跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃志翔
研究生(外文):Chih-hsiang Huang
論文名稱:磺酸化乙烯-乙烯醇共聚物之製備與其於直接甲醇燃料電池質子傳導膜之應用
論文名稱(外文):Preparation of Sulfonated Ethylene-Vinyl Alcohol Copolymer and Its Application to Proton Exchange Membrane for DMFC
指導教授:郭炳林郭炳林引用關係
指導教授(外文):Ping-lin Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:83
中文關鍵詞:質子交換膜混掺甲醇穿透.直接甲醇燃料電池乙烯-乙烯醇共聚物(聚乙烯乙烯醇)
外文關鍵詞:DMFCpolymer blendproton exchange membraneethylene-vinyl alcohol copolymermethanol barrier.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
本研究經由聚乙烯乙烯醇與1,3-丙烷礦內酯之反應,製備丙烷基磺酸化乙烯-乙烯醇共聚物。此改質藉由FTIR圖譜中磺酸根特徵吸收峰的出現而得到確認,且此磺酸根以醚鍵與主鏈鍵結,因此在直接甲醇燃料電池的酸性水溶液操作條件下並沒有側鏈水解的疑慮。磺酸化改質與未改質的聚乙烯乙烯醇進而混掺用作新型之質子交換膜。FTIR、WAXD與DSC的分析結果,均顯示接枝的磺酸根側鏈降低乙烯-乙烯醇共聚物之結晶性。Solid-state 23Na NMR指出所有的離子性基團在成膜的過程中均發生原子級尺度的聚集,然而SAXS實驗證明此離子聚集並未達到奈米級之相分離。於本研究中,30�aC所測得之最高質子傳導度為0.05 S/cm;而甲醇穿透係數介於10-8至10-6 cm2/s的範圍,並且與結合水率(bound water degree)及離子通道內羥基之數量有極大關聯。最適量的乙烯醇鏈段於離子通道中,能夠在不造成高分子過度膨潤下,有效扮演甲醇屏障的角色。
Synthesis of sulfopropyl ethylene-vinyl alcohol copolymer (sEVOH) via reacting 1,3-propanesultone with EVOH has been accomplished in this study. FTIR spectroscopy confirmed the modification through introduction of peaks characteristic of sulfonic acid groups. The sulfonic acid groups attached to the backbone of EVOH were linked through ether bond, so there is no doubt about acidic hydrolysis of the sEVOH side-chain under direct methanol fuel cell (DMFC) operation. Polymer blends of sEVOH and EVOH were then prepared and acted as novel proton exchange membranes for DMFC. The results of FTIR, wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) show that pendant sulfonic acid groups diminish the crystallinity of EVOH. Solid-state 23Na NMR displayed all the ionic functionalities aggregate on the angstrom length scale during casting, while small angle X-ray scattering (SAXS) showed no nano-phase separation of ionic domains existing in the matrix. The highest proton conductivity of these membranes is 0.05 S/cm at 30 �aC. The methanol permeability of the membranes ranges from 10-8 to 10-6 cm2/s and is highly correlated with the bound water degree and especially the amount of hydroxyl groups in the ion channels. An optimum quantity of vinyl alcohol segments in ion channels will act as an effective methanol barrier without causing excessive swelling.
