跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/06 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:利宗倫
研究生(外文):Tzung-Luen Li
論文名稱:以溶熱法合成Ⅰ-Ⅲ-Ⅵ族CuInS2奈米粒子及其特性探討
論文名稱(外文):Solvothermal Synthesis of CuInS2 (Ⅰ-Ⅲ-Ⅵ) Nanoparticles and Study of Their Specific Features
指導教授:鄧熙聖
指導教授(外文):Hsisheng Teng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:98
中文關鍵詞:黃銅礦溶熱法奈米粒子
外文關鍵詞:CuInS2Ostwald Ripening
相關次數:
  • 被引用被引用:7
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用氯化亞銅、氯化銦和過量的硫為反應物、十八油胺為界面活性劑、己烷為溶劑,藉由簡易且安全性高之溶熱法成功製備出粒徑在 4.9 奈米 ~ 5.8 奈米之間,而且粒徑均勻度高的三成份 CuInS2 奈米粒子。藉由 X 光繞射分析和選區電子繞射,確定合成所得的奈米粒子結晶結構為黃銅礦結晶結構; 使用穿透式電子顯微鏡觀,可以觀察到奈米粒子的形狀和粒徑均勻度; 而藉紫外光/可見光吸收光譜和螢光光譜,也可以觀察到奈米粒子由於粒徑小於其本身之激子波爾尺寸時,在光學上發生的量子侷限效應。在實驗中,我們也探討金屬離子濃度和反應時間對奈米粒子形態的影響,發現當金屬離子濃度太低或反應時間太久,都會發生使奈米粒子不均勻化的 Ostwald Ripening 現象。
Narrow size-distribution ternary CuInS2 nanoparticles with size from 4.9 nm to 5.8 nm synthesized from copper chlorides, indium chlorides, excess sulfur, oleylamine as surfactants and hexane as solvent were successfully prepared through simple and safe solvothermal route. The CuInS2 nanoparticles were chalcopyrite structure characterized by XRD pattern and SAED, the morphology and the size of nanoparticles were characterized by TEM. Because the size of the nanoparticles was smaller than its excitonic Bohr size, quantum confinement effect of nanoparticles on optical properties happened and was observed by UV/vis absorption and photoluminescence. In this experiment, we also discussed the effects of cationic concentration and reaction time on the morphology of nanoparticles. Ostwald Ripening which led nanoparicles defocused was occurred as cationic concentration was lower or reaction time was longer.
中文摘要 Ⅰ
Abstract Ⅱ
誌謝 Ⅲ
總目錄 Ⅳ
表目錄 Ⅶ
圖目錄 Ⅷ

第一章 緒論 1
1.1 前言 1
1.2 化合物半導體材料與奈米粒子 2
1.2.1 化合物半導體材料 2
1.2.2 奈米粒子簡介 3
1.3 研究背景與目的 7
第二章 文獻回顧與理論說明 8
2.1 奈米粒子成核成長與製備 8
2.1.1 奈米粒子之成核與成長 8
2.1.2 溶膠法 12
2.1.3 微胞法 16
2.1.4 溶膠凝膠法 18
2.1.5 水熱法 20
2.1.6 熱分解法 22
2.2 CuInS2 物理性質簡介 24
2.2.1 CuInS2 結晶結構 24
2.2.2 CuInS2 能帶結構 26
2.2.3 CuInS2 電性質 28
2.3 CuInE2 (E = S, Se) 奈米材料之合成 29
2.3.1 熱分解法 29
2.3.2 溶熱法 35
2.3.3 VLS 法 41
2.4 量子侷限效應 (quantum confinement effect) 43
2.4.1 Particle in a box model 44
2.4.2 Effective Mass Approximation model 46
第三章 實驗方法與儀器原理介紹 50
3.1 藥品 50
3.2 實驗設備 51
3.3 CuInS2 奈米粒子的製備與相關測試 52
3.3.1 溶膠法 52
3.3.2 溶熱法 54
3.3.3 實驗裝置圖 56
3.3.4 XRD 繞射分析 57
3.3.5 穿透式電子顯微鏡微結構分析 58
3.3.6 紫外光-可見光吸收光譜量測 61
3.3.7 螢光光譜儀 62
3.3.8 Energy-dispersive X-ray spectroscopy 元素分析 63
第四章 結果與討論 64
4.1 溶膠法 64
4.2 溶熱法 70
4.2.1 陽離子濃度比較 70
4.2.2 溶熱時間比較 79
4.3 比較 Effective Mass Approximation (EMA) 87
第五章 結論 89
參考文獻 90
作者簡介 98
[1] Tito, T.; Paul, O.; Nigel, L. P. Chem. Mater. 2001, 13, 3843
