導體分子於金及鉑載體表面自組裝行為的研究
論文名稱(外文):Self-Organization of Organosulfur and Organic Semiconducting Materials on Surfaces of Gold and Platinum Studied by In-Situ Electrochemical Scanning Tunneling Microscopy
指導教授:李玉郎
指導教授(外文):Yuh-Lang Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:170
中文關鍵詞:雙硫醇碘修飾超分子結構鉑(111)循環伏安儀掃描式電子穿隧顯微鏡
外文關鍵詞:Pt(111)Au(111)STMpentaceneC60in phaseCVElectron acceptor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:2
本論文主要使用電化學即時掃描式電子穿隧顯微鏡(Scanning Tunneling Microscopy, STM)及循環伏安儀(Cyclic Voltammetry, CV)進行研究,內容分為兩大主題進行探討,第一部份為有機硫醇分子於金及鉑表面自組裝行為探討,並觀測金於雙硫醇修飾之鉑(111)沈積模式;首先來探討有機硫醇分子於鉑(111)表面吸附行為,分別選用苯硫酚、1,6-己烷基雙硫醇、1,9-壬烷基雙硫醇、鄰苯雙硫醇及間苯雙硫醇等,結果得知載體電位與溶液中分子濃度是主要決定分子吸附機制與結構,STM於0.05 ~ 0.3 V (RHE)電位區間即時紀錄發現,其硫醇分子低覆蓋度時為(2 × 2)吸附結構,並隨著表面分子覆蓋度增加,結構會轉變為較緊密排列的(r3 × r3)R30°,結果顯示分子是以成核成長方式吸附。由雙硫醇分子間距與STM表面吸附結構進行分析,判斷雙硫醇分子是以單一硫醇端與鉑(111)表面鍵結,烷基或環烷基則傾斜於載體一定角度,嘗試使用循環伏安儀來鑑定分子鍵結力強弱,於鹼性1 M KOH鹼性環境下進行還原剝除法實驗,結果指出所有硫醇分子於鉑(111)表面均未有脫附行為,證實硫-鉑之間有很強鍵結能力,此相較於金表面吸附行為有很大差異。
結果得知硫醇分子於鉑(111)表面自組裝為規則單分子薄膜,藉此將進行表面金屬沈積研究,本次實驗選用具良好電子穿透性的芳香環之苯硫酚與鄰苯雙硫醇,由STM高解析影像及IRRAS分析雙硫醇分子是以單一硫醇端鍵結方式存在,未鍵結硫醇端與還原金屬將可形成良好共價鍵結。in-situ STM成功觀測出金屬於苯硫酚表面是以三維島狀成長,而鄰苯雙硫醇修飾表面則是以二維層狀方式沈積單層金屬薄膜,金於電極表面還原形成(6 × 2r13)錯合結構,並由剝除法實驗得知硫醇分子存在於兩金屬層間,未被金屬層轉至表面脫附剝除。分析結果得知雙硫醇是藉由未鍵結硫醇端與溶液中還原金屬形成良好鍵結,並形成良好平整之二維金屬薄膜層,單硫醇分子未有額外硫醇端,沈積金屬則以島狀聚集於修飾層表面,致使無法形成層狀金屬薄膜。
本研究也嘗試觀測硫醇分子於金(111)吸附行為,選用末端官能基含有醇基(-OH)之親水端之11-mercapto-1-undecanol (MUO)硫醇分子進行觀測,由此可比較末端官能基及載體影響,STM結果顯示在低覆蓋度分子先呈現平躺於金電極表面,為條紋狀的(12 × ��3)結構,隨電極表面分子覆蓋度增加,其吸附結構轉為較為緊密的(r3 × r3)R30°之高覆蓋度結構,此為六方最密堆積排列方式,並明顯解析出硫醇蝕刻金載體表面行為,統稱此最終吸附之飽和相結構,結果得知硫醇分子會因載體差異而產生不同吸附機制,但不論分子或載體為何,最後均呈現單一種(r3 × r3)R30°之飽和相結構。
另一主題本論文則著重於自組裝方式來建構奈米結構分子薄膜,則利用非共價鍵結方式吸附於金單晶表面,選用分子主要具備有半導體特性的pentacene與Fullerene-C60,實驗中利用液相浸泡之自組裝方式,成功的於金(111)與金(100)表面製備出具規則pentacene單分子薄膜層,而pentacene是目前載子移動性最高的有機材料,而C60為良好電子受體(Electron acceptor),藉此pentacene與C60之間以Donor-Acceptor作用力形成良好複合雙層超分子結構,STM觀測出C60於pentacene修飾之金(111)表面上形成(2r3 × 2r3)R30°及“in phase”結構。此特殊建構方式可發現分子之間及分子與載體作用力是主要主導整體分子架構,就此可進行載體表面改質,目的在於改變分子於載體的作用力,實驗中則選用具備良好穩定性與規則度的碘進行修飾,此概念成功製備出具高規則度與高覆蓋度之C60分子薄膜層,C60於碘修飾之金(111)表面上呈現出兩種吸附結構,分別為phase I-“(2r3 × 2r3)R30°”以及phase II- “p(2 × 2)”吸附結構,在phase II其C60則是被侷限在吸附位置上,結構分析得知C60與碘分子層間有錯位情形,兩層結構間無法完全吻合堆疊,導致有局部電子雲分佈密度不均勻,會有C60被栓於固定位置現象發生,因此在STM影像上可明顯觀測出差異,在此型態上可清楚觀測出C60內部結構形貌圖。實驗中也嘗試將電位負掃描至0.35 V,主要目的是將碘從C60與金(111)間移除,結果發現其C60在碘移除後仍可保持高規則度吸附結構,碘原子修飾對於整體而言扮演相當重要角色,可依實驗需要來製備不同C60分子層。
In-situ electrochemical scanning tunneling microscopy (STM) and cyclic voltammetry (CV) were used to examine organosulfurs molecules, including benzenethiol, 1,6-hexanedithiol, 1,9-nonaedithiol, 1,2-benzenedithiol, and 1,3-benzenedithiol, adsorbed on well-ordered Pt(111) electrodes in 0.1 M HClO4. Electrochemical potential and molecular flux were found to be dominant factors in determining the growth mechanisms, final coverages, and spatial structures of these organic adlayers. Depending on the concentration of the organosulfur, a molecular adlayer was self-assembled via the nucleation-and-growth mechanism or the random fill-in mechanism. Low and high organosulfurs concentrations respectively produced two ordered structures, (2 × 2) and (r3 × r3)R30°, between 0.05 and 0.3 V. The insensitivity of the structure of dithiol adlayers with their chemical structure was explained by upright molecular orientation with the formation of one Pt-S bond per dithiol molecule. All organosulfurs were adsorbed so strongly on Pt(111) electrodes that switching the potential negatively to the onset of hydrogen evolution in 0.1 M HClO4 or water reduction in 1 M KOH could not displace organosulfurs admolecules.
In the following we present results of examining the gold deposition on benzenethiol (BT) and 1,2-benzenedithiol (BDT) coated Pt(111) electrode. STM and IRRAS results indicated that one SH group of BDT was pendant in the electrolyte. These two organic surface modifiers resulted in 3D and 2D gold islands at BT and BDT-coated Pt(111) electrodes, respectively. Molecular resolution STM revealed an ordered array of (6 × 2r13) after a full monolayer of gold was plated on the BDT/Pt(111) electrode. Stripping voltammetric analysis indicates that gold adatoms are co-deposited with the BDT adlayer rather inserting between BDT and Pt substrate. It seems that the BDT adlayer acted as the template for gold deposited on Pt(111). This study demonstrates unambiguously that organic surface modifiers could contribute greatly to the electrodeposition of metal adatoms.
The second project summarizes the adsorption behavior of an OH-terminated alkanthiol, 11-mercapto-1-undecanol (MUO), on Au(111) surface. The different characteristics between hydroxyl and methyl groups on the adlayer structure are compared in the Pt(111) electrodes. The after growth of an adsorbed cluster develops first along the face-centered-cubic (fcc) position of the herringbone structure. However, the phase revolution and adlayer structure are controlled by the electrolyte used and by the dose concentration of MUO. The MUO molecules can adsorb in a flat-lying orientation at low MUO concentrations, leading to a striped phase with a molecular arrangement of (12 × r3). When the MUO coverage becomes high, the molecular axis of MUO will tilt from the Au(111) plane, forming a saturated, condensed phase identified as (r3 × r3)R30°.
Finally focused on the molecular assembles of molecules such as pentacene and fullerenes-C60, non-covalently bonded to metal single crystal surfaces, because those molecules are important building blacks for the construction of nanostructures. An ordered adlayers of pentacene on a Au(111) and Au(100) surfaces were successfully prepared using the self-organization technique in a benzene solution. Because of the electron-rich characteristic, the pentacene monolayer acts as a template to incorporate electron-accepting fullerenes, forming a stable C60/pentacene complex adlayer. For the C60/pentacene complex adlayer, molecular resolution STM revealed two ordered arrays, (2r3 × 2r3)R30° and “in phase” structures, for the C60 molecules respected to the Au(111) substrate. The competition between adsorbate-adsorbate and adsorbate-substrate interaction is an issue that has been addresses repeatedly in experiments and theories. Here we present other system, by using iodine-modified Au(111) to adjust the molecule-substrate interaction, a highly ordered C60 was prepared by SAMs technique. Two lattice structures, (2r3 × 2r3)R30° and p(2 × 2), were imaged for this C60 adlayer. For the p(2 × 2) structure, C60 molecules are frozen on the substrate due to the asymmetrical interaction to the neighboring iodine atoms. Therefore, intramolecular structure of C60 was clearly imaged by a STM. The iodine template layer in the C60/I/Au(111) electrode can be detached by electrochemically desorption without affecting the ordering of the C60 adlayer.
