跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭文生
研究生(外文):Vincentius Surya
論文名稱:批次共沸蒸餾程序之最適合成與排程策略
論文名稱(外文):Optimal Synthesis and Scheduling Strategies for Batch Azeotropic Distillation Processes
指導教授:張玨庭張玨庭引用關係
指導教授(外文):Chang Chuei-Tin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:145
中文關鍵詞:異相或均相共沸蒸餾批次排程恆沸物狀態-工作網路數學規劃模式
外文關鍵詞:heterogeneous or homogeneous distillationbatch schedulingmathematical programming modelstate-task networkazeotrope
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:1
在本研究中,我們藉由考慮流程與排程整合上的議題,發展出批次共沸蒸餾系統的接續式設計方法。此方法可分為兩個階段進行:首先以整數規劃(IP)模式求取最適流程(或所謂狀態-工作網路),接著再以混整數線性規劃(MILP)模式得到最適短期排程。另外,我們也可以利用混整數非線性規劃(MINLP)模式產生出最適週期排程,並且利用事件點的觀念來幫助模式中連續時間的表示。最後,我們以一系列的案例研究來展示上述模式之使用步驟,並且可以得到令人滿意的流程結構和生產排程。
By addressing both flow sheet generation and scheduling issues, a sequential design method has been developed in this work for the batch azeotropic distillation systems. The proposed strategies can be applied in two stages. Firstly, an Integer Programming (IP) is solved to produce the optimal flow sheet (or state-task network). A Mixed Integer Linear Programming Model (MILP) is then constructed accordingly for generating the optimal short-term schedule. On the other hand, a Mixed Integer Non-Linear Programming (MINLP) is also constructed for generating optimal cyclic schedule. The concept of event points is adopted to facilitate the continuous-time representation in this formulation. The implementation procedure is demonstrated with several case studies. Satisfactory process configurations and production schedules can both be produced in all the cases we have studied so far.
Abstract i
摘要 ii
Acknowledgement iii
Contents iv
List of Tables vii
List of Figures xv
1. Introduction 1
2. System Classification 4
2.1 Homogeneous Systems 4
2.1.1 Ternary Systems 5
2.1.2 Quaternary Systems 7
2.2 Heterogeneous Systems 16
3. Plausible Operations 21
4. State-Task Network Synthesis 36
4.1 Acetone-Ethanol-Chloroform System 39
4.2 Acetone-Ethanol-Chloroform-Benzene System 40
4.3 Ethanol-Water-Toluene System 41
5. Scheduling Strategies 44
5.1 Short-Term Scheduling Model 44
5.2 Cyclic Scheduling Model 50
5.3 Decomposition of Cyclic Scheduling Problem 54
6. Case Studies 56
6.1 Dedicated Units - Base Cases 57
6.1.1 Acetone-Ethanol-Chloroform System 57
6.1.2 Acetone-Ethanol-Chloroform-Benzene System 59
6.1.3 Ethanol-Water-Toluene System 61
6.1.4 Concluding Remarks for Base Cases 63
6.2 Purge Penalties - Case 1 64
6.2.1 Acetone-Ethanol-Chloroform System 64
6.2.2 Acetone-Ethanol-Chloroform-Benzene System 66
6.2.3 Ethanol-Water-Toluene System 67
6.2.4 Concluding Remarks for Case 1 69
6.3 Limited Storage Capacity - Case 2 69
6.3.1 Acetone-Ethanol-Chloroform System 69
6.3.2 Acetone-Ethanol-Chloroform-Benzene System 71
6.3.3 Ethanol-Water-Toluene System 73
6.3.4 Concluding Remarks for Case 2 74
6.4 Demand-Based Production - Case 3 74
6.4.1 Acetone-Ethanol-Chloroform System 75
6.4.2 Acetone-Ethanol-Chloroform-Benzene System 77
6.4.3 Ethanol-Water-Toluene System 79
6.4.4 Concluding Remarks for Case 3 81
6.5 Equipment Sharing 82
6.5.1 Shared Mixers - Case 4 82
6.5.1.1 Acetone-Ethanol-Chloroform System 82
6.5.1.2 Acetone-Ethanol-Chloroform-Benzene System 83
6.5.1.3 Ethanol-Water-Toluene System 84
6.5.2 Shared Distillers - Case 5 86
6.5.2.1 Acetone-Ethanol-Chloroform System 86
6.5.2.2 Acetone-Ethanol-Chloroform-Benzene System 87
6.5.2.3 Ethanol-Water-Toluene System 89
6.5.3 Concluding Remarks for Equipment Sharing 90
6.6 Realistic Short-Term Scheduling Problems - Case 6 91
6.6.1 Acetone-Ethanol-Chloroform System 91
6.6.2 Acetone-Ethanol-Chloroform-Benzene System 93
6.6.3 Ethanol-Water-Toluene System 95
6.7 Cyclic Scheduling - Case 7 98
6.7.1 Acetone-Ethanol-Chloroform System 98
6.7.2 Acetone-Ethanol-Chloroform-Benzene System 104
6.7.3 Ethanol-Water-Toluene System 110
6.8 Cyclic Scheduling with Limited Storage Capacity - Case 8 116
6.8.1 Acetone-Ethanol-Chloroform System 117
6.8.2 Acetone-Ethanol-Chloroform-Benzene System 123
6.8.3 Ethanol-Water-Toluene System 128
6.8.4 Concluding Remarks for Case 8 134
7. Conclusions and Future Works 135
7.1 Conclusions 135
7.2 Future Works 135
References 136
Appendix 142
About Author 145
Ahmad, B. S. & Barton, P. I. Homogeneous multicomponent azeotropic batch distillation. AIChE Journal, 42, 12, 3419-3433, 1996.