[2] Vossmeyer T.; Katsikas L.; Giersig M.; Popovic I. G.; Diesner K.; Chemseddine A.; Eychmueller A.; H. W. J. Phys. Chem. 1994, 98, 7665
[3] (a)M. L. Cohen; M. Y. Chou; W. D. Knight; Walt A. De H. J. Phys. Chem. 1987, 91, 3141 ; (b)C. R. Chris Wang; Stuart Pollack; Tina A. Dahlseid; Geoffrey M. Koretsky and Manfred M. K. J. Chem. Phys. 1992, 96, 7931
[4] Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183
[5] Murphy, J. E.; Beard, M. C.; Norman, A. G.; Ahrenkiel, S. P.; Johnson, J. C.; Yu, P.; Micic, O. I.; Ellingson, R. J.; Nozik, A. J. J. Am. Chem. Soc. 2006, 128, 3241
[6] Chen, Y.; Johnson, E.; Peng, X. J. Am. Chem. Soc. 2007, 129, 10937
[7] Jun, Y.-W.; Lee, J.-H.; Choi, J.-S.; Cheon, J. J. Phys. Chem. B. 2005, 109, 14795
[8] Murray C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater.Sci. 2000, 30, 545.
[9] Pamplin, B. R. Crystal Growth; Pergamon Press: New York,1975.
[10] Jiang, Y. Forced Hydrolysis and Chemical Co-Precipitation. In Handbook of Nanophase and Nanostructured Materials; Wang,Z. L., Liu, Y., Zhang, Z., Eds.; Kluwer Academic: New York, 2003; p59.
[11] Jongnam P.; Jin J.; Soon Gu K.; Youngjin J.; Taeghwan H. Angew. Chem. Int. Ed. 2007, 46, 4630
[12] Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
[13] Li, L. S.; Pradhan, N.; Wang, Y.; Peng, X. Nano Lett. 2004, 4, 2261
[14] Qu, L.; Peng, Z. A.; Peng, X. Nano Lett. 2001, 1, 333.
[15] Qu, L.; Yu, W. W.; Peng, X. Nano Lett. 2004, 4, 465.
[16] Wang, X.; Qu, L.; Zhang, J.; Peng, X.; Xiao, M. Nano Lett. 2003, 3, 1103.
[17] Joo, J.; Son, J. S.; Kwon, S. G.; Yu, J. H.; Hyeon, T. J. Am. Chem. Soc. 2006, 128, 5632
[18] Chen, X.; Nazzal, A. Y.; Xiao, M.; Peng, Z. A.; Peng, X. J. Lumin. 2002, 97, 205.
[19] Peng, X.; Wilson, T. E.; Alivisatos, A. P.; Schultz, P. G. Angew. Chem., Int. Ed. 1997, 36, 145.
[20] Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2002, 124, 3343.
[21] Yen, B. K. H.; Stott, N. E.; Jensen, K. F.; Bawendi, M. G. Adv. Mater. 2003, 15, 1858.
[22] Liberato, M.; Erik, C. S.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122, 12700.
[23] Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854.
[24] Yu, W. W.; Peng, X. Angew. Chem., Int. Ed. 2002, 41, 2368
[25] Talapin, D. V.; Rogach, A. L.; Mekis, I.; Haubold, S.; Kornowski, A.; Haase, M.; Weller, H. Colloids Surf., A 2002, 202, 145.
[26] Yu, W. W.; Wang, Y. A.; Peng, X. Chem. Mater. 2003, 15, 4300.
[27] Talapin, D. V.; Haubold, S.; Rogach, A. L.; Kornowski, A.; Haase,M.; Weller, H. J. Phys. Chem. B 2001, 105, 2260.
[28] Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmueller, A.; Weller, H. J. Phys.Chem. B 2002, 106, 7177.
[29] Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. B 1998, 102, 3655.