目錄
摘要 I
Abstract IV
謝 誌 VII
目錄 IX
圖目錄 XIIII
第一章 緒論 1
1.1 有機硫醇分子在單晶過渡金屬表面研究 1
1.2 電化學還原金屬沈積於硫醇修飾之金屬載體表面行為 3
1.3 研究自組裝有機半導體分子於電極表面 7
1.4 金電極表面重排現象(Reconstruction of Gold Surface) 9
1.5 伏特安培法(Voltammetry) 15
1.6 電化學掃描式電子穿隧顯微鏡(EC- STM) 17
1.7 掃描穿隧能譜 (Scanning Tunneling Spectroscopy, STS) 21
1.8 反射吸收式紅外光譜技術Infrared Reflection-Adsorption Spectroscopy (IRRAS) 22
1.9 參考文獻 25
第貳章、實驗部份 35
2.1 實驗藥品 35
2.2 氣體部份 36
2.3 金屬材料部份 36
2.4 儀器設備 36
2.5 STM探針製備 38
2.6 單晶電極製備 39
2.7 實驗步驟 41
第三章 有機硫醇分子於鉑(111)電極之研究 44
3.1 前言 44
3.2 結果與討論 46
3.2.1 有機雙硫醇分子修飾於鉑(111)之CV圖 46
3.2.2 開路電位法(Open-circuit potential, OCP)探討單、雙硫醇於鉑(111)電極自組裝行為 49
3.2.3 有機硫醇分子於鉑(111)表面吸附結構 51
3.2.4 雙硫醇分子於鉑(111)表面成核成長行為 54
3.2.5 吸附構型由p(2 × 2)轉置為(��3 × ��3)R30o結構 55
3.3 結論 56
3.4 參考文獻 66
第四章 STM觀測11碳氫氧基硫醇(11-Mercapto-1-undecanol)分子於金(111)吸附行為 70
4.1 前言 70
4.2 結果與討論 71
4.2.1 循環伏安儀量測(Cyclic Voltammetry, CV) 71
4.2.2 In-situ STM觀測MUO分子於金(111)吸附行為 73
4.2.3 解析條紋狀分子(Stripe phase)吸附結構 76
4.2.4 飽和相(Saturation phase, φ)之分子吸附結構 76
4.2.5 電化學剝除法分析MUO於金(111)覆蓋度 77
4.2.6 分子模擬圖說明MUO吸附行為 77
4.3 結論 79
4.4 參考文獻 90
第五章 電化學還原沈積金薄膜於硫醇自組裝之鉑(111)表面 94
5.1 前言 94
5.2 結果與討論 96
5.2.1 循環伏安圖(Cyclic Voltammetry) 96
5.2.2 In-situ STM觀測1,2-Benzenedithiol於鉑(111)吸附行為 97
5.2.3 電化學還原法沈積金在硫醇修飾之鉑(111)表面 99
5.2.4 電化學剝除法分析金薄膜沈積位置 101
5.2.5 In-situ STM分析金沈積於Benzenethiol修飾之鉑(111)表面 102
5.3 結論 102
5.4 參考文獻 112
第六章 複合組裝有機半導體材料C60於pentacene修飾金(111)表面 116
6.1 前言 116
6.2 結果與討論 118
6.2.1 循環伏安儀法研究有機半導體分子穩定性 118
6.2.2 STM觀測pentacene自組裝於金表面吸附結構 120
6.2.3 自組裝C60單分子層於pentacene修飾之金(111)表面 124
6.2.4 Scanning Tunneling Spectroscopy (STS)量測pentacene與C60/Pentacene-金(111)表面電性 126
6.3 結論 127
第七章 利用碘修飾層之金(111)電極製備高規則度C60分子薄膜 144
7.1 前言 144
7.2 結果與討論 145
7.2.1 循環伏安儀之量測 145
7.2.2 STM觀測C60於金(111)及碘修飾之金(111)吸附行為 146
7.2.3 STM高解析碘修飾之金(111)表面C60結構 149
7.2.4 電化學法剝除碘修飾層對C60自組裝薄膜影響 152
7.3 結論 153
7.4 參考文獻 160
-Curriculum Vitae- 165
第一.二章
[1]H. Sellers, A. Ulman, Y. Shnidman, and James E. Eilers,“Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers”J. Am. Chem. Soc. 115, 9389-9401 (1993).
[2]E. Schmidt, W. Schurig, and W. Sellschopp,“Versuche uber die kondensation von wasserdampf in film-and tropemform”Tech. Mech. Thermodyn. 1, 53-63 (1930).
[3]W. M. Nagle and T. B. Drew, Trans. Am. Inst. Chem. Eng. 30, 217 (1933).
[4]H. Emmons,“The mechanism of drop condensation”Trans. Am. Inst. Chem. Eng. 35, 109 (1933).
[5]W. C. Bigelow, D. L. Pickett, and W. A. Zisman,“Oleo-phobic Monolayers”J. Colloid Interface Sci. 1, 513-538 (1946).
[6]H. Kuhn and A. Ulman, ed.“In Thin Films”Academic Press: New York 20 (1995).
[7]R. G. Nuzzo and D. L. Allara,“Adsorption of bifunctional organic disulfides on gold surfaces”J. Am. Chem. Soc. 105, 4481 (1983).
[8]A. J. Ricco, L. J. Kepley, R. C. Thomas, L. Sun, and R. M. Crooks,“Technical Digest Series”IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island SC; IEEE: Piscataway, NJ, 114 (1992).
[9]L. Haussling, W. Knoll, H. Ringsdorf, F. J. Schmitt, and J. Yang, Makromol. Chem. Macromol. Symp. 46, 145 (1991).
[10]P. A. Pevzner and R. J. Lipshutz,“Proceedings of Mathematical Foundations of Computer Science, 19th International Symposium, Kosice, Slovakia”Springer-Verlag: Berlin, Germany, 143 (1991).
[11]K. L. Prime and G. M. Whitesides,“Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers”J. Am. Chem. Soc. 115, 10714-10721. (1993).
[12]P. A. DiMilla, J. P. Folkers, H. A. Biebuyck, R. Haerter, G. P. Lopez, and G. M. Whitesides,“Wetting and Protein Adsorption on Self-Assembled Monolayers of Alkanethiolates Supported on Transparent Films of Gold” J. Am. Chem. Soc. 116, 2225 (1994).
[13]J. Billy and M. R. Abon, “Work Function Changes with. Sulfur Coverageon Pt(111) ”Surf. Sci. 146, L525-532 (1984).
[14]D. A. Stern, E. Wellner, G. N. Salaita, L. Laguren-Davidson, F. Lu, N. Batina, D. G. Frank, D. C. Zapien, N. Walton, and A. T. Hubbard,“Adsorbed thiophenol and related compounds studied at platinum(111) electrodes by EELS, Auger spectroscopy, and cyclic voltammetry”J. Am. Chem. Soc. 110, 4885-4893. (1988).
[15]L. J. Wan, M. Terashima, H. Noda, and M. Osawa,“Molecular Orientation and Ordered Structure of Benzenethiol Adsorbed on Gold(111)”J. Phys. Chem. B 104 (15), 3563-3569 (2000).
[16]Cindra A. Widrig, Carla A. Alves, and Marc D. Porter,“Scanning tunneling microscopy of ethanethiolate and n-octadecanethiolate monolayers spontaneously absorbed at gold surfaces”J. Am. Chem. Soc. 113, 2805-2810. (1991).
[17](a) R. G. Nuzzo, E. M. Korenic, and L. H. Dubois,“Studies of the temperature-dependent phase behavior of long chain n-alkyl thiol monolayers on gold”J. Chem. Phys. 93, 767 (1990). (b) C. E. D. Chidsey, C. R. Bertozzi, T. M. Putvinski, and A. M. Mujsce,“Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: electroactive self-assembled monolayers”J. Am. Chem. Soc. 112, 4301-4306. (1990).
[18]M. Collinson, E. F. Bowden, and M. J. Tarlov,“Voltammetry of covalently immobilized cytochrome c on self-assembled monolayer electrodes”Langmuir 8, 1247-1250. (1992).
[19]P Wagner, M Hegner, P Kernen, F Zaugg, and G Semenza,“Covalent immobilization of native biomolecules onto Au(111) via N-hydroxysuccinimide ester functionalized self-assembled monolayers for scanning probe microscopy”Biophys J. 70, 2052–2066. (1996).
[20]J. A. Rodriguez and D. W. Goodman,“Surface science studies of the electronic and chemical properties of bimetallic systems”J. Phys. Chem. 95, 4196-4206. (1991).
[21]D. M. Kolb,“The Initial Stages of Metal Deposition: An Atomic View”Schering Lecture, Schering Lecturer`s Publications, Berlin 1 (1991).
[22]Y. Nakai, M. S. Zei, D. M. Kolb, and G. Lehmpfuhl,“A LEED and RHEED investigation of Cu on Au(111) in the underpotential region”Ber. Bunsenges. Phys. Chem. 88, 340-345 (1984).
[23]O. M. Magnussen,“Ordered Anion Adlayers on Metal Electrode Surfaces”Chem. Rev. 102, 679-726. (2002).
[24]M. Watanabe and S. Motoo,“Electrocatalysis by ad-atoms Part II: Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms”J. Electroanal. Chem. 60, 267-273 (1975).
[25]R. R. Adzic,“In Advances in Electrochemistry and Electrochemical Engineering”Gericher, H., Tobias, C. W., Eds.; Wiley-Interscience: New York 13, 159-260. (1984).
[26]D. M. Kolb,“In Advances in Electrochemistry and Electrochemical Engineering”Gericher, H., Tobias, C. W., Eds.; Wiley-Interscience: New York 11 (1978).
[27]K. Sashikata, N. Furuya, and K. Itaya,“In situ scanning tunneling microscopy of underpotential deposition of copper on platinum(111) in sulfuric acid solutions”J. Electroanal. Chem. 316, 361-368. (1991).
[28]H. Matsumoto, J. Oda, J. Inukai, and M. Ito,“Coadsorption of copper and halogens on Pt(111) and Au(111) electrode surfaces studied by scanning tunneling microscopy”J. Electroanal. Chem. 356, 275 (1993).
[29]Z.-L. Wu, Z.-H. Zang, and S.-L. Yau,“Electrodeposition of Copper at Well-Defined Pt(111) and Rh(111) Electrodes in Sulfuric Acid Solutions: Studying with In Situ Scanning Tunneling Microscopy”Langmuir 16, 3522-3528. (2000).
[30]J. H. White and H. D. Abruna,“Coadsorption of copper with anions on platinum (111): the role of surface redox chemistry in determining the stability of a metal monolayer”J. Phys. Chem. 94, 894-900. (1990).
[31]R. Gomez, J. M. Feliu, and H. D. Abruna,“Induced Adsorption of Chloride and Bromide by Submonolayer Amounts of Copper Underpotentially Deposited on Pt(111)”J. Phys. Chem. 98, 5514-5521. (1994).
[32]E. Herrero, L. J. Buller, and H. D. Abruna,“Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials”Chem. Rev. 101, 1897-1930. (2001).
[33]K. T. Carron and L. G. Hurley,“Axial and azimuthal angle determination with surface-enhanced Raman spectroscopy: thiophenol on copper, silver, and gold metal surfaces”J. Phys. Chem. 95, 9979-9984. (1991).
[34]E. Sabatani, J. Cohen-Boulakia, M. Bruening, and I. Rubinstein“Thioaromatic monolayers on gold: a new family of self-assembling monolayers”Langmuir 9, 2974-2981. (1993).
[35]T. Boland and B. D. Ratner,“Two-Dimensional Assembly of Purines and Pyrimidines on Au(111)”Langmuir 10, 3845-3852. (1994).
[36]J. A. M. Sondag-Huethorst and L. G. J. Fokkink,“Electrochemical Characterization of Functionalized Alkanethiol Monolayers on Gold”Langmuir 11, 2237-2241. (1995).