Abstract I
摘要 II
誌謝 III
Table of Contents IV
List of Tables VII
List of Figures VIII
Chapter 1. Introduction 1
Chapter 2. Fuel Cells and Proton Exchange Membranes 4
2.1 Overview 4
2.2 Category of Fuel cells 7
2.2.1 Alkaline Fuel Cell 9
2.2.2 Polymer Electrolyte Membrane Fuel Cell 9
2.2.3 Phosphoric Acid Fuel Cell 10
2.2.4 Molten Carbonate Fuel Cell 10
2.2.5 Solid Oxide Fuel Cell 11
2.3 Direct Methanol Fuel Cells 11
2.4 Proton Exchange Membranes for DMFCs 16
2.4.1 Perfluorinated Membrane, Nafion 16
2.4.2 PEMs Based on Poly(vinyl alcohol) 20
2.4.3 Other Non-Fluorinated Polymer Systems for PEMs 28
Chapter 3. Experimental Section 30
3.1 Materials 30
3.2 Reaction Mechanism 30
3.3 Procedure of Membrane Preparation 31
3.3.1 Synthesis of sulfopropylated EVOH (sEVOH) 31
3.3.2 Membrane Preparation 32
3.4 Characterization and Measurements 33
3.4.1 Degree of sulfopropylation of sEVOH 33
3.4.2 Fourier Transform Infrared 33
3.4.3 Wide Angle X-Ray Diffraction 33
3.4.4 Thermal Analysis 34
3.4.5 Ion Exchange Capacity 34
3.4.6 Water Content 35
3.4.7 The State of Water 36
3.4.8 Solid State 23Na Nuclear magnetic resonance 37
3.4.9 Small Angle X-Ray Scattering 37
3.4.10 Proton Conductivity 38
3.4.11 Methanol Permeability 39
Chapter 4. Results and Discussion 42
4.1 Degree of sulfopropylation of sEVOH 42
4.2 FTIR Spectra of Membranes 44
4.3 Crystalline Morphology and Crystallinity of Membranes 45
4.4 Thermal Analysis 47
4.4.1 Thermogravimetric Analysis 47
4.4.2 Differencial Scanning Calorimetry 49
4.5 IEC and Water Content 52
4.6 The State of Water 54
4.7 Microphase Morphology of the membranes 58
4.7.1 Solid-State 23Na Nuclear magnetic resonance 58
4.7.2 Small Angle X-Ray Scattering 61
4.8 Proton Conductivity 63
4.9 Methanol Permeability 68
Chapter 5. Conclusions 72
References 73
自述 83
1.Hampson, N. A., Willars, M. J., and McNicol, B. D., "The methanol-air fuel cell: A selective review of methanol oxidation mechanisms at platinum electrodes in acid electrolytes," Journal of Power Sources 4 (3), 191 (1979).
2.Rhee, C. H., Kim, H. K., Chang, H., and Lee, J. S., "Nafion/sulfonated montmorillonite composite: A new concept electrolyte membrane for direct methanol fuel cells," Chemistry of Materials 17 (7), 1691 (2005).
3.Ludvigsson, M., Lindgren, J., and Tegenfeldt, J., "Crystallinity in cast Nafion," Journal of the Electrochemical Society 147 (4), 1303 (2000).
4.Pivovar, B. S., Wang, Y., and Cussler, E. L., "Pervaporation membranes in direct methanol fuel cells," Journal of Membrane Science 154 (2), 155 (1999).
5.Pu, C., Huang, W., Ley, K. L., and Smotkin, E. S., "A methanol impermeable proton conducting composite electrolyte system," Journal of the Electrochemical Society 142 (7), L119 (1995).
6.Li, L., Zhang, J., and Wang, Y., "Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell," Journal of Membrane Science 226 (1-2), 159 (2003).
7.Xing, P., Robertson, G. P., Guiver, M. D., Mikhailenko, S. D., Wang, K., and Kaliaguine, S., "Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes," Journal of Membrane Science 229 (1-2), 95 (2004).
8.Kawahara, M., Rikukawa, M., Sanui, K., and Ogata, N., "Synthesis and proton conductivity of sulfopropylated poly(benzimidazole) films," Solid State Ionics 136-137 (2), 1193 (2000).
9.He, R., Li, Q., Bach, A., Jensen, J. O., and Bjerrum, N. J., "Physicochemical properties of phosphoric acid doped poly- benzimidazole membranes for fuel cells," Journal of Membrane Science 277 (1-2), 38 (2006).

10.Fang, J., Guo, X., Harada, S., Watari, T., Tanaka, K., Kita, H., and Okamoto, K., "Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid," Macromolecules 35 (24), 9022 (2002).
11.Essafi, W., Gebel, G., and Mercier, R., "Sulfonated polyimide ionomers: A structural study," Macromolecules 37 (4), 1431 (2004).
12.Nolte, R., Ledjeff, K., Bauer, M., and Mulhaupt, R., "Partially sulfonated poly(arylene ether sulfone) - A versatile proton conducting membrane material for modern energy conversion technologies," Journal of Membrane Science 83 (2), 211 (1993).
13.Karlsson, L. E. and Jannasch, P., "Polysulfone ionomers for proton-conducting fuel cell membranes: Sulfoalkylated polysulfones," Journal of Membrane Science 230 (1-2), 61 (2004).