[30] Shim, M.; Guyot-Sionnest, P. J. Am. Chem. Soc. 2001, 123, 11651.
[31] Battaglia, D.; Peng, X. Nano Lett. 2002, 2, 1027
[32] Tanori, J.; Pileni, M. P. Langmuir 1997, 13, 639
[33] Legrand, J.; Petit, C.; Pileni, M. P. J. Phys. Chem. B 2001, 105, 5643
[34] Kawai, T.; Fujino, A.; Kon-No, K. Colloids Surf. A 1996, 100, 245
[35] Chang, S. Y.; Liu, L.; Asher, S. A. J. Am. Chem. Soc. 1994, 116, 6739
[36] Joselevich, E.; Willner, I. J. Phys. Chem. 1994, 98, 7628
[37] Chhabra, V.; Pillai, V.; Mishra, B. K.; Morrone, A.; Shah, D. O.Langmuir 1995, 11, 3307
[38] Gan, L. M.; Zhang, K.; Chew, C. H. Colloids Surf. A 1996, 110, 199
[39] Chang, C. L.; Fogler, H. S. Langmuir 1997, 13, 3295
[40] Esquena, J.; Tadros, T. F.; Kostarelos, K.; Solans, C. Langmuir 1997, 13, 6400
[41] Lopez-Perez J. A.; Lopez-Quintela, M. A.; Mira, J.; Rivas, J.; Charles, S. W. J. Phys. Chem. B 1997, 101, 8045
[42] Li, Y.; White, T.; Lim, S. H. Rev. Adv. Mater. Sci. 2003, 5, 211
[43] Coln, G.; Hidalgo, M. C.; Navo, J. A. Catal. Today 2002, 76, 91
[44] Uekawa, N.; Kajiwara, J.; Kakegawa, K.; Sasaki, Y. J. Colloid Interface Sci. 2002, 250, 285
[45] Lackey, W. J. Nucl. Technol. 1980, 49, 321
[46] Woodhead, J. L. Sci. Ceram. 1983, 12, 179
[47] Chatterjee, A.; Chakravorty, D. J. Mater. Sci. 1992, 27, 4115
[48] Gao, J.; Qi, Y.; Yang, W.; Guo, X.; Li, S.; Li, X. Mater. Chem.Phys. 2003, 82, 602
[49] Kiss, K.; Magder, J.; Vukasovich, M. S.; Lockhart, R. J. J. Am. Ceram. Soc. 1966, 49, 291
[50] Shen, J.; Zhang, Z.; Wu, G. J. Chem. Eng. Jpn. 2003, 36, 1270
[51] Viano, A.; Mishra, S. R.; Lloyd, R.; Losby, J.; Gheyi, T. J. Non-Cryst. Solids 2003, 325, 16
[52] Mondelaers, D.; Vanhoyland, G.; Van den Rul, H.; D’Haen, J.;Van Bael, M. K.; Mullens, J.; Van Poucke, L. C. Mater. Res. Bull.2002, 37, 901
[53] Zeng, W. M.; Gao, L.; Guo, J. K. Nanostruct. Mater. 1998, 10, 543
[54] Pathak, L. C.; Singh, T. B.; Verma, A. K.; Ramachandrarao, P.J. Metall. Mater. Sci. 2000, 42, 93
[55] Grosso, D.; Sermon, P. A. J. Mater. Chem. 2000, 10, 359
[56] Chang, Y.-S.; Chang, Y.-H.; Chen, I.-G.; Chen, G.-J.; Chai, Y.-L. J. Cryst. Growth 2002, 243, 319.
[57] Wang, X.; Zhang, Z.; Zhou, S. Mater. Sci. Eng. B 2001, 86, 29
[58] Veith, M.; Mathur, S.; Lecerf, N.; Huch, V.; Decker, T.; Beck, H.P.; Eiser, W.; Haberkorn, R. J. Sol-Gel Sci. Technol. 2000, 17, 145
[59] Sharma, N.; Shaju, K. M.; Rao, G. V. S.;Chowdari, B. V. R. Electrochem. Commun. 2002, 4, 947
[60] Burukhin, A. A.; Churagulov, B. R.; Oleynikov, N. N. High Press. Res. 2001, 20, 255.
