跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 18:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪憲榮
研究生(外文):Hsien-Jung Hung
論文名稱:新穎性光學活性化合物之合成及其在光電材料上之應用研究
論文名稱(外文):Study on the Synthesis of Novel Chiral Compounds and their Applications on the Electro-optical Materials
指導教授:劉瑞祥
指導教授(外文):Jui-Hsiang Liu
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:151
中文關鍵詞:光學活性化合物β-環糊精包容錯合物β-環糊精光異構化聚合物穩定型膽固醇液晶薄膜
外文關鍵詞:chiral compoundβ-CDphotochemicalcyclodextrin inclusion complexpolymer stabilized cholesteric textureself assembled
相關次數:
  • 被引用被引用:1
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究為有關於新穎性光學活性化合物之合成及其在光電材料上之應用研究,將不同化學結構的光學活性化合物,如苯酸菠酯、偶氮苯酸菠酯等,當作掺混物或單體,分別添加入液晶和β-環糊精,來作一系列的光電材料之合成及特性探討。本論文主題包含聚合物穩定型膽固醇液晶薄膜(PSCT)之製備及光電特性探討;以及高次序度自我排列型穿插單體之合成及特性探討。本研究合成了光學活性化合物Bornyl 4-(6-acryloyloxyhexyloxy) phenyl-4´-benzoate (BAPB), Bornyl 4-[4-(6-acryloyloxyhexyloxy)phenylazo]-benzoate (BAPAB)與雙官能性單體4,4’-Bis(6-acryloyxy-hexyloxy) biphenyl (BAHB),所合成的化合物均使用FTIR, NMR, TGA, DSC, X-ray 和 EA等儀器來鑑定其結構。本研究以光聚合法製備高分子穩定型膽固醇液晶薄膜(PSCT),來探討其膽固醇型-向列型液晶間之相轉移、光電及光異構化等特性,包括反射波長、螺旋距、分子扭旋轉力及光化學相轉換、光化學異構化之特性探討。膽固醇液晶膜所具有之彩色光反射、以及外加電壓開/關間之相對可逆變化皆有詳細探討。PSCT液晶膜在UV光照射後反射波長有藍位移現象,不同顏色反射波長及不同外加電壓下所造成光穿透度之變化,均有詳細研究。另外,線型單體末端經樟腦衍生阻斷後,再經由β-環糊精穿插而形成穿插錯合物(inclusion complex)單體。研究中發現,該穿插錯合物單體具有自組裝(self-assembly)的特性,可形成高秩序度超分子(supramolecule)。β-環糊精、BAPB單體、及穿插錯合物單體結構,分別以FTIR、UV、13C CP/MAS NMR、1H-NMR和XRD證實。此錯合物分子經由1H-NMR儀器證明為一個BAPB單體穿插有三個β-環糊精之管柱型穿插錯合物。穿插錯合物單體具有自我排列特性,因而形成纖維狀結構,此高次序度排列超分子,使用SEM、TEM、及POM證實。此種高次序度穿插錯合物β-CD-BAPB在偏光顯微鏡(POM)可明顯被觀察到雙折射性,其形狀類似奈米纖維,可與甲基丙烯酸甲酯或其他單體共聚合,可期待被應用於奈米纖維材料、及微機電系統(MEMS)中薄膜機械強度之補強。
In this investigation, synthesis of novel chiral compounds and their applications on the electro-optical devices were carried out. Bornyl benzoate and bornyl phenylazo benzoate were synthesized and used as chiral dopants for the preparation of liquid crystal display and induction of supramolecules. This thesis consists of both the fabrication and the characterization of polymer stabilized cholesteric liquid crystal membranes, and the synthesis and the characterization of self assembled inclusion complex monomers threaded with β-CD. Both chiral monomers of Bornyl 4-(6-acryloyloxyhexyloxy) phenyl-4´-benzoate (BAPB), Bornyl 4-[4-(6-acryloyloxyhexyloxy)phenylazo]-benzoate (BAPAB) and 4,4’-Bis(6-acryloyxy-hexyloxy) biphenyl (BAHB) were synthesized and the molecular structures were identified using FTIR, NMR, TGA, DSC, X-ray, and EA. Polymer stabilized cholesteric liquid crystal films were fabricated using UV curing technique. Optical properties, reflective band of films, and twisting power of the cholesteric liquid crystals were investigated. Dependence of UV irradiation on the reflective bands and optical properties of the PSCT cells were investigated in detail. Furthermore, BAPB monomer blocked with a bulky bornyl group was synthesized which was then threaded with β–cyclodextrin (β-CD). The β-CD threaded monomer, an inclusion complex (β-CD-BAPB), was found to reveal self assembly property. Arrangement of the inclusion complexes forms spramolecules. Molecular structure of β-CD, BAPB, and (CD-BAPB) were identified using FTIR, UV, 13C CP/MAS NMR, 1H-NMR, and XRD. The numbers of β-CD threaded onto BAPB monomer was estimated as three using 1H-NMR. The highly ordered self assembled nano monomer fiber was studied using SEM, TEM, and POM.Birefringence of the self assembled nano monomer fiber was confirmed using POM. The nano-size fibrous monomer assembly is expected to be used to prepare nano-polymeric fibers and to reinforce nano-plastic films used in micromachine and microelectro system (MEMS) system.