Ahmad, B. S., Zhang, Y., & Barton, P. I. Product sequences in azeotropic batch distillation. AIChE Journal, 44, 5, 1051-1070, 1998.
Arlt, W., Spuhl, O., & Klamt. A. Challenges in thermodynamics. Chemical Engineering & Processing, 43, 221-238, 2004.
Aspen Plus 11.1: User guide. Aspen Technology, Inc., 2001.
Bauer, M. H. & Stichlmair, J. Design and economic optimization of azeotropic distillation processes using mixed-integer nonlinear programming. Computers & Chemical Engineering, 22, 9, 1271-1286, 1998.
Bertok, B., Friedler, F., Feng, G., & Fan, L. T. Systematic generation of the optimal and alternative flowsheets for azeotropic-distillation systems. European Symposium on Computer Aided Process Engineering, 11, 351-356, 2001.
Brooke, A., Kendrick, D., Meeraus, A., & Raman, R. GAMS: A user's guide, GAMS Development Corporation, 1998.
Biegler, L. T., Grossmann, I. E., & Westerberg, A. W. Systematic methods of chemical process design. Prentice-Hall, Inc. 1997.
Chou, H. H. & Chang, C. T. Petri-Net based strategy to synthesize the operating procedures for cleaning pipeline networks. Industrial & Engineering Chemistry Research, 44, 114-123, 2005.
Dechema e. V. DETHERM… on the WEB: Thermophysical properties of pure substances & mixtures. Retrieved March 18th, 2008, from http://i-systems.dechema.de/detherm/mixture.php? 2007.
Doherty, M. F. & Malone, M. F. Conceptual design of distillation systems. McGraw-Hill, New York, 2001.
Feng, G., Fan, L. T., & Friedler, F. Synthesizing alternative sequences via a P-graph-based approach in azeotropic distillation systems. Waste Management, 20, 639-643, 2000.
Feng, G., Fan, L. T., Friedler F., & Seib, P. A. Identifying operating units for the design and synthesis of azeotropic-distillation systems. Industrial & Engineering Chemistry Research, 39, 175-184, 2000.
Feng, G., Fan, L. T., Seib, P. A., Bertok, B., Kalotai, L., & Friedler, F. Graph-theoretic method for the algorithmic synthesis of azeotropic-distillation systems. Industrial & Engineering Chemical Research, 42, 3602-3611, 2003.
Fidkowski, Z. T., Malone, M. F., & Doherty, M. F. Computing azeotropes in multicomponent mixtures. Computers & Chemical Engineering, 17, 1141-1155, 1993.
Fien, Gert-Jan A. F. & Liu, Y. A. Heuristic synthesis and shortcut design of separation processes using residue curve maps: A review. Industrial & Engineering Chemistry Research, 33, 2502-2522, 1994.
Floudas, C. A., Akrotirianakis, I. G., Caratzoulas, S., Meyer, C.A., & Kallrath, J. Global optimization in the 21st century: Advances and challenges. Computers & Chemical Engineering, 29, 1185-1202, 2005.
Floudas, C. A. & Lin, X. Continuous-time versus discrete-time approaches for scheduling of chemical processes: A review. Computers & Chemical Engineering, 28, 2109-2129, 2004.
Friedler, F., Tarjan, K., Huang, Y. W., & Fan, L. T. Graph-theoretic approach to process synthesis: Axioms and theorems. Chemical Engineering Science, 47, 1973-1988, 1992.
Friedler, F., Tarjan, K., Huang, Y. W., & Fan, L. T. Graph-theoretic approach to process synthesis: Polynomial algorithm for maximal structure generation. Computers & Chemical Engineering, 17, 929-942, 1993.