[61] Lu, S. W.; Lee, B. I.; Wang, Z. L.; Guo, J. K. J. Cryst. Growth 2000, 219, 269.
[62] Chen, C. C.; Jiao, X.; Chen, D.; Zhao, Y. Mater. Res. Bull. 2001, 36, 2119.
[63] Maclaren, I.; P. A. Trusty, C. B. Ponton Acta Mater. 1999, 47, 779.
[64] Yu, S.-H.; Shu, L.; Wu, Y.-S.; Qian, Y.-T.; Xie, Y.; Yang, L. Mater. Res. Bull. 1998, 33, 1207.
[65] Qian, X. F.; Zhang, X. M.; Wang, C.; Tang, K. B.; Xie, Y.; Qian,Y. T. Mater. Res. Bull. 1999, 34, 433.
[66] Wang, C.; Zhang, W. X.; Qian, X. F.; Zhang, X. M.; Xie, Y.; Qian,Y. T. Mater. Lett. 1999, 40, 255.
[67] Qian, X. F.; Zhang, X. M.; Wang, C.; Wang, W. Z.; Qian, Y. T. Mater. Res. Bull. 1998, 33, 669.
[68] Yang, J.; Mei, S.; Ferreira, J. M. F. Mater. Sci. Eng. C 2001, 15, 183
[69] Yoshimura, M.; Somiya, S. Am. Ceram. Soc. Bull. 1980, 59, 246
[70] Chen, D.; Shen, G. Z.; Tang, K. B.; Liu, Y. K.; Qian, Y. T. Appl. Phys. A 2003, 77, 747
[71] Shao, M. W.; Mo, M. S.; Cui, Y.; Chen, G.; Qian Y. T. J. Cryst. Growth 2001, 233, 799
[72] Hu, J. Q.; Lu, Q. Y.; Tang, K. B.; Deng, B.; Jiang, R. R.; Qian,Y. T.; Yu, W. C.; Zhou, G. E.; Liu, X. M.; Wu, J. X. J. Phys. Chem. B 2000, 104, 5251
[73] Cai, W.; Zhang, L. J. Phys. Condensed Matter 1997, 9, 7257
[74] Maya, L.; Paranthaman, M.; Thundat, T.; Bauer, M. L. J. Vac.Sci. Technol. B 1996, 14, 15
[75] Li, W.; Gao, L.; Guo, J. K. Nanostruct. Mater. 1998, 10, 1043
[76] Indackers, D.; Janzen, C.; Rellinghaus, B. Nanostruct. Mater.1998, 10, 247
[77] Depero, L. E.; Bonzi, P.; Musci, M.; Casale, C. J. Solid State Chem. 1994, 111, 247
[78] Yang, Y.; Leppert, V. J.; Risbud, S. H.; Twamley, B.; Power, P. P.; Lee, H. W. H. Appl. Phys. Lett. 1999, 74, 2262
[79] Okuyama, K.; Lenggoro, I. W.; Tagami, N. J. Mater. Sci. 1997, 32, 1229
[80] Binder, J. R.; Wedemeyer, H. Adv. Mater. 1997, 9, 1049
[81] Valentini, A.; Carreno, N. L. V.; Probst, L. F. D.; Leite, E. R.;Longo, E. Microporous Mesoporous Mater. 2004, 68, 151
[82] Jou, S.; Hsu, C. K. Mater. Science Eng. B 2004, 106, 275
[83] Dumitrache, F.; Morjan, I.; Alexandrescu, R.; Morjan, R. E.;Voicu, I.; Sandu, I.; Soare, I.; Ploscaru, M.; Fleaca, C.; Ciupina,V.; Prodan, G.; Rand, B.; Brydson, R.; Woodword, A. DiamondRelat. Mater. 2004, 13, 362
[84] Sen, R.; Govindaraj, A.; Rao, C. N. R. Chem. Phys. Lett. 1997, 267, 276
[85] Sen, R.; Govindaraj, A.; Rao, C. N. R. Chem. Mater. 1997, 9, 2078
[86] Rao, C. N. R.; Govindaraj, A.; Sen, R.; Satishkumar, B. C. Mater. Res. Innovations 1998, 2, 128
[87] Rao, C. N. R.; Sen, R.; Satishkumar, B. C.; Govindaraj, A. Chem. Commun. 1998, 1525
[88] Rao, C. N. R.; Govindaraj, A. Acc. Chem. Res. 2002, 35, 998
[89] Gundiah, G.; Madhav, G. V.; Govindaraj, A.; Rao, C. N. R. J. Mater. Chem. 2002, 12, 1606