中文摘要 ------------------------------------------------------------------------- I
英文摘要 ------------------------------------------------------------------------- III
目錄 ------------------------------------------------------------------------------- V
表目錄 ---------------------------------------------------------------------------- XI
圖目錄 ---------------------------------------------------------------------------- XII
符號表 ---------------------------------------------------------------------------- XIX
第一章 緒論---------------------------------------------------------------------- 1
1-1 前言--------------------------------------------------------------------------- 1
1-2 研究動機--------------------------------------------------------------------- 3
1-3 參考文獻--------------------------------------------------------------------- 4
第二章 文獻回顧及原理------------------------------------------------------- 5
2-1液晶簡介---------------------------------------------------------------------- 5
2-1-1 對掌性(Chirality)------------------------------------------------------ 5
2-1-2 液晶---------------------------------------------------------------------- 5
2-1-3 液晶發展---------------------------------------------------------------- 8
2-1-4 液晶分類---------------------------------------------------------------- 8
2-1-5 液晶的光學異方性(anisotropy)------------------------------------ 15
2-1-6 外加電場對絕緣向列(nematic)型液晶的影響------------------ 18
2-1-7 液晶分子排列的秩序參數------------------------------------------ 19
2-1-8 高分子穩定膽固醇液晶薄膜(Polymer stabilized cholesteric
V
Textures, PSCT)簡介及工作------------------------------------- 19
2-1-8-1 膽固醇型液晶光學特性--------------------------------------- 20
2-1-8-2 高分子穩定膽固醇液晶薄膜(PSCT)元件分類------------ 22
2-1-8-3 高分子穩定膽固醇液晶薄膜(PSCT)光致變--------------- 26
2-2 包容錯合物自組裝(Inclusion complexes self-assembly)------------ 27
2-2-1 環糊精(cyclodextrins, CD)------------------------------------------ 29
2-2-1-1 環糊精之結構--------------------------------------------------- 29
2-2-1-2 環糊精之性質--------------------------------------------------- 30
2-2-2 環糊精包容錯合物(Cyclodextrin inclusion complex, CD-IC)-31
2-2-2-1環糊精包容錯合物形成方法---------------------------------- 32
2-2-2-2環糊精包容錯合物應用---------------------------------------- 32
2-2-3環糊精超分子結構(Supramolecular structure)------------------- 33
2-2-3-1自行包容錯合(Self-threading complex)超分子------------- 35
2-2-3-2環糊精兩性物質(Cyclodextrin amphiphiles)超分子------- 37
2-2-3-3轉軸(Rotaxanes)超分子----------------------------------------- 37
2-4 參考文獻--------------------------------------------------------------------- 41
第三章 含有光學活性(-)樟腦衍生物基高分子穩定膽固醇液晶薄
膜之製作與光電特性------------------------------------------------- 43
3-1 前言--------------------------------------------------------------------------- 43
3-2 簡介--------------------------------------------------------------------------- 43
3-3 實驗部分--------------------------------------------------------------------- 50
3-3-1 實驗儀器與裝置------------------------------------------------------- 50
3-3-2 鑑定儀器---------------------------------------------------------------- 50
3-3-3 藥品---------------------------------------------------------------------- 52
3-3-4 單體合成---------------------------------------------------------------- 53
VI
3-3-4-1 Bornyl 4-(6-acryloyloxyhexyloxy)phenyl-4’-benzoate
(BAPB)------------------------------------------------------------- 53
3-3-4-2 4,4’-bis(6-(acryloyxy)-hexyloxy)biphenyl (BAHB)---------- 57
3-3-5 PSCT Cell製作及測量------------------------------------------------ 59
3-3-5-1 ITO 玻璃空cell製作---------------------------------------------59
3-3-5-2 液晶混合液配製-------------------------------------------------- 59
3-3-5-3 PSCT之cell製作------------------------------------------------- 59
3-3-5-4 PSCT元件光電性質測量---------------------------------------- 63
3-3-5-5 PSCT元件偏光顯微鏡觀察------------------------------------- 64
3-3-5-6 聚合物SEM測量------------------------------------------------- 64
3-4 結果與討論-------------------------------------------------------------------- 64
3-4-1 BAPB與CB15光學活性物質在PSCT cell之組成-------------- 65
3-4-2 選擇性光反射特性----------------------------------------------------- 65
3-4-3 偏光顯微鏡結構特性-------------------------------------------------- 68
3-4-4光聚合後網狀結構形態------------------------------------------------ 70
3-4-4-1 SEM圖--------------------------------------------------------------- 70
3-4-4-2 AFM圖--------------------------------------------------------------- 70
3-4-5 PSCT之光電特性------------------------------------------------------- 72
3-5 結論----------------------------------------------------------------------------- 74
3-6 參考文獻----------------------------------------------------------------------- 75
第四章 含有光學活性及偶氮基團菠酯衍生物高分子穩定膽固醇液
晶薄膜之製作與光電特性-------------------------------------------- 77
4-1 前言---------------------------------------------------------------------------- 77
VII
4-2 簡介---------------------------------------------------------------------------- 77
4-3 實驗部分---------------------------------------------------------------------- 82
4-3-1 鑑定儀器----------------------------------------------------------------- 82
4-3-2 物性測量儀器----------------------------------------------------------- 83
4-3-3 藥品----------------------------------------------------------------------- 83
4-3-4 單體合成----------------------------------------------------------------- 84
4-3-4-1 4-Hydroxy-4’-ethoxycarbonylazobenzol (1)-------------------- 84
4-3-4-2 Ethyl 4-[4-(6-hydroxyhexyloxy)phenylazo]benzoate (2)------ 85
4-3-4-3 Ethyl 4-{ 4-[6 -(tetrahydro-2-pyranyl) hexyloxy]-phenylazo}
benzoate (3)----------------------------------------------------------- 85
4-3-4-4 4-{4-[6-( Tetrahydro-2-pyranyl ) hexyoxy] phenylazo }
-benzoic acid (4)------------------------------------------------------ 86
4-3-4-5 Bornyl 4-{4-[6-( tetrahydro-2-pyranyl ) hexyloxy ]
-phenylazo } benzoate (5)------------------------------------------- 86
4-3-4-6 Bornyl 4-[4-(6-hydroxyhexyloxy)phenylazo]-benzoate (6)--- 87
4-3-4-7 Bornyl 4-[4-(6-acryloyloxyhexyloxy)phenylazo]