14.Kerres, J., Ullrich, A., Meier, F., and Hing, T., "Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells," Solid State Ionics 125 (1-4), 243 (1999).
15.Deimede, V., Voyiatzis, G. A., Kallitsis, J. K., Qingfeng, L., and Bjerrum, N. J., "Miscibility behavior of polybenzimidazole/sulfonated polysulfone blends for use in fuel cell applications," Macromolecules 33 (20), 7609 (2000).
16.Chang, Y. W., Wang, E., Shin, G., Han, J. E., and Mather, P. T., "Poly(vinyl alcohol) (PVA)/sulfonated polyhedral oligosilsesquioxane (sPOSS) hybrid membranes for direct methanol fuel cell applications," Polymers for Advanced Technologies 18 (7), 535 (2007).
17.Kim, S. Y., Shin, H. S., Lee, Y. M., and Jeong, C. N., "Properties of electroresponsive poly(vinyl alcohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus," Journal of Applied Polymer Science 73 (9), 1675 (1999).
18.Qiao, J., Hamaya, T., and Okada, T., "New highly proton conductive polymer membranes poly(vinyl alcohol)-2-acrylamido-2-methyl-1- propanesulfonic acid (PVA-PAMPS)," Journal of Materials Chemistry 15 (41), 4414 (2005).
19.Qiao, J., Hamaya, T., and Okada, T., "New highly proton-conducting membrane poly(vinylpyrrolidone)(PVP) modified poly(vinyl alcohol)/ 2-acrylamido-2-methyl-1-propanesulfonic acid (PVA-PAMPS) for low temperature direct methanol fuel cells (DMFCs)," Polymer 46 (24), 10809 (2005).
20.Xu, W., Liu, C., Xue, X., Su, Y., Lv, Y., Xing, W., and Lu, T., "New proton exchange membranes based on poly (vinyl alcohol) for DMFCs," Solid State Ionics 171 (1-2), 121 (2004).
21.Rhim, J.-W., Park, H. B., Lee, C.-S., Jun, J.-H., Kim, D. S., and Lee, Y. M., "Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: Proton and methanol transport through membranes," Journal of Membrane Science 238 (1-2), 143 (2004).
22.Manea, C. and Mulder, M., "Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications," Journal of Membrane Science 206 (1-2), 443 (2002).
23.Park, J. S., Park, J. W., and Ruckenstein, E., "Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels," Polymer 42 (9), 4271 (2001).
24.Kudva, R. A., Keskkula, H., and Paul, D. R., "Compatibilization of nylon 6/ABS blends using glycidyl methacrylate/methyl methacrylate copolymers " Polymer 39 (12), 2447 (1998).
25.Kundu, P. P., Sharma, V., and Shul, Y. G., "Composites of proton-conducting polymer electrolyte membrane in direct methanol fuel cells," Critical Reviews in Solid State and Materials Sciences 32 (1), 51 (2007).
26.Smitha, B., Sridhar, S., and Khan, A. A., "Solid polymer electrolyte membranes for fuel cell applications--A review," Journal of Membrane Science 259 (1-2), 10 (2005).
27."Fuel cell test and evaluation center," The U.S. Department of Defense (DoD) (www.fctec.com).
28.Magnet, H. J. R., "Handbook of fuel cell technology," Prentice-Hall, Englewood Cliffs, NJ, USA, p. 425 (1968).
29.Bockris, J. O. M. and Srinivasan, S., "Fuel cell: Their electrochemistry," McGraw-Hill, New York (1969).
30.Grot, W. G., "Discovery and development of Nafion perfluorinated membranes," Chemistry & Industry 19, 647 (1985).
31.Wakizoe, M., Velev, O. A., and Srinivasan, S., "Analysis of proton exchange membrane fuel cell performance with alternate membranes," Electrochimica Acta 40 (3), 335 (1995).
32.Costamagna, P. and Srinivasan, S., "Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects," Journal of Power Sources 102 (1-2), 242 (2001).
33.Chalk, S. G., Miller, J. F., and Wagner, F. W., "Challenges for fuel cells in transport applications," Journal of Power Sources 86 (1-2), 40 (2000).
34.Charnah, R. M., "Fuel cell drives for road vehicles," Journal of Power Sources 86 (1-2), 130 (2000).