[90] Deepak, F. L.; Vinod, C. P.; Mukhopadhyay, K.; Govindaraj, A.; Rao, C. N. R. Chem. Phys. Lett. 2002, 353, 345
[91] J. E. Jaffe and A. Zunger, Phys. Rev. B 1983, 28, 5822
[92] J. E. Jaffe and A. Zunger, Phys. Rev. B 1983, 27, 5176
[93] S. Kono and M. Okusawa, J. Phys. Soc. Jpn. 1974, 37, 1301
[94] W. Braun, A. Goldmann, and M. Cardona, Phys. Rev. B 1974, 10, 5069
[95] L. L. Kazmerski and C. C. Shieh, Thin Solid Films 1977, 41, 35
[96] D. C. Look and J. C. Manthuruthil, J. Phys. Chem. Solids 1976, 37, 173
[97] B. Tell, J. L. Shay, and H. M. Kasper, J. Appl. Phys. 1972, 43, 2469
[98] L. L. Kazmerski, M. S. Ayyagari, and G. A. Sanborn, J. Appl. Phys. 1975, 46, 4865
[99] S. P. Grindle, C. W. Smith, and S. D. Mittleman, Appl. Phys. Lett. 1979, 35, 24
[100] H. L. Hwang, C. C. Tu, J. S. Maa, and C. Y. Sun, Solar Energy Mater. 1980, 2, 433
[101] Banger, K. K.; Jin, M. H.-C.;Harris, J. D.; Fanwick, P. E.; Hepp, A. F. Inorg. Chem. 2003, 42, 7713
[102] Banger, K. K.; Cowen, J.; Hepp, A. F. Chem. Mater. 2001, 13, 3827
[103] Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F. J. Phys. Chem. B. 2004, 108, 12429
[104] Choi, S.-H.; Kim, E.-G.; Hyeon, T. J. Am. Chem. Soc. 2006, 128, 2520
[105] Lu, Q.; Hu, J.; Tang, K.; Qian, Y.; Zhou, G.; Liu, X. Inorg. Chem. 2000, 39, 1606
[106] Jiang, Y.; Wu, Y.; Mo, X.; Yu, W.; Xie, Y.; Qian, Y. Inorg. Chem. 2000, 39, 2964
[107] B. Li, Y. Xie, J. Huang, Y. Q. Adv. Mater. 1999, 11, 1456
[108] Jianping Xiao, Yi Xie, Yujie Xiong, Rui Tang and Yitai Q. J. Mater. Chem. 2001, 11, 1417
[109] Xiao, Jianping; Xie, Yi; Tang, Rui; Qian, Y. J. Solid State Chem. 2001, 161, 179
[110] S. A. Lopez-Rivera, B. Fontal, J. A. Henao, E. Mora, W. Giriatand R. Vargas, Ternary Multinary Compd. 1998, 152, 175
[111] Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226
[112] L. E. Brus, J. Chem. Phys. 1983, 79, 5566
[113] L. E. Brus, J. Chem. Phys. 1984, 80, 4403
[114] Y. Kayanuma, Solid State Commun. 1986, 59, 405
[115] S. V. Nair, S. Sinha, and K.C. R. Phys. Rev. B 1987, 35, 4098
[116] Knox, R. S. Theory of Excirom; Solid State Physics Supplement 5; Academic Press: New York, 1963
[117] Wang Y.; Herron N. Phys. Rev. B 1990, 42, 7253
[118] Brus, L. J. Phys. Chem. 1986, 90, 2555
[119] Nakamura, H.; Kato, W.; Uehara, M.; Nose, K.; Omata, T.; Otsuka-Yao-Matsuo, S.; Miyazaki, M.; Maeda, H. Chem. Mater. 2006, 18, 3330
[120] Constantin C., Michael H., Lubomir S., Idriss B., Martin L., Gerd M., Ulrike B., Dang-Sheng S., Michael G. 1999, 11, 643
[121] Wang Y. and Herron N. J. Phys. Chem. 1991, 95, 525
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