[37]G. E. Poirier, E. D. Pylant, and J. M. White,“Crystalline structures of pristine and hydrated mercaptohexanol self-assembled monolayers on Au(111)”J. Chem. Phys. 105, 2089 (1996).
[38]A. S. Dakkouri, D. M. Kolb, R. Edelstein-Shima, and D. Mandler,“Scanning Tunneling Microscopy Study of L-Cysteine on Au(111)”Langmuir 12, 2849-2852. (1996).
[39](a) A. W. Czanderna, David E. King, and D. Spaulding,“Metal overlayers on organic functional groups of self-organized molecular assemblies. 1. X-ray photoelectron spectroscopy of interactions of Cu/COOH on 11-mercaptoundecanoic acid”J. Vac. Sci. Technol. A 19 (5), 2607-2613. (1991). (b) O Cavalleri, S. E. Gilbert, and K Kern,“Growth manipulation in electrodeposition with self-assembled monolayers”Chem. Phys. Lett. 269 (5-6), 479-484 (1997).
[40]M. A. Schneeweiss, H. Hagenström, M. J. Esplandiu, and D. M. Kolb“Electrolytic metal deposition onto chemically modified electrodes”Appl. Phys. A 69, 537-551. (1999).
[41]J. A. M. Sondag-Huethorst and L. G. J. Fokkink,“Electrochemical Characterization of Functionalized Alkanethiol Monolayers on Gold” Langmuir 11, 2237-2241 (1995).
[42]D. Kim and A. Osuka,“Photophysical Properties of Directly Linked Linear Porphyrin Arrays”J. Phys. Chem. A 107 (42), 8791-8816 (2003).
[43]D. M. Guldi,“Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models”Chem. Soc. Rev. 31, 22 - 36. (2002).
[44]M. E. El-Khouly, O. Ito, P. M. Smith, and F. D’Souza,“Intermolecular and supramolecular photoinduced electron transfer processes of fullerene-porphyrin/phthalocyanine systems”J. Photochem. Photobiol. C5, 79-104 (2004).
[45]S. Fukuzumi and H. Imahori,“Porphyrin- and Fullerene-Based Molecular Photovoltaic Devices”Adv. Funct. Mater. 14 (6), 525-536 (2004).
[46]P. D. W. Boyd and C. A. Reed,“Fullerene-Porphyrin Constructs”Acc. Chem. Res. 38 (4), 235-242 (2005).
[47]K. Itaka, M. Yamashiro, J. Yamaguchi, M. Haemori, S. Yaginuma, Y. Matsumoto, M. Kondo, and H. Koinuma,“High-Mobility C60 Field-Effect Transistors Fabricated on Molecular- Wetting Controlled Substrates”Adv. Mater. 18, 1713-1716 (2006).
[48]K. E. Drexler,“Nanosystems: molecular machinery, manufacturing, and computation”John Wiley & Sons: New York, Chichester (1992).
[49]M. Krummenacker and J. Lewis, Eds.,“Prospects in nanotechnology: toward molecular manufacturing”John Wiley & Sons: New York (1995).
[50]B. Hasenknopf, J. M. Lehn, N. Boumediene, A. Dupont-Gervais, A. Van Dorsselaer, B. Kneisel, and D. Fenske,“Self-Assembly of Tetra- and Hexanuclear Circular Helicates”J. Am. Chem. Soc. 119 (45), 10956-10962 (1997).
[51]G. M. Whitesides, J. P. Mathias, and C. T. Seto,“Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures”Science 254 (5036), 1312-1319 (1991).
[52]S. Leininger, B. Olenyuk, and P. J. Stang,“Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals”Chem. Rev. 100 (3), 853-908 (2000).
[53]F. Jäckel, M. D. Watson, K. Müllen, and J. P. Rabe,“Prototypical Single-Molecule Chemical-Field-Effect Transistor with Nanometer-Sized Gates”Phys. Rev. Lett. 92 (18), 188303 (2004).
[54](a) J. V. Barth, G. Costantini, and K. Kern,“Engineering atomic and molecular nanostructures at surfaces”Nature 437 (7059), 671-679 and references therein. (2005). (b) S. Stepanow, M. Lingenfelder, A. Dmitriev, H. Spillmann, E. Delvigne, N. Lin, X. Deng, C. Cai, J. V. Barth, and K. Kern,“Steering molecular organization and host-guest interactions using two-dimensional nanoporous coordination systems”Nat. Mater. 3, 229 - 233 (2004). (c) S. Stepanow, N. Lin, J. V. Barth, and K. Kern“Non-covalent binding of fullerenes and biomolecules at surface-supported metallosupramolecular receptors”Chem. Commun. (20), 2153-2155 (2006).
[55]S. D. Feyter and F. C. D. Schryver,“Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy”Chem. Soc. Rev. 32 (3), 139-150 (2003).
[56](a) K. Itaya,“In situ scanning tunneling microscopy in electrolyte solutions”Prog. Surf. Sci. 58 (98), 121-247 (1998). (b) S. Yoshimoto,“Molecular Assemblies of Functional Molecules on Gold Electrode Surfaces Studied by Electrochemical Scanning Tunneling Microscopy: Relationship between Function and Adlayer Structures”Bull. Chem. Soc. Jpn. 79 (8), 1167-1190 (2006). (c) S. Yoshimoto and K. Itaya,“Advances in supramolecularly assembled nanostructures of fullerenes and porphyrins at surfaces”J. Porphyrins Phthalocyanines 11 (05), 313 (2007).
[57]H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene”Nature 318 (6042), 162-163 (1985).
[58]W. E. Billups and M. A. Ciufolini, Eds.,“Buckminsterfullerenes”VCH: New York (1993).
[59]X.-D. Wang, Q. K. Xue, Y. Hasegawa, T. Hashizume, and H. Shinohara,“Scanning tunneling microscopy study of fullerenes”Prog. Surf. Sci. 51, 263-408 (1996).
[60]P. C. M. Grim, S. D.Feyter, A. Gesquière, P. Vanoppen, M. Rüker, S. Valiyaveettil, G. Moessner, K. Müllen, and F. C. D. Schryver,“Submolecularly Resolved Polymerization of Diacetylene Molecules on the Graphite Surface Observed with Scanning Tunneling Microscopy”Angew. Chem. Int. Ed. 36 (23), 2601-2603 (1997).
[61]Y. Okawa and M. Aono,“Materials science: Nanoscale control of chain polymerization”Nature 409 (6821), 683-684 (2001).
[62]A. Miura, S. D. Feyter, M. M. S. Abdel-Mottaleb, A. Gesquiere, P. C. M. Grim, G. Moessner, M. Sieffert, M. Klapper, K. Mullen, and F. C. D. Schryver,“Light- and STM-Tip-Induced Formation of One-Dimensional and Two-Dimensional Organic Nanostructures”Langmuir 19 (16), 6474-6482 (2003).
[63](a) M. Kunitake, N. Batina, and K. Itaya,“Self-Organized Porphyrin Array on Iodine-Modified Au(111) in Electrolyte Solutions: In Situ Scanning Tunneling Microscopy Study”Langmuir 11, 2337-2340. (1995). (b) M. Kunitake and K. Itaya,“Highly ordered molecular arrays formed on iodine-modified Au(111) in solution: in situ STM imaging”J. Electroanal. Chem. 405, 245-250 (1996). (c) M. Kunitake, U. Akiba, N. Batina, and K. Itaya,“Structures and Dynamic Formation Processes of Porphyrin Adlayers on Iodine-Modified Au(111) in Solution: In Situ STM Study”Langmuir 13 (6), 1607-1615 (1997).
[64](a) C. Safarowsky, L. Merz, A. Rang, P. Broekmann, B. A. Hermann, and C. A. Schalley,“Second-Order Templation: Ordered Deposition of Supramolecular Squares on a Chloride-Covered Cu(100) Surface”Angew. Chem. Int. Ed. 43 (10), 1291-1294 (2004). (b) C. Safarowsky, K. Wandelt, and P. Broekmann,“Formation of Supramolecular Cavitands on Copper Electrode Surfaces”Langmuir 20 (19), 8261-8269 (2004).
[65]S. Yoshimoto, A. Saito, E. Tsutsumi, F. D'Souza, O. Ito, and K. Itaya, “Electrochemical Redox Control of Ferrocene Using a Supramolecular Assembly of Ferrocene-Linked C60 Derivative and Metallooctaethylporphyrin Array on a Au(111) Electrode”Langmuir 20 (25), 11046-11052 (2004).
[66]M. Stöhr, T. Wagner, M. Gabriel, B. Weyers, and R. Möller,“Binary Molecular Layers of C60 and Copper Phthalocyanine on Au(111): Self-Organized Nanostructuring”Adv. Funct. Mater. 11 (3), 175-178 (2001).
[67]S. J. H. Griessl, M. Lackinger, F. Jamitzky, T. Markert, M. Hietschold, and W. M. Heckl,“Room-Temperature Scanning Tunneling Microscopy Manipulation of Single C60 Molecules at the Liquid-Solid Interface: Playing Nanosoccer”J. Phys. Chem. B 108 (31), 11556-11560 (2004).
[68](a) J.-M. Liu, H.-M. Zhang, L.-J. Wan, Q.-Y. Zheng, C.-L. Bai, G.-B. Pan,“Configurations of a calix[8]arene and a C-60/calix[8]arene complex on a Au(111) surface”Angew. Chem. Int. Ed. 42 (24), 2747-2751 (2003). (b) G. B. Pan, X. H. Cheng, S. Hoger, and W. Freyland,“2D Supramolecular Structures of a Shape-Persistent Macrocycle and Co-deposition with Fullerene on HOPG” J. Am. Chem. Soc. 128 (13), 4218-4219 (2006).
[69]E. Mena-Osteritz and P. Bäuerle,“Complexation of C60 on a Cyclothiophene Monolayer Template”Adv. Mater. 18 (4), 447-451 (2006).
[70](a) S. Yoshimoto, E. Tsutsumi, R. Narita, Y. Murata, M. Murata, K. Fujiwara, K. Komatsu, O. Ito, and K. Itaya,“Epitaxial Supramolecular Assembly of Fullerenes Formed by Using a Coronene Template on a Au(111) Surface in Solution”J. Am. Chem. Soc. 129 (14), 4366-4376 (2007). (b) S. Yoshimoto and K. Itaya,“Advances in supramolecularly assembled nanostructures of fullerenes and porphyrins at surfaces”J. Porphyrins Phthalocyanines 11 (05), 313 (2007).
[71]L. J. Wan,“Fabricating and Controlling Molecular Self-Organization at Solid Surfaces: Studies by Scanning Tunneling Microscopy”Acc. Chem. Res. 39 (5), 334-342 (2006).