-benzoate (7)---------------------------------------------------------- 87
4-3-5 PSCT cell 製作及測量-------------------------------------------------- 89
4-3-5-1 配製材料------------------------------------------------------------- 89
4-3-5-2 ITO 玻璃空cell製作---------------------------------------------- 91
4-3-5-3 液晶混合液配製---------------------------------------------------- 91
4-3-5-4 PSCT之cell製作--------------------------------------------------- 91
4-3-5-5 PSCT元件光電性質測量------------------------------------------ 93
4-3-5-6 PSCT元件偏光顯微鏡觀察--------------------------------------- 93
4-3-5-7 聚合物SEM測量--------------------------------------------------- 94
4-3-5-8 感應時間(Response time)效應測量------------------------------ 94
4-4 結果與討論--------------------------------------------------------------------- 96
VIII
4-4-1 BAPAB在PSCT cell之組成------------------------------------------- 96
4-4-2 選擇性光反射特性------------------------------------------------------ 97
4-4-3 紫外燈(UV, 365nm)照射,對添加BAPAB的偶氮基團(diazo)
之探討---------------------------------------------------------------------- 98
4-4-4 溫度對PSCT cell之影響---------------------------------------------- 102
4-4-5 加電壓對PSCT cell之探討------------------------------------------- 102
4-4-6 偏光顯微鏡結構特性-------------------------------------------------- 106
4-4-7 SEM圖--------------------------------------------------------------------- 110
4-4-8 PSCT cell應用特性------------------------------------------------------ 111
4-5 結論----------------------------------------------------------------------------- 113
4-6 參考文獻----------------------------------------------------------------------- 114
第五章 新穎光學活性樟腦衍生物之β-環糊精包容錯合物之
合成與特性--------------------------------------------------------------- 116
5-1 前言----------------------------------------------------------------------------- 116
5-2 簡介----------------------------------------------------------------------------- 116
5-3 實驗部分----------------------------------------------------------------------- 120
5-3-1 鑑定儀器----------------------------------------------------------------- 120
5-3-2 藥品----------------------------------------------------------------------- 122
5-3-3 客化合物(gust compound)合成--------------------------------------- 122
5-3-3-1 4-(6-Hydroxyhexyloxy) benzoic acid (1)----------------------- 123
5-3-3-2 4-(Acryloyloxyhexyloxy) benzoic acid (2)--------------------- 123
5-3-3-3 Ethyl 4-(tetrahydro-2-pyranyloxy) benzoate (3)--------------- 123
5-3-3-4 4-(Tetrahydro-2-pyranyloxy) benzoic acid (4)----------------- 124
5-3-3-5 Bornyl 4-(tetrahydro-2-pyranyloxy) benzoate (5)------------- 124
5-3-3-6 Bornyl 4-hydroxbenzoate (6)------------------------------------- 125
5-3-3-7 Bornyl 4-(6-acryloyloxyhexyloxy) phenyl-4´-benzoate
IX
(BAPB) (7)----------------------------------------------------------- 125
5-3-4 β-CD-BAPB 包容錯合物製成(β-CD-BAPB inclusion complex,
β-CD-BAPB IC)---------------------------------------------------------- 126
5-3-5 聚合β-CD-BAPB IC---------------------------------------------------- 128
5-3-6 製作自行組裝β-CD-BAPB IC強化膜------------------------------ 128
5-3-7 TEM、POM與SEM試片製作--------------------------------------- 129
5-3-7-1 TEM試片製作------------------------------------------------------ 129
5-3-7-2 POM試片製作------------------------------------------------------ 130
5-3-7-3 SEM試片製作------------------------------------------------------ 130
5-4 結果與討論-------------------------------------------------------------------- 130
5-4-1 製備β-CD-BAPB 包容錯合物(Inclusion Complex, IC)---------- 130
5-4-2 包容錯合物β-CD-BAPB的鑑定------------------------------------- 131
5-4-3 包容錯合物β-CD-BAPB的聚合------------------------------------- 140
5-5 結論----------------------------------------------------------------------------- 143
5-6 參考文獻----------------------------------------------------------------------- 145
第六章 總結---------------------------------------------------------------------- 148
X
Legands to Tables
Table 2-1 Physical properties and molecular dimension of
Cyclodextrins.--------------------------------------------------------- 31
Table 2-2 Truth table for a half adder with the sum digit ns and the carry
digit nc.----------------------------------------------------------------- 40
Table 3-1 Physical properties of nematic LC.--------------------------------- 62
Table 3-2 Phase transition temperaturea (oC) and specific rotation of
chiral monomers.------------------------------------------------------ 62
Table 3-3 Compositions for PSCT cells.--------------------------------------- 63
Table 3-4 Variation on pitch of PSCT cell A~D before and after UV
curing.------------------------------------------------------------------- 66
Table 3-5 Variation on pitch of PSCT cell E~H before and after UV
curing.------------------------------------------------------------------- 68
Table 4-1 Physical properties of nematic LC.---------------------------------- 89
Table 4-2 Physical properties of chiral dopant BAPAB and CB15.--------- 89
Table 4-3 Compositions of PSCT cell.------------------------------------------ 92
Table 4-4 Effect of doping amount on pitch of PSCT cell before and after
UV curing.-------------------------------------------------------------- 98
Table 4-5 Effect of UV irradiation on optical properties of cells.----------- 100
XI
Legands to Figures
Figure 2-1 Typical a chiral center and enantiomerism.--------------------- 6
Figure 2-2 Typical phase sequence in thermotropic liquid crystals.------ 6
Figure 2-3 Helical structures formed in chiral liquid (a) chiral nematic
phase, (b) blue phase and (c) chiral smectic C phase---------- 7
Figure 2-4 Dependence of intermolecular-force on temperature for (a)
general compounds and (b) liquid crystal compounds.-------- 7
Figure 2-5 a) Cross-section of the hexagonal lyotropic liquid crystal
phase and (b) cross-section of the lameller lyotropic
liquid crystal.------------------------------------------------------ 10