35.Rastler, D., "Challenges for fuel cells as stationary power resource in the evolving energy enterprise," Journal of Power Sources 86 (1-2), 34 (2000).
36.King, J. M. and O'Day, M. J., "Applying fuel cell experience to sustainable power products," Journal of Power Sources 86 (1-2), 16 (2000).
37.Kreuer, K. D., "On the development of proton conducting materials for technological applications," Solid State Ionics 97 (1-4), 1 (1997).
38.Chu, D., Jiang, R., Gardner, K., Jacobs, R., Schmidt, J., Quakenbush, T., and Stephens, J., "Polymer electrolyte membrane fuel cells for communication applications," Journal of Power Sources 96 (1), 174 (2001).
39.Barbir, F. and Graez, T., "Efficiency and economics of proton exchange membrane (PEM) fuel cells," International Journal of Hydrogen Energy 21 (10), 891 (1996).
40.Kordesch, K. and Simader, G., "Fuel cells and their applications," Weinheim, New York, Basel, Cambridge, Tokyo: VCH (1996).
41.黃煜騰、鄭耀宗、吳龍暉,八十二年能源經濟學術研討會論文集。
42.Larminie, J. and Dicks, A., "Fuel cell systems explained, 2nd ed," John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England (2003).
43.DeLuca, N. W. and Elabd, Y. A., "Polymer electrolyte membranes for the direct methanol fuel cell: A review," Journal of Polymer Science Part B: Polymer Physics 44 (16), 2201 (2006).
44.Rikukawa, M. and Sanui, K., "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers," Progress in Polymer Science 25 (10), 1463 (2000).
45.Hamnett, A., "Mechanism and electrocatalysis in the direct methanol fuel cell," Catalysis Today 38 (4), 445 (1997).
46.Wasmus, S. and Kuver, A., "Methanol oxidation and direct methanol fuel cells: A selective review," Journal of Electroanalytical Chemistry 461 (1-2), 14 (1999).
47.Ravikumar, M. K. and Shukla, A. K., "Effect of methanol crossover in a liquid-feed polymer-electrolyte direct methanol fuel cell," Journal of the Electrochemical Society 143 (8), 2601 (1996).
48.Ge, J. and Liu, H., "Experimental studies of a direct methanol fuel cell," Journal of Power Sources 142 (1-2), 56 (2005).
49.Neburchilov, V., Martin, J., Wang, H., and Zhang, J., "A review of polymer electrolyte membranes for direct methanol fuel cells," Journal of Power Sources 169 (2), 221 (2007).
50.Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R., and McGrath, J. E., "Alternative polymer systems for proton exchange membranes (PEMs)," Chemical Reviews 104 (10), 4587 (2004).
51.Ibrahim, S. M., Price, E. H., and Smith, R. A., of E. I. du Pont de Nemours., Proc. Electrochem. Soc., 83 (1983).
52.Resnick, P. R. and Grot, W. G., of E. I. du Pont de Nemours and Company, Wilmington, DE, U.S. Patent 4, 113, 585 (1978).
53.Roziere, J. and Jones, D. J., "Non-fluorinated polymer materials for proton exchange membrane fuel cells," Annual Review of Materials Research 33, 503 (2003).
54.Gierke, T. D., Hsu, W. Y., in: Eisenberg, A., and Yeager, H. L. (Eds.), "Perfluorinated ionomer membranes," ACS Symposium Series NO. 180, American Chemical Society, Washington, DC, p. 283 (1982).
55.Eikerling, M., Kornyshev, A. A., and Stimming, U., "Electrophysical properties of polymer electrolyte membranes: A random network model," Journal of Physical Chemistry B 101 (50), 10807 (1997).
56.Schmidt-Rohr, K. and Chen, Q., "Parallel cylindrical water nanochannels in Nafion fuel-cell membranes," Nature Materials 7 (1), 75 (2008).
57.DeLuca, N. W. and Elabd, Y. A., "Nafion/poly(vinyl alcohol) blends: Effect of composition and annealing temperature on transport properties," Journal of Membrane Science 282 (1-2), 217 (2006).
58.Shao, Z.-G., Wang, X., and Hsing, I. M., "Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell," Journal of Membrane Science 210 (1), 147 (2002).