Friedler, F., Varga, J. B., & Fan, L. T. Decision-mapping: A tool for consistent and complete decisions in process synthesis. Chemical Engineering Science, 50, 1755-1768, 1995.
GAMS/CPLEX 11.0 User notes. ILOG Inc., 2007.
GAMS: The solver manuals. GAMS Development Corporation, 2008.
Grossmann, I. E., Viswanathan, J., Vecchietti, A., Raman, R., & Kalvelagen. E. GAMS/DICOPT: A discrete continuous optimization package. GAMS Corporation, Inc., 2003.
Ierapetritou, M. G. & Floudas, C. A. Effective continuous-time formulation for short-term scheduling. 1. Multipurpose batch processes. Industrial & Engineering Chemical Research, 37, 4341-4359, 1998.
Ierapetritou, M. G. & Floudas, C. A. Effective continuous-time formulation for short-term scheduling. 2. Multipurpose/multiproduct continuous processes. Industrial & Engineering Chemical Research, 37, 4360-4374, 1998.
Ierapetritou, M. G. & Floudas, C. A. Short-term scheduling: New mathematical models vs algorithmic improvements. Computers & Chemical Engineering, 22, Suppl., S419-S426, 1998.
Janak, S. L., Floudas, C. A., Kallrath, J., & Vormbrock, N. Production scheduling of a large-scale industrial batch plant. I. Short-term and medium-term scheduling. Industrial & Engineering Chemistry Research, 45, 8234-8252, 2006.
Janak, S. L., Floudas, C. A., Kallrath, J., & Vormbrock, N. Production Scheduling of a large-scale industrial batch plant. II. Reactive scheduling. Industrial & Engineering Chemistry Research, 45, 8253-8269, 2006.
Kim, J. & Moon, I. Synthesis of safe operating procedure for multi-purpose batch processes using SMV. Computers & Chemical Engineering, 24, 385-392, 2000.
Kondili, E., Pantelides, C. C. & Sargent, R. W. H. A general algorithm for short-term scheduling of batch operations - I. MILP formulation. Computers & Chemical Engineering, 17, 211-227, 1993.
Lai, J. H. & Chang, C. T. Optimal design of batch azeotropic distillation processes. Master Thesis, National Cheng Kung University, 2005.
Lai, J. W., Chang, C. T., & Huang, S. H. Petri-Net based integer programs for synthesizing optimal batch operation procedures. Industrial & Engineering Chemistry Research, 46, 2797-2813, 2007.
Lin, X. & Floudas, C. A. Design, synthesis, and scheduling of multipurpose batch plants via an effective continuous-time formulation. Computers & Chemical Engineering, 25, 665-674, 2001.
Maravelias, C. T. & Grossmann, I. E. A new general continuous-time state task network formulation for the short term scheduling of multi-purpose batch plants. Industrial & Engineering Chemistry Research, 42, 3056-3074, 2003.
Pantelides, C.C. Unified frameworks for the optimal process planning and scheduling. Proceedings on the Second Conference on Foundations of Computer Aided Operations (Eds. Rippin, D. W. T. & Hale, J.), 253-274, 1994.
Papageorgaki, S. & Reklaitis, G. V. Optimal design of multipurpose batch plants - I. Problem formulation. Industrial & Engineering Chemistry Research, 29, 2054-2061, 1990.
Papageorgaki, S. & Reklaitis, G. V. Optimal design of multipurpose batch plants - II. A decomposition solution strategy. Industrial & Engineering Chemistry Research, 29, 2062-2073, 1990.
Pham, H. N. & Doherty, M. F. Design and synthesis of heterogeneous azeotropic distillations - I. Heterogeneous phase diagrams. Chemical Engineering Science, 45, 1823-1836, 1990.
Pham, H. N. & Doherty, M. F. Design and synthesis of heterogeneous azeotropic distillations - II. Residue curve maps. Chemical Engineering Science, 45, 1837-1843, 1990.
Pham, H. N. & Doherty, M. F. Design and synthesis of heterogeneous azeotropic distillations - III. Column sequence. Chemical Engineering Science, 45, 1845-1854, 1990.
Raman, R. & Grossmann, I. E. Relation between MILP modeling and logical inference for chemical process synthesis. Computers & Chemical Engineering, 15, 73-84, 1991.
Raman, R. & Grossmann, I. E. Symbolic integration of logic in mixed-integer linear programming techniques for process synthesis. Computers & Chemical Engineering, 13, 909-927, 1993.
Safrit, T. B. & Westerberg, A. W. Algorithm for generating the distillation regions for azeotropic multicomponent mixtures. Industrial & Engineering Chemistry Research, 36, 1827-1840, 1997.