Figure 2-6 Model molecular arrangement of the nematic liquid crystal.-- 11
Figure 2-7 Model molecular arrangement of chiral nematic liquid
Crystal.------------------------------------------------------------------ 11
Figure 2-8 Model molecular arrangement of smectic A liquid crystal.----- 12
Figure 2-9 Model molecular arrangement of smectic C liquid crystal.----- 13
Figure 2-10 Model molecular arrangement of smectic C* liquid crystal.-- 13
Figure 2-11 Model molecular arrangement of cholesteric liquid crystal.--- 14
Figure 2-12 Model molecular arrangement of disc-like liquid crystals
for (a) columnar disc-like liquid crystals and (b) nematic
disc-like liquid crystals.--------------------------------------------- 15
Figure 2-13 Anisotropic properties of nematic liquid crystals.--------------- 16
Figure 2-14 Birefingence of liquid crystals.------------------------------------- 17
Figure 2-15 Molecular alignments of LCs with different dielectric
Constant.---------------------------------------------------------------- 17
Figure 2-16 Application of electric field on the operation of twisted XII
nematic (TN) liquid crystal displays: (a) “OFF” state
and (b) “ ON” state.------------------------------------------------- 18
Figure 2-17 Orientation direction () and director (k) of liquid crystal nˆ
molecule.-------------------------------------------------------------- 20
Figure 2-18 Alignments of cholesteric liquid crystals (a) planar texture,
(b)focal conic texture, (c) fingerprint texture and (d)
homeotropic.---------------------------------------------------------- 21
Figure 2-19 Phase transition of cholesteric liquid crystals.-------------------- 22
Figure 2-20 Process for fabricating of the normal mode PSCT cell.--------- 23
Figure 2-21 Schematic representation of (a) “ON” state and (b) “OFF”
state of the normal mode PSCT cells.------------------------------ 24
Figure 2-22 Process for fabricating of the reverse mode PSCT cell.---------- 24
Figure 2-23 Schematic representation of (a) “ON” state and (b) “OFF”
state of the reverse mode PSCT cells.------------------------------ 25
Figure 2-24 Schematic operation of PSCT color reflective bistable
mode.-------------------------------------------------------------------- 26
Figure 2-25 POM picture observed depend on irradiation times.-------------- 27
Figure 2-26 Schematic presentation of a [2] catenane, a [2] rotaxane
and a [2] trefoil knot.------------------------------------------------- 27
Figure 2-27 Schematic presentation of an inclusion compound.-------------- 28
Figure 2-28 General structure of cyclodextrins.--------------------------------- 29
Figure 2-29 Schematic side view of cyclodextrin.------------------------------- 30
Figure 2-30 Scheme of the synthesis of PPRs, PRs, FMT and EMT.--------- 34
Figure 2-31 SEM photographs of inclusion complex derivation (a) poly-
pseudorotaxane, (b) polyrotaxane, and (c) filled molecular
tube.--------------------------------------------------------------------- 35
Figure 2-32 Schematic illustration of the formed of a self-inclusion
XIII
complex.---------------------------------------------------------------- 36
Figure 2-33 Schematic illustration of the formed of a nanomachine.-------- 36
Figure 2-34 Schematic illustration of the formed of (a) 1/1,4-SNS
nanosphere and (b) PEO-b-PAA-CD IC spherical vesicles.----- 38
Figure 2-35 Scheme of the synthesis of rotaxane by (a) threading and (b)
slippage method.------------------------------------------------------ 39
Figure 2-36 Schematic presentation of a the molecular shuttle.--------------- 39
Figure 2-37 Schematic illustration of the multi-state [2] rotaxane.----------- 40
Figure 3-1 Textures in cholesteric liquid crystals: (a) planar and (b)
focal conic.-------------------------------------------------------------- 44
Figure 3-2 Reflectance spectrum of a cholesteric liquid crystal.-------------- 44
Figure 3-3 POM textures observed after the UV irradiation at 366 nm
through a photomask with transparent lines of 200-um
width: (a) just after irradiation and (b) after several tens
of seconds.--------------------------------------------------------------- 45
Figure 3-4 The Schematic representation for PSCT normal mode:
“ON” state and (b) “OFF” state.-------------------------------------- 47
Figure 3-5 The schematic applied voltage to transmittance curve of PSCT normal mode.------------------------------------------------------------ 47
Figure 3-6 The Schematic representation for PSCT reverse mode:
(a) “OFF” state and (b) “ON” state.---------------------------------- 48
Figure 3-7 The preparative procedure of PSCT cell.---------------------------- 60
Figure 3-8 Structure of CB15, BAPB, BAHB and BME.---------------------- 61
Figure 3-9 The Schematic presentation for measurement of
transmittance of PSCT cell.------------------------------------------- 63
Figure 3-10 Reflection band of PSCT cell A-D (a) before and
(b) after UV curing.----------------------------------------------------- 66
XIV
Figure 3-11 Reflection band of PSCT cell E~H (a) before and
(b) after UV curing.---------------------------------------------------- 67
Figure 3-12 POM textures for PSCT cells of A, B, C and D.------------------ 69
Figure 3-13 POM textures for PSCT cells of E, F, G and H.------------------- 69
Figure 3-14 SEM photographs of polymer network structures of the PSCT
cells at different amount of chiral dopant (a) 2%, (b) 4%, (c) 6%,
(d) 25%, and (e) 30% of BAPB.-------------------------------------- 70
Figure 3-15 AFM photographs of polymer network structures of th PSCT
cells at different amount of chiral dopant (a) 3% monomer,
(b) 3% monomer + 6% BAPB , and (c) 3% monomer + 30%
BAPB.-------------------------------------------------------------------- 71
Figure 3-16 Dependence of transmittance of PSCT cell of B, C, D and
E on applied voltage.------------------------------------------------- 72