59.Qiao, J., Hamaya, T., and Okada, T., "Chemically modified poly(vinyl alcohol)-poly(2-acrylamido-2-methyl-1-propanesulfonic acid) as a novel proton-conducting fuel cell membrane," Chemistry of Materials 17 (9), 2413 (2005).
60.Wu, H., Wang, Y. X., and Wang, S. C., "A methanol barrier polymer electrolyte membrane in direct methanol fuel cells," Journal of New Materials for Electrochemical Systems 5 (4), 251 (2002).
61.Kang, M.-S., Kim, J. H., Won, J., Moon, S.-H., and Kang, Y. S., "Highly charged proton exchange membranes prepared by using water soluble polymer blends for fuel cells," Journal of Membrane Science 247 (1-2), 127 (2005).
62.Kang, M.-S., Choi, Y.-J., and Moon, S.-H., "Water-swollen cation-exchange membranes prepared using poly(vinyl alcohol) (PVA)/ poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)," Journal of Membrane Science 207 (2), 157 (2002).
63.Walker, J. C. W., "Proton-conducting interpenetrating polymer network with reduced methanol permeability," Journal of the Electrochemical Society 151 (11), A1797 (2004).
64.Lin, C. W., Thangamuthu, R., and Yang, C. J., "Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMFC applications," Journal of Membrane Science 253 (1-2), 23 (2005).
65.Binsu, V. V., Nagarale, R. K., and Shahi, V. K., "Phosphonic acid functionalized aminopropyl triethoxysilane-PVA composite material: organic-inorganic hybrid proton-exchange membranes in aqueous media," Journal of Materials Chemistry 15 (45), 4823 (2005).
66.Carretta, N., Tricoli, V., and Picchioni, F., "Ionomeric membranes based on partially sulfonated poly(styrene): Synthesis, proton conduction and methanol permeation," Journal of Membrane Science 166 (2), 189 (2000).
67.Jung, B., Kim, B., and Yang, J. M., "Transport of methanol and protons through partially sulfonated polymer blend membranes for direct methanol fuel cell," Journal of Membrane Science 245 (1-2), 61 (2004).
68.Lufrano, F., Baglio, V., Staiti, P., Arico, A. S., and Antonucci, V., "Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells," Journal of Power Sources 179 (1), 34 (2008).
69.Li, X., Liu, C., Lu, H., Zhao, C., Wang, Z., Xing, W., and Na, H., "Preparation and characterization of sulfonated poly(ether ether ketone ketone) proton exchange membranes for fuel cell application," Journal of Membrane Science 255 (1-2), 149 (2005).
70.Einsla, B. R., Hong, Y. T., Kim, Y. S., Wang, F., Gunduz, N., and McGrath, J. E., "Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells. I. Monomer and copolymer synthesis," Journal of Polymer Science Part A: Polymer Chemistry 42 (4), 862 (2004).
71.Einsla, B. R., Kim, Y. S., Hickner, M. A., Hong, Y.-T., Hill, M. L., Pivovar, B. S., and McGrath, J. E., "Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells: II. Membrane properties and fuel cell performance," Journal of Membrane Science 255 (1-2), 141 (2005).
72.Goethals, E. J. and Natus, G., "Reaction of propane sultone with macromolecules. 2. Poly(vinyl alcohol)," Makromolekulare Chemie- Macromolecular Chemistry and Physics 116, 152 (1968).
73.Natus, G. and Goethals, E. J., Bulletin des Sociétés Chimiques Belges 74, 450 (1965).
74.Li, W., Xue, F., and Cheng, R., "States of water in partially swollen poly(vinyl alcohol) hydrogels," Polymer 46 (25), 12026 (2005).
75.Ahmad, M. B. and Huglin, M. B., "DSC studies on states of water in cross-linked poly(methyl methacrylate - co - N - vinyl - 2 - pyrrolidone) hydrogels," Polymer International 33 (3), 273 (1994).
76.Ping, Z. H., Nguyen, Q. T., Chen, S. M., Zhou, J. Q., and Ding, Y. D., "States of water in different hydrophilic polymers -- DSC and FTIR studies," Polymer 42 (20), 8461 (2001).
77.Tricoli, V., "Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs+ and H+ cations," Journal of the Electrochemical Society 145, 3798 (1998).