[72] D. Gust, T. A. Moore, and A. L. Moore,“Mimicking Photosynthetic Solar Energy Transduction”Acc. Chem. Res. 34 (1), 40-48 (2001).
[73]J. Puigdollers, C. Voz, A. Orpella, I. Martin, M. Vetter, and R. Alcubilla, “Pentacene thin-films obtained by thermal evaporation in high vacuum”Thin Solid Films 427 (1-2), 367-370 (2003). 85
[74]J. H. Schön, Ch. Kloc, E. Bucher, and B. Batlogg,“Single crystalline pentacene solar cells”Synth. Met. 115 (1-3), 177-180. (2000).
[75]G. A. Somorjai,“In: Chemistry in Two Dimensions: Surface”Ithaca, N. Y.: Cornell University Press (1981).
[76]K. Müller, Ber Bunsenges Phys. Chem. 90, 184 (1986).
[77]G. A. Somorjai and M. A. Van Hove,“Adsorbate-induced restructuring of surfaces”Prog. Surf. Sci. 30 (3-4), 201-231 (1989).
[78](a) V. Heine and L.D. Marks,“The role of volume and pairwise forces in the reconstruction of noble-metal surfaces”J. Electron Spectrosc. Relat. Phenom. 38 (1-4), 229-232 (1986). (b) V Heine and L.D. Marks“Competition between pairwise and multi-atom forces at noble-metal surfaces”Surf. Sci. 165 (1), 65-82 (1986).
[79]H. Ibach,“Adsorbate-induced surface stress”J. Vac. Sci. Technol. A 12 (4), 2240-2245 (1994).
[80]G. Poirier,“Characterization of Organosulfur Molecular Monolayers on Au(111) using Scanning Tunneling Microscopy”Chem. Rev. 97 (4), 1117-1128 (1997).
[81]D. M. Kolb,“Reconstruction phenomena at metal-electrolyte interfaces”Prog. Surf. Sci. 51 (2), 109-173 (1996).
[82]A. Hamelin,“Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces”J. Electroanal. Chem. 407 (1-2), 1-11 (1996).
[83]K. Sato, S. Yoshimoto, J. Inukai, and K. Itaya,“Effect of sulfuric acid concentration on the structure of sulfate adlayer on Au(111) electrode”Electrochem. Commun. 8, 725-730 (2006).
[84](a) J. Lipkowski and P. N. Ross, Eds.,“Structure of Electrified Interfaces”Wiley-VCH: New York (1993). (b) A. Wieckowski, Ed“Interfacial Electrochemistry”Marcel Dekker: New York (1999).
[85]D. M. Kolb and J. Schneider,“Surface reconstruction in electrochemistry-Au(100)-(5×20), Au(111)-(1×23) and Au(1110)-(1×2)”Electrochim. Acta 31 (8), 929-936 (1986).
[86]O. M. Magnussen, R. J. H. J BEHM, D. M. Kolb, and N. Batina,“An in-situ scanning tunneling microscopy study of electrochemically induced hex–(1×1) transitions on Au(100) electrodes”Surf. Sci. 296 (3), 310-332 (1993).
第三章
[1]A. Ulman,“Formation and Structure of Self-Assembled Monolayers” Chem. Rev. 96 (4), 1533-1554 (1996).
[2]R. M. Crooks and A. J. Ricco,“New Organic Materials Suitable for Use in Chemical Sensor Arrays”Acc. Chem. Res. 31 (5), 219-227 (1998).
[3]H. O. Finklea, and D. D. Hanshew,“Electron-transfer kinetics in organized thiol monolayers with attached pentaammine(pyridine)ruthenium redox centers”J. Am. Chem. Soc. 114 (9), 3173-3181. (1992).
[4]R. J. Forster and L. R. Faulkner,“Electrochemistry of Spontaneously Adsorbed Monolayers. Equilibrium Properties and Fundamental Electron Transfer Characteristics”J. Am. Chem. Soc. 116 (12), 5444-5452. (1994).
[5]C. E. D. Chidsey, C. R. Bertozzi, T. M. Putvinski, and A. M. Mujsce,“Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: electroactive self-assembled monolayers”J. Am. Chem. Soc. 112 (11), 4301-4306. (1990).
[6]D. A. Stern, E. Wellner, G. N. Salaita, L. Laguren-Davidson, F. Lu, N. Batina, D. G. Frank, D. C. Zapien, N. Walton, and A. T. Hubbard,“Adsorbed thiophenol and related compounds studied at platinum(111) electrodes by EELS, Auger spectroscopy, and cyclic voltammetry”J. Am. Chem. Soc. 110 (15), 4885-4893. (1988).
[7]A. T. Hubbard,“Electrochemistry at well-characterized surfaces”Chem. Rev. 88 (4), 633-656. (1988).
[8]M. P. Soriaga,“Surface coordination chemistry of monometallic and bimetallic electrocatalysts”Chem. Rev. 90 (5), 771-793. (1900).
[9]Y. C. Yang, Y. P. Yen, L. Y. OuYang, S. L. Yau, and K. Itaya,“Elucidation of the Deposition Processes and Spatial Structures of Alkanethiol and Arylthiol Molecules Adsorbed on Pt(111) Electrodes with in Situ Scanning Tunneling Microscopy”Langmuir 20 (23), 10030-10037 (2004).
[10]L. Y. Ou Yang, S. L. Yau, and K. Itaya,“Scanning Tunneling Microscopy of Sulfur and Benzenethiol Chemisorbed on Ru(0001) in 0.1 M HClO4”Langmuir 20 (11), 4596-4603 (2004).
[11]C. W. J. Bol, C. M. Friend, and X. Xu,“Role of Intermolecular Interactions in Determining Structure and Reactivity on Surfaces: Benzenethiol on Rh(111)”Langmuir 12 (25), 6083-6090 (1996).
[12]S. S. Kim, Y. Kim, H. I. Kim, S. H. Lee, T. R. Lee, S. S. Perry, and J. W. Rabalais,“Chemisorption site of methanethiol on Pt{111}”J. Chem. Phys. 109 (21), 9574-9582 (1998).
[13]C. J. Fisher, C. Bittencourt, D. P. Woodruff, A. S. Y. Chan, and R. G. Jones,“A structural study of the interaction of methanethiol with Pt(111) using X-ray standing waves”Surf. Sci 516, 1-15 (2002).
[14]Y. E. Sung, W. Chrzanowski, A. Zolfaghari, G. Jerkiewicz, and A. Wieckowski,“Structure of Chemisorbed Sulfur on a Pt(111) Electrode” J. Am. Chem. Soc. 119 (1), 194-200 (1997).
[15]J. H. Chen, S. L. Yau, and S. C. Chang,“An in Situ Scanning Tunneling Microscopy and Cyclic Voltammetric Study of Iodobenzene and Iodoheptane Molecules Adsorbed on a Pt(111) Electrode”J. Phys. Chem. B 106 (35), 9079-9085 (2002).
[16]N. Fishelson, I. Shkrob, O. Lev, J. Gun, and A. D. Modestov,“Studies on Charge Transport in Self-Assembled Gold-Dithiol Films: Conductivity, Photoconductivity, and Photoelectrochemical Measurements”Langmuir 17 (2), 403-412 (2001).
[17]M. Brust, P. M. Blass, and A. J. Bard,“Self-Assembly of Photoluminescent Copper(I)-Dithiol Multilayer Thin Films and Bulk Materials”Langmuir 13 (21), 5602-5607 (1997).
[18](a) T. Y. B. Leung, M. C. Gerstenberg, D. J. Lavrich, G. Scoles, F. Schreiber, and G. E. Poirier,“1,6-Hexanedithiol Monolayers on Au(111): A Multitechnique Structural Study”Langmuir 16 (2), 549-561 (2000). (b) M. J. Esplandiu, F. P. Cometto, E. M. Patrito, and V. A. Macagno,“Reactivity of 1,8-octanedithiol monolayers on Au(111): Experimental and theoretical investigation”J. Electroanal. Chem. 579, 13-23 (2005).
[19]S. W. Joo, S. W. Han, and K. Kim,“Adsorption Characteristics of p-Xylene-,'-dithiol on Gold and Silver Surfaces: Surface-Enhanced Raman Scattering and Ellipsometry Study”J. Phys. Chem. B 103 (49), 10831-10837 (1999).
[20]N. Garg and T. R. Lee,“Self-Assembled Monolayers Based on Chelating Aromatic Dithiols on Gold”Langmuir 14 (14), 3815-3819 (1998).
[21]J. Clavilier, A. Rodes, K. El Achi, and M. A. Zamakhchari,“Electrochemistry lectrochemistry at platinum single-crystal surfaces in acidic media-hydrogen and oxygen-adsorption”J. Chem. Phys. 14 (7-8), 1291-1337 (1991).
[22]H. G. Hong and W. Park,“Electrochemical Characteristics of Hydroquinone-Terminated Self-Assembled Monolayers on Gold”Langmuir 17 (8), 2485-2492 (2001).
[23](a) M. Cohen-Atiya and D. Mandler,“Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements”J. Electroanal. Chem. 550-551, 267 - 276 (2003). (b) W. k Paik, S. Eu, K. Lee, S. Chon, and M. Kim,“Electrochemical Reactions in Adsorption of Organosulfur Molecules on Gold and Silver: Potential Dependent Adsorption”Langmuir 16 (26), 10198-10205 (2000).
[24]P. Sautet and M. L. Bocquet,“Shape of molecular adsorbates in STM images: A theoretical study of benzene on Pt(111)”Phys. Rev. B 53 (8), 4910 (1996).
[25]A. Borg, J. C. Dunphy, T. Mitsui, D. F. Ogletree, and M. Salmeron“Chemisorption of atomic oxygen on Pd(111) studied by STM”Surf. Sci. 561, 69-78 (2004).
[26]S. L. Yau, Y. G. Kim, and K. Itaya,“In Situ Scanning Tunneling Microscopy of Benzene Adsorbed on Rh(111) and Pt(111) in HF Solution”J. Am. Chem. Soc. 118 (33), 7795-7803 (1996).
[27]M. P. Skegg, C. J. Fisher, J. J. Lee, V. R. Dhanak, D. P. Woodruff, and Robert G. Jones,“Atop adsorption site of sulphur head groups in gold-thiolate self-assembled monolayers”Surf. Sci. 389, 87-91 (2004).
[28]H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers,“Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers”J. Am. Chem. Soc. 115 (21), 9389-9401. (1993).
[29]M. C. Vargas, P. Giannozzi, A. Selloni, and G. Scoles,“Coverage-Dependent Adsorption of CH3S and (CH3S)2 on Au(111): a Density Functional Theory Study”J. Phys. Chem. B 105 (39), 9509-9513 (2001).