Figure 3-17 Texture variations of PSCT cell of C on applied voltage
from 0 to 80 voltage.-------------------------------------------------- 73
Figure 3-18 Representative examples of (a) “ON” state and
b) “OFF” state of PSCT cells.--------------------------------------- 73
Figure 4-1 Designs of chiral moieties liquid crystalline molecules.----------- 78
Figure 4-2 Photoisomerization of azobenzene derivatives.--------------------- 79
Figure 4-3 Photoisomerization of azobenzene derivatives. (A) before
UV irradiation and (B) after UV irradiation.------------------------ 80
Figure 4-4 Energy-level diagram of azobenzene material.--------------------- 80
Figure 4-5 Schematic illustration of a model of the photochemical
C-to-I phase transition.------------------------------------------------- 81
Figure 4-6 Optical properties of cholesteric liquid crystal.--------------------- 82
Figure 4-7 Structures of CB15, BAPAB, BAHB and BME.------------------- 90
Figure 4-8 The preparative procedure of PSCT cell.---------------------------- 92
XV
Figure 4-9 Schematic presentation for measurement of transmittance
of PSCT cell.----------------------------------------------------------- 93
Figure 4-10 Experimental setup for investigating of response time
of PSCT cells.-------------------------------------------------------- 95
Figure 4-11 Schematic presentation for rise time and fall time for (a)
square pluses of applied voltage and (b) response of
the PSCT cells.------------------------------------------------------- 95
Figure 4-12 Effect of UV curing on the reflected band;(a) before and
(b) after UV irradiation.--------------------------------------------- 99
Figure 4-13 Dependence of the cell transmittance on UV(365nm) irradiation
time: (a) A0, (b) A1, (c) A2, (d) A3 and (e) A4.-------------------- 101
Figure 4-14 Variation of the UV-vis spectra of A2 with various
irradiation times and recover in dark with various times.----- 102
Figure 4-15 Effect of heating on the reflected band of cells;
(a) A0, (b) A1, (c) A2, (d) A3 and (e) A4.------------------------- 103
Figure 4-16 Dependence of cell transmittance on applied voltage
(30 V): (a) A0, (b) A1, (c) A2, (d) A3 and (e) A4.---------------- 104
Figure 4-17 Dependence of cell transmittance on applied voltage
(100V): (a) transmittance and time curve and (b)
transmittance and wavelength curve.----------------------------- 105
Figure 4-18 POM textures of (a) cell A0, (b) cell A1, (c) cell A2,
d) cell A3 and (e) cell A4.------------------------------------------- 106
Figure 4-19 Effect of UV irradiation with 365nm on POM textures of cell A4.
Irradiation time increasing from (a) to (f).----------------------- 107
Figure 4-20 Temperature dependence on the textures of cell A4.
Temperature increasing from (a) to (f).--------------------------- 108
Figure 4-21 Dependence of applied voltage on A3 cell; (a) no applied
XVI
voltage, (b–f ) voltage was increased gradually to 100 V.----- 109
Figure 4-22 Dependence of applied voltage on A4 cell; (a) no applied
voltage, (b–f ) voltage was increased gradually to 100 V.---- 109
Figure 4-23 SEM photographs of polymer network structure of PSCT film
at different magnitudes (a) A0, (b) A0, (c) A4, and (d) A4.------ 110
Figure 4-24 SEM photographs of cross section of polymer network
structure of PSCT film at different space (a) 15μm, and
(b) 12μm.-------------------------------------------------------------- 111
Figure 4-25 Reversible turbid and transparent changes corresponding
to fields: (a) OFF (30 V), (b) ON (100 V).----------------------- 112
Figure 4-26 Real images of the reflected bands of the cells.------------------ 112
Figure 5-1 Schematic illustration of vesicles.----------------------------------- 117
Figure 5-2 Schematic illustration of self-organizing structure formed by
the association of amiphiphiles (a) spherical micelle,
(b) cylindrical micelle, (c) bilayer, (d) bicontinuous structure,
(e) inverted micelle and (f)spherical vesicle.---------------------- 118
Figure 5-3 Schematic illustration of supramolecular systems
including inclusion complexes.-------------------------------------- 119
Figure 5-4 Schematic illustration of cyclodextrin’s structure.---------------- 120
Figure 5-5 Preparative procedure of POM samples.--------------------------- 129
Figure 5-6 FTIR spectra of (a) β-CD (dash line) and β-CD-BAPB
(solid line) inclusion complex and (b) comparison
(β-CD + BAPB), IC and BAPB.------------------------------------ 132
Figure 5-7 UV-vis spectra of BAPB with β-CD in DMSO at
[BAPB] = 1 mM, [β-CD]/[BAPB] = 0-13.0.---------------------- 133
Figure 5-8 1H-NMR spectrum of the β-CD-BAPB inclusion complex.----- 134
Figure 5-9 13C CP/MAS NMR spectra of (a) β-CD and (b)
XVII
β-CD-BAPB inclusion complex.------------------------------------ 136
Figure 5-10 Wide-angle X-ray diffraction patterns of (a) β-CD, (b)
BAPB, and (c) β-CD-BAPB inclusion complex.---------------- 137
Figure 5-11 DSC curves of β-CD-BAPB IC, BAPB gust compound,
And (β-CD + BAPB) physical mixture (10oC/min).----------- 138
Figure 5-12 (a) SEM image of β-CD-BAPB inclusion complex and
(b) TEM image of crossed section of the fiber-like
β-CD-BAPB inclusion complex.---------------------------------- 139
Figure 5-13 POM textures of (a) polymerized self assembled inclusion
complexes and (b) composite PMMA film blended
with self assembled inclusion complex.-------------------------- 141
Figure 5-14 (a) β-CD-BAPB inclusion complexes, (b) model of
the inclusion complex and (c) formation of the
self assembled fibrous inclusion complex.----------------------- 142
Figure 5-15 Schematic representation of formation of (a) the self
assembled fibrous inclusion complex, (b) the composited
film.-------------------------------------------------------------------- 143
1-3 參考文獻
1. H. S. Kitzerow, C. Bahr, Chirality in Liquid Crystals, Springer, 2001.
2. 劉瑞祥, 維他命C左、右旋的奧妙, 科學發展, 394期, 2005年10月.