78.Lagaron, J. M., Gimenez, E., Catala, R., and Gavara, R., "Mechanisms of moisture sorption in barrier polymers used in food packaging: Amorphous polyamide vs. high-barrier ethylene-vinyl alcohol copolymer studied by vibrational spectroscopy," Macromolecular Chemistry and Physics 204 (4), 704 (2003).
79.Lopez-Rubio, A., Lagaron, J. M., Gimenez, E., Cava, D., Hernandez-Munoz, P., Yamamoto, T., and Gavara, R., "Morphological alterations induced by temperature and humidity in ethylene-vinyl alcohol copolymers," Macromolecules 36 (25), 9467 (2003).
80.Nakamae, K., Kameyama, M., and Matsumoto, T., "Elastic-moduli of the crystalline regions in the direction perpendicular to the chain axis of ethylene-vinyl alcohol copolymers," Polymer Engineering and Science 19 (8), 572 (1979).

81.Cerrada, M. L., Perez, E., Perena, J. M., and Benavente, R., "Wide-angle X-ray diffraction study of the phase behavior of vinyl alcohol-ethylene copolymers," Macromolecules 31 (8), 2559 (1998).
82.Seyler, R. J., "Assignment of the glass transition," ASTM, Philadelphia, PA, p. 28 (1994).
83.Guan, R., Gong, C. L., Lu, D. P., Zou, H., and Lu, W., "Development and characterization of homogeneous membranes prepared from sulfonated poly(phenylene oxide)," Journal of Applied Polymer Science 98 (3), 1244 (2005).
84.Cui, W., Kerres, J., and Eigenberger, G., "Development and characterization of ion-exchange polymer blend membranes," Separation and Purification Technology 14 (1-3), 145 (1998).
85.Binsu, V. V., Nagarale, R. K., Shahi, V. K., and Ghosh, P. K., "Studies on N-methylene phosphonic chitosan/poly(vinyl alcohol) composite proton- exchange membrane," Reactive & Functional Polymers 66 (12), 1619 (2006).
86.Kim, Y. S., Dong, L., Hickner, M. A., Glass, T. E., Webb, V., and McGrath, J. E., "State of water in disulfonated poly(arylene ether sulfone) copolymers and a perfluorosulfonic acid copolymer (Nafion) and its effect on physical and electrochemical properties," Macromolecules 36 (17), 6281 (2003).
87.Nakamura, K., Hatakeyama, T., and Hatakeyama, H., "Relationship between hydrogen bonding and bound water in polyhydroxystyrene derivatives," Polymer 24 (7), 871 (1983).
88.Higuchi, A., Komiyama, J., and Iijima, T., "The states of water in gel cellophane membranes," Polymer Bulletin 11 (2), 203 (1984).
89.O'Connell, E. M., Root, T. W., and Cooper, S. L., "Morphological studies of lightly-sulfonated polystyrene using 23Na NMR. 1. Effects of sample composition " Macromolecules 27 (20), 5803 (1994).
90.O'Connell, E. M., Root, T. W., and Cooper, S. L., "Morphological studies of lightly sulfonated polystyrene using 23Na NMR. 2. Effects of solution casting " Macromolecules 28 (11), 3995 (1995).
91.O'Connell, E. M., Root, T. W., and Cooper, S. L., "Morphological studies of lightly sulfonated polystyrene using 23Na NMR. 3. Effects of humidification and annealing " Macromolecules 28 (11), 4000 (1995).
92.Phillips, A. K. and Moore, R. B., "Ionic actuators based on novel sulfonated ethylene vinyl alcohol copolymer membranes," Polymer 46 (18), 7788 (2005).
93.Orler, E. B., Gummaraju, R. V., Calhoun, B. H., and Moore, R. B., "Effect of preferential plasticization on the crystallization of lightly sulfonated syndiotactic polystyrene ionomers," Macromolecules 32 (4), 1180 (1999).
94.Xie, Z., Song, C. J., Andreaus, B., Navessin, T., Shi, Z. Q., Zhang, J. J., and Holdcroft, S., "Discrepancies in the measurement of ionic conductivity of PEMs using two- and four-probe ac impedance spectroscopy," Journal of the Electrochemical Society 153 (10), E173 (2006).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