[30]B. Li, C. Zeng, Q. Li, B. Wang, L. Yuan, H. Wang, J. Yang, J. G. Hou, and Q. Zhu,“First-Principles Simulation of Scanning Tunneling Microscopy Images of Individual Molecules in Alkanethiol Self-Assembled Monolayers on Au(111)”J. Phys. Chem. B 107 (4), 972-984 (2003).
[31]C. Schonenberger, J. Jorritsma, J. A. M. Sondag-Huethorst, and L. G. J. Fokkink,“Domain Structure of Self-Assembled Alkanethiol Monolayers on Gold”J. Phys. Chem. 99 (10), 3259-3271. (1995).
[32]G. E. Poirier,“Characterization of Organosulfur Molecular Monolayers on Au(111) using Scanning Tunneling Microscopy”Chem. Rev. 97 (4), 1117-1128. (1997).
[33]H. Wano and K. Uosaki,“In Situ Dynamic Monitoring of Electrochemical Oxidative Adsorption and Reductive Desorption Processes of a Self-Assembled Monolayer of Hexanethiol on a Au(111) Surface in KOH Ethanol Solution by Scanning Tunneling Microscopy”Langmuir 21 (9), 4024-4033 (2005).
[34]M. J. Esplandiu, H. Hagenstrom, and D. M. Kolb,“Functionalized Self-Assembled Alkanethiol Monolayers on Au(111) Electrodes: 1. Surface Structure and Electrochemistry”Langmuir 17 (3), 828-838 (2001).
[35]W. P. Zhou, T. Baunach, V. Ivanova, and D. M. Kolb,“Structure and Electrochemistry of 4,4'-Dithiodipyridine Self-Assembled Monolayers in Comparison with 4-Mercaptopyridine Self-Assembled Monolayers on Au(111)”Langmuir 20 (11), 4590-4595 (2004).
[36]Y. Nagatani, T. Hayashi, T. Yamada, and K. Itaya,“Scanning Tunneling Spectroscopic Study of Bare and Iodine Modified Au(111) and Pt(111) in Aqueous Solution and in Vacuum”Jpn. J. Appl. Phys. 35, 720-728 (1996).
第四章
[1]L. H. Dubois and R. G. Nuzzo,“Synthesis, structure, and properties of model organic-surfaces”Annu. Rev. Phys. Chem. 43, 437-463 (1992).
[2]A. Ulman,“An Introduction to Ultrathin Films: From Langmuir-Blodgett to Self-Assembly”Academic Press: Boston (1991).
[3]A. Ulman,“Formation and Structure of Self-Assembled Monolayers”Chem. Rev. 96 (4), 1533-1554 (1996).
[4]R. M. Crooks and A. J. Ricco,“New Organic Materials Suitable for Use in Chemical Sensor Arrays”Acc. Chem. Res. 31 (5), 219-227 (1998).
[5]H. O. Finklea and D. D. Hanshew,“Electron-transfer kinetics in organized thiol monolayers with attached pentaammine(pyridine)ruthenium redox centers”J. Am. Chem. Soc. 114 (9), 3173-3181. (1992).
[6]R. J. Forster and L. R. Faulkner,“Electrochemistry of Spontaneously Adsorbed Monolayers. Equilibrium Properties and Fundamental Electron Transfer Characteristics”J. Am. Chem. Soc. 116 (12), 5444-5452. (1994).
[7]C. E. D. Chidsey, C. R. Bertozzi, T. M. Putvinski, and A. M. Mujsce“Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: electroactive self-assembled monolayers”J. Am. Chem. Soc. 112 (11), 4301-4306. (1990).
[8]D. M. Kolb and M. A. Schneeweiss,“The Initial Stages of Copper Deposition on Bare and Chemically Modified Gold Electrodes”phys. stat. sol. (a) 173 (1), 51-71 (1999).
[9]G. E. Poirier,“Mechanism of Formation of Au Vacancy Islands in Alkanethiol Monolayers on Au(111)”Langmuir 13 (7), 2019-2026 (1997).
[10]C. A. McDermott, M. T. McDermott, J.-B. Green, and M. D. Porter,“Structural Origins of the Surface Depressions at Alkanethiolate Monolayers on Au(111): A Scanning Tunneling and Atomic Force Microscopic Investigation”J. Phys. Chem. 99 (35), 13257-13267. (1995).
[11]C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo,“Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold”J. Am. Chem. Soc. 111 (1), 321-335. (1989).
[12]M. J. Esplandiu, H. Hagenstrom, and D. M. Kolb,“Functionalized Self-Assembled Alkanethiol Monolayers on Au(111) Electrodes: 1. Surface Structure and Electrochemistry”Langmuir 17 (3), 828-838 (2001).
[13]P. Fenter, A. Eberhardt, K. S. Liang, and P. Eisenberger,“Epitaxy and chainlength dependent strain in self-assembled monolayers”J. Chem. Phys. 106 (4), 1600-1608 (1997).
[14]C. Kodama and H. Nozoye,“Structural evolution of dibutyldisulfide adsorbed on Au(111)”Appl. Surf. Sci. 169-170, 100-103 (2001).
[15]K. Tamada, M. Hara, H. Sasabe, and W. Knoll,“Surface Phase Behavior of n-Alkanethiol Self-Assembled Monolayers Adsorbed on Au(111): An Atomic Force Microscope Study”Langmuir 13 (6), 1558-1566 (1997).
[16]R. Yamada and K. Uosaki,“In Situ, Real Time Monitoring of the Self-Assembly Process of Decanethiol on Au(111) in Liquid Phase. A Scanning Tunneling Microscopy Investigation”Langmuir 13 (20), 5218-5221 (1997).
[17](a) G. E. Poirier,“Coverage-Dependent Phases and Phase Stability of Decanethiol on Au(111)”Langmuir 15 (4), 1167-1175 (1999). (b) W. P. Fitts, J. M. White, and G. E. Poirier,“Low-Coverage Decanethiolate Structure on Au(111): Substrate Effects”Langmuir 18 (5), 1561-1566 (2002). (c) W. P. Fitts, J. M. White, and G. E. Poirier,“Thermodynamics of Decanethiol Adsorption on Au(111): Extension to ℃”Langmuir 18 (6), 2096-2102 (2002).
[18]R. Staub, T. Fritz, H. Schmitz, uuml, T. bsch, F. Sellam, and K. Leo“Annealed decanethiol monolayers on Au(111) – intermediate phases between structures with high and low molecular surface density”Surf. Sci. 445, 100-108 (2000).
[19]H. Hagenström, M. A. Schneeweiss, and D. M. Kolb“Modification of a Au(111) Electrode with Ethanethiol. 1. Adlayer Structure and Electrochemistry”Langmuir 15 (7), 2435-2443 (1999).
[20]C. O'Dwyer, G. Gay, B. ViarisdeLesegno, and J. Weiner,“The Nature of Alkanethiol Self-Assembled Monolayer Adsorption on Sputtered Gold Substrates”Langmuir 20 (19), 8172-8182 (2004).
[21]J. Noh and M. Hara,“Final Phase of Alkanethiol Self-Assembled Monolayers on Au(111)”Langmuir 18 (6), 1953-1956 (2002).
[22]S. S. Li, L. P. Xu, L. J. Wan, S. T. Wang, and L. Jiang,“Time-Dependent Organization and Wettability of Decanethiol Self-Assembled Monolayer on Au(111) Investigated with STM”J. Phys. Chem. B 110 (4), 1794-1799 (2006).
[23]G. E. Poirier,“Characterization of Organosulfur Molecular Monolayers on Au(111) using Scanning Tunneling Microscopy”Chem. Rev. 97 (4), 1117-1128 (1997).
[24]D. M. Kolb,“Reconstruction phenomena at metal-electrolyte interfaces”Prog. Surf. Sci. 51, 109-173 (1996).
[25]A. Hamelin,“Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces”J. Electroanal. Chem. 407, 1-11 (1996).
[26]K. Sato, S. Yoshimoto, J. Inukai, and K. Itaya,“Effect of sulfuric acid concentration on the structure of sulfate adlayer on Au(111) electrode”Electrochem. Commun. 8, 725-730 (2006).
[27]F. Silva, and A. Martins,“Surface structural effects on specific adsorption of oxoanions on gold single crystal electrodes”J. Electroanal. Chem. 467, 335-341 (1999).
[28]J. Lipkowski, Z. Shi, A. Chen, B. Pettinger, and C. Bilger,“Ionic adsorption at the Au(111) electrode”Electrochimica Acta 43 (19-20), 2875-2888 (1998).
[29]H. Gronbeck, A. Curioni, and W. Andreoni,“Thiols and Disulfides on the Au(111) Surface: The Headgroup-Gold Interaction”J. Am. Chem. Soc. 122 (16), 3839-3842 (2000).
[30]T. Hayashi, Y. Morikawa, and H. Nozoye,“Adsorption state of dimethyl disulfide on Au(111): Evidence for adsorption as thiolate at the bridge site”J. Chem. Phys. 114 (17), 7615-7621 (2001).
[31]K. Edinger, A. Goelzhaeuser, K. Demota, C. Woell, and M. Grunze“Formation of self-assembled monolayers of n-alkanethiols on gold: a scanning tunneling microscopy study on the modification of substrate morphology”Langmuir 9 (1), 4-8. (1993).
[32]Y. T. Kim and A. J. Bard,“Imaging and etching of self-assembled n-octadecanethiol layers on gold with the scanning tunneling microscope”Langmuir 8 (4), 1096-1102. (1992).
[33]G. Yang and G. y Liu,“New Insights for Self-Assembled Monolayers of Organothiols on Au(111) Revealed by Scanning Tunneling Microscopy”J. Phys. Chem. B 107 (34), 8746-8759 (2003).
[34]R. Yamada and K. Uosaki,“In Situ, Real Time Monitoring of the Self-Assembly Process of Decanethiol on Au(111) in Liquid Phase. A Scanning Tunneling Microscopy Investigation”Langmuir 13 (20), 5218-5221 (1997).
[35]R. Staub, M. Toerker, T. Fritz, T. Schmitz-Hubsch, F. Sellam, and K. Leo“Flat Lying Pin-Stripe Phase of Decanethiol Self-Assembled Monolayers on Au(111)”Langmuir 14 (23), 6693-6698 (1998).
[36](a) Y. C. Yang, Y. P. Yen, L. Y. OuYang, S. L. Yau, and K. Itaya,“Elucidation of the Deposition Processes and Spatial Structures of Alkanethiol and Arylthiol Molecules Adsorbed on Pt(111) Electrodes with in Situ Scanning Tunneling Microscopy”Langmuir 20 (23), 10030-10037 (2004). (b) Y. C. Yang, Y. L. Lee, L. Y. O. Yang, and S. L. Yau,“In Situ Scanning Tunneling Microscopy of 1,6-Hexanedithiol, 1,9-Nonanedithiol, 1,2-Benzenedithiol, and 1,3-Benzenedithiol Adsorbed on Pt(111) Electrodes”Langmuir 22 (11), 5189-5195 (2006).