3. 松本正一, 角田市良著, 劉瑞祥譯,液晶之基礎與應用, 國立編譯館出版, 民國85年.
4. M. Brehmer, J. Lub, P. V. Dewitte, Mol. Cryst. Liq. Cryst., 1999, 331, 333.
5. M. Miyauchi, T. Hoshino, H. Yamaguchi, S. Kamitori, and A. Harada, J. Am. Chem. Soc., 2005, 127, 2034-2035.
2-4 原理參考文獻
1. H. S. Kitzerow, C. Bahr, Chirality in Liquid Crystals, Springer, 2001.
2. E. B. Priestley, P. J. Wojtowicz, P. Sheng, Introduction to Liquid Crystals, Plenum Press, New York, 1975.
3. F. Reinitzer, Monatsh, Chem., 1889, 9, 421.
4. G. Friedel, Ann. Physique, 1922, 273.
5. S. Chandrasekhar, F. R. S., Liquid Crystals, 2nd ed., Cambridge University Press, Cambridge, 1992.
6. 吳阜蒼, “光異構性偶氮苯衍生物之合成及其在液晶顯示元件與光記錄薄膜之應用研究"國立成功大學化學工程研究所博士論文, 2004.
7. Oxford Website, Liquid Crystal Technology Group, 2007.
8. P. J. Collings, M. Hird, Introduction to Liquid Crystals Chemistry and Physics, 2001.
9. 葛聰智, “聚合物穩定膽固醇液晶結構薄膜光電特性及繞射現象之研究" 國立成功大學物理研究所博士論文, 2003.
10. A. Y. G. Fuh, C. Y. Huang, C. R. Sheu, G. L. Lin and M. S. Tsai, J. Appl. Phys., 1994, 33, 11870.
11. A. Y. G. Fuh, C. Y. Huang, M. S. Tsai, L. C. Chien and J. M. Chen, J. Appl. Phys., 1996, 35, 630.
12. 松本正一、角田市良合著, 劉瑞祥譯, “液晶之基礎與應用”, 國立編譯館出版, 民國85年.
13. H. S. Ktzerow, P. P. Crooker, Ferroelectrics, 1991, 122, 183.
14. H. S. Ktzerow, P. P. Crooker, J. De Physique II, 1993, 3, 719.
15. H. S. Ktzerow, P. P. Crooker, Liq. Cryst., 1993, 13, Iss 1, 31.
41
16. Y. Yabe, D. S. Seo, Liq. Cryst., 1994, Vol. 17, 847.
17. 蔡月娥, “雙官能基單體間隙長度對PSCT液晶顯示器光電特性效應之研究", 國立成功大學化學工程研究所碩士論文, 2000.
18. G. P. Crawford, S. Zumer, “Liquid Crystals in Complex Geometries - Formed by polymer and porous networks”, Taylor & Francis, 1996.
19. M. van den Boogaard, “ Cyclodextrin-containing Supramolecular Structures-From pseudo-polyrotaxanes towards molecular tubes, insulated molecular wires and topological networks”, University of Groningen, the Netherlands, 2003.
20. Harada A., Kamachi M., Macromolecules, 1990, 23, 2821.
21. J. Peet, C. C. Rusa, M. A. Hunt, A. E. Tonelli, and C. M. Balik, Macromolecules, 2005, 38, 537.
22. Y. Liu, Y. W. Yang, Y. Chen, and H. X. Zou, Macromolecules, 2005.
23. I. Tabushi, Acc. Chem. Res., 1982, 15, 66.
24. S. Anderson, T. D. W. Claridge and H. L. Anderson, Angew. Chem. Int. Ed. Engl., 1997, 36, 1310.
25. Y. Inoue, M. Miyauchi, H. Nakajima, Y. Takashima, H. Yamaguchi, and A. Harada, J. Am. Chem. Soc., 2006, 128, 8994.
26. Y. Liu, Y. L. Zhao, and H. Y. Zhang, Langmuir, 2006, 22, 3434.
27. J. Liu, H. R. Sondjaja, and K. C. Tam, Langmuir, 2007, 23, 5106.
28. D. H. Qu, Q. C. Wang, J. Ren, and H. Tian, Org. Lett., 2004, Vol. 6, No. 13.
29. D. H. Qu, Q. C. Wang, and H. Tian, Angew. Chem. Int. Ed., 2005, 44, 5296.

3-6 參考文獻
含有光學活性(-)樟腦衍生物基高分子穩定膽固醇液晶薄膜之製作與光電特性
1. R. A. M. Hikmet, H. Kemperman, Liq. Cryst., 1999, 26, 1645.
2. Q. Li, X. Bai, J. Zang, L. Tong, J. Appl. Phys., 2001, 40, 6473.
3. H. Guillard, P. Sixou, L. Reboul, A. Perichaud, Polymer, 2001, 42, 9753.
4. H. Guillard, P. Sixou, O. Tottreau, Polym. Adv. Technol., 2002, 13, 491.
5. H. Ren, S. T. Wu, J. Appl. Phys., 2002, 92, 797.
6. H. Cheng, H. Gao, F. Zhou, J. Appl. Phys., 1999, 86, 5935.
7. S. Stallinga, J. Appl. Phys., 1999, 86, 4756.
8. M. Xu, D. K. Yang, Jpn. J. Appl. Phys., 2000, 38, 6827.
9. S. T. Wu, D. K. Yang, “Reflective Liquid Crystal Displays” Wiley, New York, 2001.
10. S. Chandrasekhar, “Liquid Crystals”, Cambridge University Press, New York, 2nd ed., 1997.
11. 楊博智,“光學活性化合物之合成、物性探討及其在膽固醇型液晶元件之應用探討",國立成功大學化學工程研究所博士論文, 2007.