Safrit, T. B. & Westerberg, A. W. Synthesis of Azeotropic Batch Distillation Separation Systems. Industrial & Engineering Chemistry Research, 36, 1841-1854, 1997.
Sahinidis, N. V. & Tawarmalani, M. GAMS/BARON 5.0: Global optimization of mixed-integer nonlinear programs. GAMS Corporation, Inc., 2003.
Schilling, G. & Pantelides, C. C. A simple continuous-time process scheduling formulation and a novel solution algorithm. Computers & Chemical Engineering, 20, Suppl., S1221-S1226, 1996.
Schilling, G. & Pantelides, C. C. Optimal periodic scheduling of multipurpose plants. Computers & Chemical Engineering, 23, 635-655, 1999.
Shah, N., Pantelides, C. C., & Sargent, R.W.H. A general algorithm for short-term scheduling of batch operations - II. Computational issues. Computers & Chemical Engineering, 17, 229-244, 1993.
Shah, N., Pantelides, C. C., & Sargent, R. W. H. Optimal periodic scheduling of multipurpose batch plants. Annals of Operations Research, 42, 193-228, 1993.
Shaik, M. A., Janak, S. L., & Floudas, C. A. Continuous-time models for short-term scheduling of multipurpose batch plants: A comparative study. Industrial & Engineering Chemistry Research, 45, 6190-6209, 2006.
Stichlmair, J. G., Fair, J. R., & Bravo, J. L. Separation of azeotropic mixtures via enhanced distillation. Chemical Engineering Progress, 85, 63–69, 1989.
Stichlmair, J. G. & Herguijuela, J. R. Separation regions and processes of zeotropic and azeotropic ternary distillation. AIChE Journal, 38, 1523-1535, 1992.
Thong, D. Y. -C. & Jobson, M. Multicomponent homogeneous azeotropic distillation 1. Assessing product feasibility. Chemical Engineering Science, 56, 4369-4391, 2001.
Thong, D. Y. -C. & Jobson, M. Multicomponent homogeneous azeotropic distillation 2. Column design. Chemical Engineering Science, 56, 4393-4416, 2001.
Thong, D. Y. -C. & Jobson, M. Multicomponent homogeneous azeotropic distillation 3. Column sequence synthesis. Chemical Engineering Science, 56, 4417-4432, 2001.
Thong, D. Y. -C., Liu G., Jobson, M., & Smith, R. Synthesis of distillation sequences for separating multicomponent azeotropic mixtures. Chemical Engineering & Processing, 43, 239-250, 2004.
Volin, Y. M. & Ostrovskii, G. M. Flexibility analysis of complex technical system under uncertainty. Automation & Remote Control, 63, 7, 1123-1136, 2002.
Wahnschafft, O. M., Koehler, J. W., Blass, E., & Westerberg, A. W. The product composition regions of single-feed azeotropic distillation columns. Industrial & Engineering Chemistry Research, 31, 2345–2362, 1992.
Wahnscafft, O. M. & Westerberg, A. W. The product composition regions of azeotropic distillation columns. 2. Separability in two-feed columns and entrainer selection. Industrial & Engineering Chemistry Research 32, 1108–1120, 1993.
Wang, Y. F. & Chang, C. T. A Petri-Net-based deductive reasoning strategy for fault identification in batch processes. Industrial & Engineering Chemistry Research, 43, 2704-2720, 2004.

Wang, Y. F., Chou, H. H., & Chang, C. T. Generation of batch operating procedures for multiple material-transfer tasks with Petri-Net. Computers & Chemical Engineering, 29, 1822-1836, 2005.
Watson, S., Joulia. X., Macchietto, S., Le Lann, J. -M., Vayrette, G., & Letourneau, J. -J. Azeotropic batch distillation: New problems and some solutions. Computers & Chemical Engineering, 19, Suppl., S589-596, 1995.
Westhaus, I. U. & Sass, R. From raw physical data to reliable thermodynamic model parameters through DECHEMA Data Preparation Package. Fluid Phase Equilibria, 222-223, 49-54, 2004.
Wu, D. & Ierapetritou, M. Cyclic short-term scheduling of multiproduct batch plants using continuous-time representation. Computers & Chemical Engineering, 28, 2271-2286, 2004.
Zhang, X. & Sargent, R. W. H. The optimal operation of mixed production facilities - A general formulation and some solution approaches for the solution. Computers & Chemical Engineering, 20, 897-904, 1996.
Zhang, X. & Sargent, R. W. H. The optimal operation of mixed production facilities - Extensions and improvements. Computers & Chemical Engineering, 20, Suppl., S1287-SI293, 1996.
Zhang, X. & Sargent, R. W. H. The optimal operation of mixed production facilities - Extensions and improvements. Computers & Chemical Engineering, 22, 1287-1295, 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top