[37]M. Yoshida, S.-I. Kobayashi, S. Nozute, T. Miyawaki, Y. Hashimoto, and I. Taniguchi,“Electrochemical study on competitive adsorption of pyridinethiol with sulfide onto Au(111) surfaces”J. Electroanal. Chem. 473, 85-92 (1999).
[38]L. J. Wan, M. Terashima, H. Noda, and M. Osawa,“Molecular Orientation and Ordered Structure of Benzenethiol Adsorbed on Gold(111)”J. Phys. Chem. B 104 (15), 3563-3569 (2000).
第五章
[1]Z. Zhang and M. G. Lagally,“Atomistic Processes in the Early Stages of Thin-Film Growth”Science 276 (5311), 377 - 383 (1997).
[2]R. J. Nichols, W. Beckmann, H. Meyer, N. Batina, and D. M. Kolb,“An in-situ scanning tunneling microscopy study of bulk copper deposition and the influence of an organic additive”J. Electroanal. Chem. 330 (1-2), 381-394 (1992).
[3]W. Plieth,“Additives in the electrocrystallization process”Electrochim. Acta 37 (12), 2115-2121 (1992).
[4]O. M. Magnussen, F. A. Moller, A. Lachenwitzer, and R. J. Behm,“in Electrochemical Synthesis and Modification of Materials”Materials Research Society Symposium, Boston, MA 451 (1996). P. C. Andricacos, S. G. Corcoran, J. L. Delplancke, T. P. Moffat, and P. C. Searson, eds., Materials Research Society, Pittsburgh, PA, 43-48. (1997).
[5]D.M. Kolb, R.J. Randler, R.I. Wielgosz, and J.C. Ziegler,“Initial stages of metal deposition on metal and semiconductor electrodes studied by in situ STM”Materials Research Society Symposium - Proceedings 451, 19-30 (1997).
[6]M. Dietterle and D. M. Kolb,“The initial stages of Cu electrodeposition on Ag(100): An in situ STM study”Surf. Sci. 396, 189-197 (1998).
[7]G. Rosenfeld, R. Servaty, C. Teichert, B. Poelsema, and G. Comsa,“Layer-by-layer growth of Ag on Ag(111) induced by enhanced nucleation: A model study for surfactant-mediated growth”Phys. Rev. Lett. 71 (6), 895 - 898 (1993).
[8]H. A. van der Vegt, H. M. van Pinxteren, M. Lohmeier, and E. Vlieg,“Surfactant-induced layer-by-layer growth of Ag on Ag(111)”Phys. Rev. Lett. 68 (22), 3335 - 3338 (1992).
[9]Z. Zhang and M. G. Lagally,“Atomic-scale mechanisms for surfactant-mediated layer-by-layer growth in homoepitaxy”Phys. Rev. Lett. 72 (5), 693 - 696 (1994).
[10]J. A. Meyer, J. Vrijmoeth, H. A. van der Vegt, E. Vlieg, and R. J. Behm,“Importance of the additional step-edge barrier in determining film morphology during epitaxial growth”Phys. Rev. B 51 (20), 14790 (1995).
[11]S. Harris,“Kinetics of interlayer transport prior to nucleation”Phys. Rev. B 52 (23), 16793 (1995).
[12]K. Sieradzki, S. R. Brankovic, and N. Dimitrov,“Electrochemical Defect-Mediated Thin-Film Growth”Science 284 (5411), 138 - 141 (1999).
[13]G. C. Herdt, D. R. Jung, and A. W. Czanderna,“Weak interactions between deposited metal overlayers and organic functional groups of self-assembled monolayers”Prog. Surf. Sci. 50 (1-4), 103-129 (13).
[14]M. J. Tarlov,“Silver metalization of octadecanethiol monolayers self-assembled on gold”Langmuir 8 (1), 80-89. (1992).
[15]A. W. Czanderna, D. E. King, and D. Spaulding,“Metal overlayers on organic functional groups of self-organized molecular assemblies. 1. X-ray photoelectron spectroscopy of interactions of Cu/COOH on 11-mercaptoundecanoic acid”J. Vac. Sci. Technol. A 9 (5), 2607-2613 (1991).
[16]G. C. Herdt and A. W. Czanderna,“Penetration of vacuum-deposition silver into octadecanethiol self-assembled monolayers studied with iss”Surf. Sci. Lett. 297 (3), L109-L112 (1993).
[17]G. L. Fisher, A. V. Walker, A. E. Hooper, T. B. Tighe, K. B. Bahnck, H. T. Skriba, M. D. Reinard, B. C. Haynie, R. L. Opila, N. Winograd, and D. L. Allara,“Bond Insertion, Complexation, and Penetration Pathways of Vapor-Deposited Aluminum Atoms with HO- and CH3O-Terminated Organic Monolayers”J. Am. Chem. Soc. 124 (19), 5528-5541 (2002).
[18]A. V. Walker, T. B. Tighe, O. M. Cabarcos, M. D. Reinard, B. C. Haynie, S. Uppili, N. Winograd, and D. L. Allara,“The Dynamics of Noble Metal Atom Penetration through Methoxy-Terminated Alkanethiolate Monolayers”J. Am. Chem. Soc. 126 (12), 3954-3963 (2004).
[19]P. E. Colavita, M. S. Doescher, A. Molliet, U. Evans, J. Reddic, J. Zhou, D. Chen, P. G. Miney, and M. L. Myrick,“Effects of Metal Coating on Self-Assembled Monolayers on Gold. 1. Copper on Dodecanethiol and Octadecanethiol”Langmuir 18 (22), 8503-8509 (2002).
[20]M. S. Doescher, J. M. Tour, A. M. Rawlett, and M. L. Myrick,“Stripping Voltammetry of Cu Overlayers Deposited on Self-Assembled Monolayers: Field Emission of Electrons through A Phenylene Ethynylene Oligomer”J. Phys. Chem. B 105 (1), 105-110 (2001).
[21]J. A. M. Sondag-Huethorst and L. G. J. Fokkink,“Electrochemical Characterization of Functionalized Alkanethiol Monolayers on Gold”Langmuir 11 (6), 2237-2241. (1995).
[22]M. R. Smyth and C. J. Barnes,“The influence of heterocyclic thiols on the electrodeposition of Cu on Au(111)”J. Electroanal. Chem. 441, 109-129 (1998).
[23]M. Nishizawa, T. Sunagawa, and H. Yoneyama,“Underpotential Deposition of Copper on Gold Electrodes through Self-Assembled Monolayers of Propanethiol”Langmuir 13 (20), 5215-5217 (1997).
[24]S. E. Gilbert, O. Cavalleri, and K. Kern,“Electrodeposition of Cu Nanoparticles on Decanethiol-Covered Au(111) Surfaces: An in Situ STM Investigation”J. Phys. Chem. 100 (30), 12123-12130 (1996).
[25]O. Cavalleri, S. E. Gilbert, and K. Kern,“Growth manipulation in electrodeposition with self-assembled monolayers”Chem. Phys. Lett. 269, 479-484 (1997).
[26]D. Oyamatsu, M. Nishizawa, S. Kuwabata, and H. Yoneyama“Underpotential Deposition of Silver onto Gold Substrates Covered with Self-Assembled Monolayers of Alkanethiols To Induce Intervention of the Silver between the Monolayer and the Gold Substrate”Langmuir 14 (12), 3298-3302 (1998).
[27]M. A. Schneeweiss, H. Hagenström, M. J. Esplandiu, and D. M. Kolb“Electrolytic metal deposition onto chemically modified electrodes”Appl. Phys. A 69, 537-551 (1999).
[28]C. M. Whelan, M. R. Smyth, and C. J. Barnes,“HREELS, XPS, and Electrochemical Study of Benzenethiol Adsorption on Au(111)”Langmuir 15 (1), 116-126 (1999).
[29]Y. C. Yang, Y. P. Yen, L. Y. OuYang, S. L. Yau, and K. Itaya,“Elucidation of the Deposition Processes and Spatial Structures of Alkanethiol and Arylthiol Molecules Adsorbed on Pt(111) Electrodes with in Situ Scanning Tunneling Microscopy”Langmuir 20 (23), 10030-10037 (2004).
[30]A. Hamelin, and A. M. Martins,“Cyclic voltammetry at gold single-crystal surfaces. Part 2. Behaviour of high-index faces”J. Electroanal. Chem. 407, 13-21 (1996).
[31]D. L. Pavia, G. M. Lampman, and G. S. Kriz,“Introduction to Spectroscopy”Harcourt College Publishers: Fort Worth, 79 (2001).
[32]L. J. Wan, M. Terashima, H. Noda, and M. Osawa,“Molecular Orientation and Ordered Structure of Benzenethiol Adsorbed on Gold(111)”J. Phys. Chem. B 104 (15), 3563-3569 (2000).
[33]F. Ozanam, F. Maroun, R. J. Behm, and O. M. Magnussen,“Diffusion-limited electrodeposition of ultrathin Au films on Pt(111)”Surf. Sci. 572, 115-125 (2004).
[34]M. Yoshida, S.-I. Kobayashi, S. Nozute, T. Miyawaki, Y. Hashimoto, and I. Taniguchi,“Electrochemical study on competitive adsorption of pyridinethiol with sulfide onto Au(111) surfaces”J. Electroanal. Chem. 473, 85-92 (1999).
第六章
[1]T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Okuno, and S. Mashiko“Selective assembly on a surface of supramolecular aggregates with controlled size and shape”Nature 413 (6856), 619-621 (2001).
[2]E. Mena-Osteritz,“Superstructures of Self-Organizing Thiophenes”Adv. Mater. 14 (8), 609-616 (2002).
[3]S. DeFeyter and F. C. DeSchryver,“Self-Assembly at the Liquid/Solid Interface: STM Reveals”J. Phys. Chem. B 109 (10), 4290-4302 (2005).
[4]Q. H. Yuan, L. J. Wan, H. Jude, and P. J. Stang,“Self-Organization of a Self-Assembled Supramolecular Rectangle, Square, and Three-Dimensional Cage on Au(111) Surfaces”J. Am. Chem. Soc. 127 (46), 16279-16286 (2005).
[5](a) S. Yoshimoto, N. Higa, and K. Itaya,“Two-Dimensional Supramolecular Organization of Copper Octaethylporphyrin and Cobalt Phthalocyanine on Au(111): Molecular Assembly Control at an Electrochemical Interface”J. Am. Chem. Soc. 126 (27), 8540-8545 (2004). (b) S. Yoshimoto, A. Tada, K. Suto, and K. Itaya,“Adlayer Structures and Electrocatalytic Activity for O2 of Metallophthalocyanines on Au(111): In Situ Scanning Tunneling Microscopy Study”J. Phys. Chem. B 107 (24), 5836-5843 (2003).