12. R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Swecki, V. P. Tondiglia, T. Bunning, J. Appl. Spectrosc., 2000, 54, 12A.
13. N. Yoshimoto, S. Morino, M. Nakagawa, K. Ichimura, Opt. Lett., 2002, 27, 182.
14. J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, V. L. Colvin, Appl. Opt., 2000, 39, 2353.
15. T. J. Bunning, L. V. Natarajan, V. P, Tondiglia, R. L. Sutherland, Annu. Rev. Mater. Sci., 2000, 30, 83.
16. R. K. Kostuk, Appl. Opt., 1999, 38, 1357.
17. N. Tamaoki, Y. Aoki, M. Moriyama, and M. Kidowaki, Chem. Mater. 2003, 15, 719.
18. H. Ren, S. T. Wu, J. Appl. Phys., 2002, 92, 797.
75
19. T. C. Ko, Y. H. Fan, M. F. Shieh, A. Fuh, Jpn. J. Appl. Phys. Part 1, 2001, 40, 2255.
20. R. Barchini, J. G. Gordon, M. W. Hart, Jpn. J. Appl. Phys., 1998, 37, 6662.
21. Z. L. Xie, H. S. Kook, Jpn. J. Appl. Phys., 1998, 37, 2572.
22. M. Brittin, G. R. Mitchell, Mol. Cryst. Liq. Cryst., 1999, 329, 145.
23. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, Annu. Rev. Mater. Sci., 2000, 30, 83.
24. 葛聰智,“聚合穩定膽固醇液晶結構薄膜光電特性及繞射現象之研究",國立成功大學物理研究所博士論文, 2003.
25. J. H. Liu, F. R. Tsai, T. Y. Tsai, Polym Adv Technol, 2000, 11, 228.
26. J. H. Liu, H. Y. Wang, J Appl Polym Sci., 2004, 912, 789.
27. J. H. Liu, F. T. Wu, Polym Res., 2004, 11, 1 43.
76

4-6 參考文獻
含有光學活性及偶氮基團菠酯衍生物高分子穩定膽固醇液晶薄膜之製作與光電特性
1. 松本正一、角田市良合著,劉瑞祥譯,“液晶之基礎與應用"國立編譯館出版。
2. H. Kikuchi, T. Fujii, M. Kawakita, et al., Appl. Opt., 2004, 43, 132.
3. A. Y. G. Fuh, C. R. Lee, K. T. Cheng, Jpn. J. Appl. Phys., 2003, 142, 4406.
4. L. Sannier, H. M. Siddiqi, U. Maschke, et al., J. Appl. Polym. Sci., 2004, 92, 2621.
5. A. Y. G. Fuh, C. Y. Huang, M. S. Tsai, et al., Jpn. J. Appl. Phys., 1996, 35, 630.
6. K. Y. Yo, C. Y. Huang, G. C. Hsu, et al., Jpn. J. Appl. Phys., 2003, 142, 3531.
7. R. Barchini, J. G. Gordon, M. W. Hart, Jpn. J. Appl. Phys., 1998, 137, 6662.
8. H. Guillard, P. Sixou, L. Reboul, et al., 2001, Polymer, 42, 9753.
9. Bobrovsky, A. Y., Boiko, N. I., Shibaev, V. P., Liq. Cryst., 2001, 28, 919.
10. Wu, Y., Demachi, Y., Tsutsumi, O., Kanazawa, A., Shiono, T., Ikeda, T., Macromolecules., 1998, 31, 349.
11. Rau, H., “Photochemistry and Photophysics”, Rabek, J. K., Ed, CRCPress, BocaRaton, 1990, 2, 119.
12. J. H. Sung, S. Hirano, O. Tsutsumi, A. Kanazawa,T. Shiono, and T. Ikeda, Chem. Mater., 2002, 14, 385-391.
13. R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Swecki, V. P. Tondiglia, T. Bunning, J. Appl. Spectrosc., 2000, 54, 12A.
14. N. Yoshimoto, S. Morino, M. Nakagawa, K. Ichimura, Opt. Lett., 2002, 27, 182.
15. J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, V. L. Colvin,
114
Appl. Opt., 2000, 39, 2353.
16. T. J. Bunning, L. V. Natarajan, V. P, Tondiglia, R. L. Sutherland, Annu. Rev. Mater. Sci., 2000, 30, 83.
17. R. K. Kostuk, Appl. Opt., 1999, 38, 1357.
18. M. H. Lu. J. Appl. Phys., 1997, 81, 1063.
19. W. J. Zhang, J. P. Lin, T. S. Yu, et al., Eur. Polym. J., 2003, 39, 1635.
20. L. Sannier, H. M. Siddiqi, U. Maschke, et al., J. Appl. Polym. Sci., 2004, 92, 2621.
21. G. Meier, E. Sackmann and J. G. Gramaier, “Applications of Liquid Crystals”, Springer, Berlin, 1975.
22. J. H. Liu, H. J. Hung, et al., J. Appl. Polym. Sci., 2005, 98, 88.
23. J. H. Liu, H. Y. Wang, C. H. Ho, J. Polym. Res., 2003, 10, 13.
24. 蔡月娥, “雙官能基單體間隙長對 PSCT 液晶顯示器光電特性效應之研究”, 2000, 國立成功大學化學工程研究所碩士論文.
25. 黃啟炎, “液晶-聚合物混合薄膜之光學二倍頻現象之研究”, 1997, 國立成功大學物理研究所博士論文.
115

5-6 參考文獻
新穎光學活性樟腦衍生物之β-環糊精包容錯合物之合成與特性
1. S. R. Puniredd, M. P. Srinivasan Langmuir 2005, 21, 7812.
2. Y. Zhang, C. M. Cheng, B. Cusick, P. R. LeDuc. Langmuir 2007, 23, 8129.
3. S. Lecommandoux, H. A. Klok, M. Sayar, A. I. Stupp. J. Polym. Sci. Part A: Polym Chem 2003, 41, 3501.
4. T. Satoh, M. Tamaki, Y. Kitajyo, T. Maeda, H. Ishihara, T. Imai, H. Kaga, T. Kakuchi. J. Polym. Sci. Part A: Polym Chem 2006, 44, 406.
5. M. Nango, T. Hikita, T. Nakano, T. Yamada, M. Nagata, M. Kurono, T. Ohtsuka. Langmuir 1998, 14, 407.
6. A. Yoshida, K. Hashizaki, H. Yamauchi, H. Sakai, S. Yokoyama, M. Abe. Langmuir 1999, 15, 2333.
7. J. S. Park, Y. B. Lim, Y. M. Kwon, B. Jeong, Y. H. Choi, S. W. Kim. J. Polym. Sci. Part A: Polym Chem 1999, 37, 2305.
8. Y. Huang, C. Y. Chiang, S. K. Lee, Y. Gao, E. L. Hu, J. D. Yoreo, A. M. Belcher. Nano. Lett. 2005, 5, 1429.
9. M. F. Hawthorne, Z. Zheng. Acc. Chem. Res. 1997, 30, 267.
10. Y. Liu, Y. W. Yang, Y. Chen, H. X. Zou. Macromolecules, 2005.
11. J. M. Lehn. Supramolecular Chemistry; Wiley-VCH: Weinheim, 1995.
12. J. M. Lehn. Angew. Chem. Int. Ed. Engl. 1990, 29, 1304.
13. E. Sabadini, T. Cosgrove. Langmuir 2003, 19, 9680.
14. E. E. Meyer, M. F. Islam, W. Lau, H. D. Ou-Yang. Langmuir, 2000, 16, 5519.
15. I. Chung, C. K. Lee, C. S. Ha, W. J. Cho. J. Polym. Sci. Part A: Polym Chem 2006, 44, 295.
16. K. Uekama, F. Hirayama, T. Irie. Chem. Rev. 1998, 98, 2045.
17. X. Zhu, L. Chen, D. Yan, Q. Chen, Y. Yao, Y. Xiao, J. Hou, J. Li.
145
Langmuir, 2004, 20, 484.
18. A. Harada. J. Polym. Sci. Part A: Polym Chem 2006, 44, 5113.
19. J. Araki, K. Ito. J. Polym. Sci. Part A: Polym Chem 2006, 44, 6312.
20. A. Harada, J. Li, M. Kamachi. J. Am. Chem. Soc. 1994, 116, 3192.
21. M. Miyauchi, A. Harada. J. Am. Chem. Soc. 2004, 126, 11418.
22. I. Tomatsu, A. Hashidzume, A. Harada. J. Am. Chem. Soc. 2006, 128, 2226.
23. J. H. Liu, P. C. Yang, Y. H. Chiu. J. Polym. Sci. Part A: Polym Chem 2006, 44, 5933.
24. J. H. Liu, D. S. Wu, K. Y. Tseng. Macromol. Chem. Phys. 2004, 205, 2205.
25. F. Sahlen, M. Trolls, A. Hult, U. W. Gedde. Chem. Mater. 1996, 8, 382.
26. A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev. Liq. Cryst. 1998, 24, 489.
27. H. Hattori, T. Uryu. Liq. Cryst. 1999, 26, 1085.
28. J. H. Liu, H. Y. Wang. J. Appl. Polym. Sci. 2004, 91, 789.
29. J. H. Liu, H. Y. Wang, D. S. Wu, S. M. Hong, Y. G. Fu. J. Appl. Polym. Sci. 2005, 98, 88
30. J. H. Liu, C. D. Hsieh, H. Y. Wang. J. Polym. Sci. Part A: Polym Chem 2004, 42, 1075.
31. P. C. Yang, Y. H. Chiu, Y. Suda, J. H. Liu. J. Polym. Sci. Part A: Polym Chem 2007, 45, 2026.
32. X. H. Dai, C. M. Dong, H. B. Fa, D. Yan, Y. Wei. Biomacromolecules 2006, 7, 3527.
33. C. C. Rusa, C. Luca, A. E. Tonelli. Macromolecules 2001, 34, 1318.
34. L. Huang, E. Allen, A. E. Tonelli. Polymer 1999, 40, 3211.
35. H. Goto, Y. Furusho, E. Yashima. J. Am. Chem. Soc. 2007, 129, 109.
36. Y. Liu, Y. W. Yang, Y. Chen, H. X. Zou. Macromolecules 2005, 38, 5838.
146
37. H. Okumura, M. Okada, Y. Kawaguvhi, A. Harada. Macromolecules 2000, 33, 4297.
38. K. M. Huh, T. Ooya, S. Sasaki, N. Yui. Macromolecules 2001, 34, 2402.
39. Y. Liu, G. S. Chen, Y. Chen, N. Zhang, J. Chen, Y. L. Zhao. Nano. Lett. 2006, 6, 2196.
40. H. Okumura, Y. Kawaguvhi, A. Harada. Macromolecules 2001, 34, 6338.
41. J. Li, D. Yan. Macromolecules 2001, 34, 1542.
42. S. H. Kang, K. S. Jang, P. Theato, R. Zentel, J. Y. Chang. Macromolecules 2007, 40, 8349.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