[6]D. Bonifazi, H. Spillmann, A. Kiebele, M. d. Wild, P. Seiler, F. Cheng, H.-J. Guntherodt, T. Jung, and F. Diederich,“Supramolecular Patterned Surfaces Driven by Cooperative Assembly of C60 and Porphyrins on Metal Substrates”Angew. Chem. Int. Ed. 43 (36), 4759-4763 (2004).
[7](a) S. Yoshimoto, E. Tsutsumi, Y. Honda, Y. Murata, M. Murata, K. Komatsu, O. Ito, and K. Itaya,“Controlled Molecular Orientation in an Adlayer of a Supramolecular Assembly Consisting of an Open-Cage C60 Derivative and ZnII Octaethylporphyrin on Au(111)”Angew. Chem. Int. Ed. 43 (23), 3044-3047 (2004). (b) S. Yoshimoto, E. Tsutsumi, O. Fujii, R. Narita, and K. Itaya,“Effect of underlying coronene and perylene adlayers for [60]fullerene molecular assembled”Chem. Commun. (9), 1188-1190 (2005).
[8]L. J. Wan,“Fabricating and Controlling Molecular Self-Organization at Solid Surfaces: Studies by Scanning Tunneling Microscopy”Acc. Chem. Res. 39 (5), 334-342 (2006).
[9]Th. B. Singh, F. Meghdadi, S. Günes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, and N. S. Sariciftci,“High-Performance Ambipolar Pentacene Organic Field-Effect Transistors on Poly(vinyl alcohol) Organic Gate Dielectric”Adv. Mater. 17 (19), 2315-2320 (2005).
[10](a) T. Heim, K. Lmimouni, and D. Vuillaume,“Ambipolar Charge Injection and Transport in a Single Pentacene Monolayer Island”Nano Lett. 4 (11), 2145-2150 (2004). (b) T. B. Singh, P. Senkarabacak, N. S. Sariciftci, A. Tanda, C. Lackner, R. Hagelauer, and Gilles Horowitz“Organic inverter circuits employing ambipolar pentacene field-effect transistors”Appl. Phys. Lett. 89 (3), 033512-033513 (2006). (c) J. H. Schon and C. Kloc,“Organic metal--semiconductor field-effect phototransistors”Appl. Phys. Lett. 78 (22), 3538-3540 (2001).
[11]J. H. Schön, Ch Kloc, and B. Batlogg,“Efficient photovoltaic energy conversion in pentacene-based heterojunctions”Appl. Phys. Lett. 77 (16), 2473-2475 (2000).
[12]K. Murata, S. Ito, K. Takahashi, and B. M. Hoffman,“Long-lived excited state of C[sub 60] in C[sub 60]/phthalocyanine heterojunction solar cell”Appl. Phys. Lett. 68 (3), 427-429 (1996).
[13]M. J. Rosseinsky,“Recent Developments in the Chemistry and Physics of Metal Fullerides”Chem. Mater. 10 (10), 2665-2685 (1998).
[14]T. Sakurai, X. -D. Wang, Q. K. Xue, Y. Hasegawa, T. Hashizume, and H. Shinohara,“Scanning tunneling microscopy study of fullerenes”Prog. Surf. Sci. 51 (4), 263-408 (1996).
[15]S. Yoshimoto, A. Saito, E. Tsutsumi, F. D'Souza, O. Ito, and K. Itaya,“Electrochemical Redox Control of Ferrocene Using a Supramolecular Assembly of Ferrocene-Linked C60 Derivative and Metallooctaethylporphyrin Array on a Au(111) Electrode”Langmuir 20 (25), 11046-11052 (2004).
[16]B. Xu, C. Tao, W. G. Cullen, J. E. Reutt-Robey, and E. D. Williams,“Chiral Symmetry Breaking in Two-Dimensional C60-ACA Intermixed Systems”Nano Lett. 5 (11), 2207-2211 (2005).
[17]Y. Yasutake, Z. Shi, T. Okazaki, H. Shinohara, and Y. Majima,“Single Molecular Orientation Switching of an Endohedral Metallofullerene”Nano Lett. 5 (6), 1057-1060 (2005).
[18]M. Stöhr, T. Wagner, M. Gabriel, B. Weyers, and R. Möller,“Binary Molecular Layers of C60 and Copper Phthalocyanine on Au(111): Self-Organized Nanostructuring”Adv. Funct. Mater. 11 (3), 175-178 (2001).
[19]S. J. H. Griessl, M. Lackinger, F. Jamitzky, T. Markert, M. Hietschold, and W. M. Heckl,“Room-Temperature Scanning Tunneling Microscopy Manipulation of Single C60 Molecules at the Liquid-Solid Interface: Playing Nanosoccer”J. Phys. Chem. B 108 (31), 11556-11560 (2004).
[20](a) J.-M. Liu, H.-M. Zhang, L.-J. Wan, Q.-Y. Zheng, C.-L. Bai, G.-B. Pan,“Configurations of a Calix[8]arene and a C60/Calix[8]arene Complex on a Au(111) Surface”Angew. Chem. Int. Ed. 42 (24), 2747-2751 (2003). (b) G. B. Pan, X. H. Cheng, S. Hoger, and W. Freyland,“2D Supramolecular Structures of a Shape-Persistent Macrocycle and Co-deposition with Fullerene on HOPG”J. Am. Chem. Soc. 128 (13), 4218-4219 (2006).
[21]E. Mena-Osteritz and P. Bäuerle,“Complexation of C60 on a Cyclothiophene Monolayer Template”Adv. Mater. 18 (4), 447-451 (2006).
[22]F. Nishiyama, T. Yokoyama, T. Kamikado, S. Yokoyama, S. Mashiko, K. Sakaguchi, and K. Kikuchi,“Interstitial Accommodation of C60 in a Surface-Supported Supramolecular Network”Adv. Mater. 19 (1), 117-120 (2007).
[23](a) C. B. France, P. G. Schroeder, and B. A. Parkinson,“Direct Observation of a Widely Spaced Periodic Row Structure at the Pentacene/Au(111) Interface Using Scanning Tunneling Microscopy”Nano Lett. 2 (7), 693-696 (2002). (b) C. B. France, P. G. Schroeder, J. C. Forsythe, and B. A. Parkinson,“Scanning Tunneling Microscopy Study of the Coverage-Dependent Structures of Pentacene on Au(111)”Langmuir 19 (4), 1274-1281 (2003).
[24]P. G. Schroeder, C. B. France, J. B. Park, and B. A. Parkinson,“Energy level alignment and two-dimensional structure of pentacene on Au(111) surfaces”J. Appl. Phys. 91 (5), 3010-3014 (2002).
[25](a) J. Lipkowski and P. N. Ross, Eds.,“Structure of Electrified Interfaces”Wiley-VCH: New York (1993). (b) A. Wieckowski, Ed“Interfacial Electrochemistry”Marcel Dekker: New York (1999).
[26]D. M. Kolb and J. Schneider,“Surface reconstruction in electrochemistry –Au(100)-(5×20), Au(111)-(1×23) and Au(110)-(1×2)”Electrochim. Acta 31 (8), 929-936 (1986).
[27]A. Hamelin,“Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces”J. Electroanal. Chem. 407, 1-11 (1996).
[28]O. M. Magnussen, J. Hotlos, R. J. Behm, N. Batina, and D. M. Kolb,“An in-situ scanning tunneling microscopy study of electrochemically induced hex-(1×1) transitions on Au(100) electrodes”Surf. Sci. 296 (3), 310-332 (1993).
[29]X. Gao, G. J. Edens, A. Hamelin, and M. J. Weaver,“Real-space formation and dissipation mechanisms of hexagonal reconstruction on Au(100) in aqueous-media as explored by potentiodynamic scanning-tunneling-microscopy”Surf. Sci. 296 (3), 333-351 (1993).
[30](a) V. Y. Yurov and A. N. Klimov,“Scanning tunneling microscope calibration and reconstruction of real image: Drift and slope elimination”Rev. Sci. Instrum. 65 (5), 1551-1557 (1994). (b) Q. Chen, A. J. McDowall, and N. V. Richardson,“Growth and Evolution of Perylene Thin Films on Cu(110)”Chem. Mater. 15 (21), 4113-4117 (2003).
[31](a) S. L. Yau, Y. G. Kim, and K. Itaya,“In Situ Scanning Tunneling Microscopy of Benzene Adsorbed on Rh(111) and Pt(111) in HF Solution”J. Am. Chem. Soc. 118 (33), 7795-7803 (1996). (b) S. L. Yau, Y. G. Kim, and K. Itaya,“High-Resolution Imaging of Aromatic Molecules Adsorbed on Rh(111) and Pt(111) in Hydrofluoric Acid Solution: In Situ STM Study”J. Phys. Chem. B 101 (18), 3547-3553 (1997).
[32]S. Yoshimoto, R. Narita, M. Wakisaka, and K. Itaya,“The structure of a coronene adlayer formed in a benzene solution: studies by in situ STM and ex situ LEED”J. Electroanal. Chem. 532, 331 - 335 (2002).
[33]D. M. Kolb and F. C. Simeone,“Electrochemical nanostructuring with an STM: A status report”Electrochimica Acta 50, 2989-2996 (33).
[34](a) S. Yoshimoto, R. Narita, E. Tsutsumi, M. Matsumoto, K. Itaya, O. Ito, K. Fujiwara, Y. Murata, and K. Komatsu,“Adlayers of Fullerene Monomer and [2 + 2]-Type Dimer on Au(111) in Aqueous Solution Studied by in Situ Scanning Tunneling Microscopy”Langmuir 18 (22), 8518-8522 (2002). (b) E. I. Altman and R. J. Colton,“Nucleation, growth, and structure of fullerene films on Au(111)”Surf. Sci. 279 (1-2), 49-67 (1992). (c) T. Sakurai, X. -D. Wang, Q. K. Xue, Y. Hasegawa, T. Hashizume, and H. Shinohara,“Scanning tunneling microscopy study of fullerenes”Prog. Surf. Sci. 51, 263-408 (1996).
[35]L. Scifo, M. Dubois, M. Brun, P. Rannou, S. Latil, A. Rubio, and B. Grevin,“Probing the Electronic Properties of Self-Organized Poly(3-dodecylthiophene) Monolayers by Two-Dimensional Scanning Tunneling Spectroscopy Imaging at the Single Chain Scale”Nano Lett. 6 (8), 1711-1718 (2006).
[36]S. Yoo, B. Domercq, and B. Kippelen,“Efficient thin-film organic solar cells based on pentacene/C[sub 60] heterojunctions”Appl. Phys. Lett. 85 (22), 5427-5429 (2004).
第七章
[1]B. R. Shi, X. S. Wang, H. Huang, S. H. Yang, W. Heiland, and N. Cue,“Scanning Tunneling Microscopy of Endohedral Metallofullerene Tb@C82 on C60 Film and Si(100) 2 × 1 Surface”J. Phys. Chem. B 105 (46), 11414-11418 (2001).
[2]A. Taninaka, K. Shino, T. Sugai, S. Heike, Y. Terada, T. Hashizume, and H. Shinohara,“Scanning Tunneling Microscopy/Spectroscopy Studies of Lanthanum Endohedral Metallofullerenes”Nano Lett. 3 (3), 337-341 (2003).
[3]K. Wang, J. Zhao, S. Yang, L. Chen, Q. Li, B. Wang, S. Yang, J.Yang, J. G. Hou, and Q. Zhu,“Unveiling Metal-Cage Hybrid States in a Single Endohedral Metallofullerene”Phys. Rev. Lett. 91 (18), 185504 (2003).
[4]T. Sakurai, X. -D. Wang, Q. K. Xue, Y. Hasegawa, T. Hashizume, and H. Shinohara,“Scanning tunneling microscopy study of fullerenes”Prog. Surf. Sci. 51 (4), 263-408 (1996).
[5]S. Guo, D. P. Fogarty, P. M. Nagel, and S. A. Kandel,“Thermal Diffusion of C60 Molecules and Clusters on Au(111) ”J. Phys. Chem. B 108 (37), 14074-14081 (2004).
[6]H. Shinohara, M. Inakuma, M. Kishida, S. Yamazaki, T. Hashizume, and T. Sakurai,“An Oriented Cluster Formation of Endohedral Y@C82 Metallofullerenes on Clean Surfaces”J. Phys. Chem. 99 (38), 13769-13771. (1995).
[7]Y. Hasegawa, Y. Ling, S. Yamazaki, T. Hashizume, H. Shinohara, A. Sakai, H. W. Pickering, and T. Sakurai,“STM study of one-dimensional cluster formation of fullerenes: Dimerization of Y@C82”Phys. Rev. B 56 (11), 6470 (1997).
[8]P. W. Murray, M. Ø. Pedersen, E. Lægsgaard, I. Stensgaard, and F. Besenbacher,“Growth of C60 on Cu(110) and Ni(110) surfaces: C60-induced interfacial roughening”Phys. Rev. B 55 (15), 9360 (1997).
[9](a) S. Yoshimoto, R. Narita, E. Tsutsumi, M. Matsumoto, K. Itaya, O. Ito, K. Fujiwara, Y. Murata, and K. Komatsu,“Adlayers of Fullerene Monomer and [2 + 2]-Type Dimer on Au(111) in Aqueous Solution Studied by in Situ Scanning Tunneling Microscopy”Langmuir 18 (22), 8518-8522 (2002). (b) J. Cousty and A. Marchenko,“C60 self-organization at the interface between a liquid C60 solution and a Au(111) surface”Surf. Sci. 513, 233-237 (2002).
[10](a) S. Uemura, M. Sakata, I. Taniguchi, M. Kunitake, and C. Hirayama, “Novel Wet Process Technique Based on Electrochemical Replacement for the Preparation of Fullerene Epitaxial Adlayers”Langmuir 17 (1), 5-7 (2001). (b) S. Uemura, M. Sakata, C. Hirayama, and M. Kunitake“Fullerene Adlayers on Various Single-Crystal Metal Surfaces Prepared by Transfer from L Films”Langmuir 20 (21), 9198-9201 (2004).
[11](a) E. I. Altman and R. J. Colton,“Nucleation, growth, and structure of fullerene films on Au(111)”Surf. Sci. 279 (1-2), 49-67 (1992).
[12](a) C.-L. Hsu and W. W. Pai,“Aperiodic incommensurate phase of a C60 monolayer on Ag(100)”Phys. Rev. B 68 (24), 245414 (2003). (b) W. W. Pai and C.-L. Hsu,“Ordering of an incommensurate molecular layer with adsorbate-induced reconstruction: C60/Ag(100)”Phys. Rev. B 68 (12), 121403 (2003). (c) C.-L. Hsu, C. R. Chiang, Y. Chang, and K. C. Lin,“Origin of peculiar STM molecular contrast in C60/Ag(100) ”Surf. Sci. 519, L605-L610 (2002). (d) W. W. Pai, C.-L. Hsu, M. C. Lin, K. C. Lin, and T. B. Tang,“Structural relaxation of adlayers in the presence of adsorbate-induced reconstruction: C60/Cu(111)”Phys. Rev. B 69 (12), 125405 (2004). (e) C. L. Hsu, K. C. Lin, L. Y. Sin, and T. B. Tang,“Characterization and control of molecular ordering on adsorbate-induced reconstructed surfaces”Appl. Surf. Sci. 241, 194-198 (2005).
[13]S. Yoshimoto, A. Saito, E. Tsutsumi, F. D'Souza, O. Ito, and K. Itaya,“Electrochemical Redox Control of Ferrocene Using a Supramolecular Assembly of Ferrocene-Linked C60 Derivative and Metallooctaethylporphyrin Array on a Au(111) Electrode”Langmuir 20 (25), 11046-11052 (2004).
[14]L. J. Wan,“Fabricating and Controlling Molecular Self-Organization at Solid Surfaces: Studies by Scanning Tunneling Microscopy”Acc. Chem. Res. 39 (5), 334-342 (2006).
[15](a) G.-B. Pan, J.-M. Liu, H.-M. Zhang, L.-J. Wan, Q.i-Y. Zheng, and C.-L. Bai,“Configurations of a Calix[8]arene and a C60/Calix[8]arene Complex on a Au(111) Surface”Angew. Chem. Int. Ed. 42 (24), 2747-2751 (2003). (b) G. B. Pan, X. H. Cheng, S. Hoger, and W. Freyland,“2D Supramolecular Structures of a Shape-Persistent Macrocycle and Co-deposition with Fullerene on HOPG”J. Am. Chem. Soc. 128 (13), 4218-4219 (2006).
[16]E. Mena-Osteritz and P. Bäuerle,“Complexation of C60 on a Cyclothiophene Monolayer Template”Adv. Mater. 18 (4), 447-451 (2006).
[17]S. Yoshimoto, E. Tsutsumi, O. Fujii, R. Narita, and K. Itaya,“Effect of underlying coronene and perylene adlayers for [60]fullerene molecular assembly”Chem. Commun. 1188 - 1190 (2005).
[18](a) M. Kunitake, N. Batina, and K. Itaya,“Self-Organized Porphyrin Array on Iodine-Modified Au(111) in Electrolyte Solutions: In Situ Scanning Tunneling Microscopy Study”Langmuir 11 (7), 2337-2340 (1995). (b) K. Ogaki, N. Batina, M. Kunitake, and K. Itaya,“In Situ Scanning Tunneling Microscopy of Ordering Processes of Adsorbed Porphyrin on Iodine-Modified Ag(111)”J. Phys. Chem. 100 (17), 7185-7190 (1996). (c) M. Kunitake, U. Akiba, N. Batina, and K. Itaya,“Structures and Dynamic Formation Processes of Porphyrin Adlayers on Iodine-Modified Au(111) in Solution: In Situ STM Study”Langmuir 13 (6), 1607-1615 (1997).
[19](a) D. Wang, L. J. Wan, C. Wang, and C. L. Bai,“In Situ STM Evidence for Adsorption of Rhodamine B in Solution”J. Phys. Chem. B 106 (16), 4223-4226 (2002). (b) G. J. Su, L. H. Gan, Z. Y. Yang, G. B. Pan, L. J. Wan, and C. R. Wang,“Dispersion of Metallofullerene Y@C82 on Bare, C60-Modified, and Iodine-Modified Au(111) Surfaces Investigated with ECSTM”J. Phys. Chem. B 110 (11), 5559-5562 (2006).
[20](a) N. Batina, T. Yamada, and K. Itaya,“Atomic Level Characterization of the Iodine-Modified Au(111) Electrode Surface in Perchloric Acid Solution by in-Situ STM and ex-Situ LEED”Langmuir 11 (11), 4568-4576. (1995). (b) S. Sugita, T. Abe, and K. Itaya,“Electrochemical scanning tunneling microscopy of silver adlayers on iodine-coated gold(111) in perchloric acid solution”J. Phys. Chem. 97 (34), 8780-8785. (1993).
[21](a) A. Hamelin,“Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces”J. Electroanal. Chem. 407, 1-11 (1996). (b) D. M. Kolb,“Reconstruction phenomena at metal-electrolyte interfaces”Prog. Surf. Sci. 51, 109-173 (1996).
[22]Y.-C. Yang, C.-H. Chang, and Y.-L. Lee,“Complexation of Fullerenes on a Pentacene-Modified Au(111) Surface”Chem. Mater. 19 (25), 6126-6130 (2007).
[23]D. M. Kolb and F. C. Simeone,“Electrochemical nanostructuring with an STM: A status report”Electrochimica Acta 19 (15), 2989-2996 (23).
[24](a) T. Hashizume, K. Motai, X. D. Wang, H. Shinohara, Y. Saito, Y. Maruyama, K. Ohno, Y. Kawazoe, Y. Nishina, H. W. Pickering, Y. Kuk, and T. Sakurai,“Intramolecular structures of C60 molecules adsorbed on the Cu(111)-(1 × 1) surface”Phys. Rev. Lett. 71 (18), 2959 (1993). (b) J. Kishimoto, T. Hashizume, H. W. Pickering, and T. Sakurai,“Adsorption and film growth of BTA on clean and oxygen adsorbed Cu(11O) surfaces”Appl. Surf. Sci. 87-88, 380-385 (1995).
[25]C. Rogero, J. I. Pascual, J. Gomez-Herrero, and A. M. Baro,“Resolution of site-specific bonding properties of C60 adsorbed on Au(111)”J. Chem. Phys. 116 (2), 832-836 (2002).
[26](a) E. Magnano, S. Rusponi, C. Boragno, and U. Valbusa,“Morphology of C60 thin films grown on Ag(001)”Surf. Sci. Lett. 405, L561-L565 (1998). (b) G. Costantini, S. Rusponi, E. Giudice, C. Boragno, and U. Valbusa,“C60 thin films on Ag(001): an STM study”Carbon 37, 727-732 (1999).
[27](a) J. G. Hou, J. Yang, H. Wang, Q. Li, C. Zeng, H. Lin, W. Bing, D. M. Chen, and Q.i Zhu,“Identifying Molecular Orientation of Individual C60 on a Si(111)-(7×7) Surface”Phys. Rev. Lett. 83 (15), 3001 (1999). (b) C. Cepek, R. Fasel, M. Sancrotti, T. Greber, and J. Osterwalder,“Coexisting inequivalent orientations of C60 on Ag(001)”Phys. Rev. B 63 (12), 125406 (2001).
[28]E. I. Altman and R. J. Colton,“Determination of the orientation of C60 adsorbed on Au(111) and Ag(111)”Phys. Rev. B 48 (24), 18244 (1993).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