(3.230.76.48) 您好!臺灣時間:2021/04/13 16:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王淑玲
研究生(外文):Shu-Ling Wang
論文名稱:硼氫化鈉的儲氫系統研究
論文名稱(外文):Study on Hydrogen Storage via Sodium Borohydride Solutions
指導教授:黃耀輝黃耀輝引用關係
指導教授(外文):Yao-Hui Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:151
中文關鍵詞:氧化鋁儲氫硼氫化鈉偏硼酸鈉
外文關鍵詞:Sodium borohydrideHydrogen storageSodium metaborateRutheniumAlumina
相關次數:
  • 被引用被引用:9
  • 點閱點閱:387
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
比起其他儲氫技術(高壓氫,液態氫,吸附劑,奈米碳管,金屬氫化物)化學儲氫具安全、化學穩定性、高重量密度與體積小之優點。硼氫化鈉(NaBH4)是重要的化學儲氫材料之一,因為其儲氫效率與轉化氫效率極高,且可藉由觸媒催化提升其生成氫氣效率,故硼氫化鈉應用於燃料電池化學氫之研究,一直廣為科學家所探討。另一方面,有效的回收它的副產物-偏硼酸鈉(NaBO2)以節省能源、操作成本並降低對環境的衝擊亦成為一個重要的研究課題,本研究將著重於硼氫化鈉溶液產氫與電解回收可行性之研究。
在本研究中,我們利用Ru觸媒(Ru/Al2O3)進行硼氫化鈉鹼性溶液的水(醇)解產氫實驗,探討氫氧化納濃度、硼氫化鈉濃度和反應溫度等變因對產氫的影響。在常溫常壓下進行硼氫化鈉鹼性溶液的水(醇)解反應,產氫速率隨著氫氧化鈉的濃度增加而減慢。在硼氫化鈉的水解產氫實驗部份,濃度為10 wt.%的硼氫化鈉溶液有最佳的產氫速率。然而硼氫化鈉的醇解產氫實驗部份,產氫速率並不隨著硼氫化鈉的濃度增加而增加。另外,硼氫化鈉鹼性溶液的水解和醇解系統的反應活化能分別為41.8和42.1 kJmol-1。另外,我們鑑定了硼氫化鈉經Ru觸媒(Ru/Al2O3)催化下產氫後生成的副產物。在不同反應條件下產生的結晶經過X-ray繞射分析儀的鑑定,判定為硼砂或偏硼酸鈉。以電化學法再生硼氫化鈉並不可行。
Compared with other hydrogen storage technologies (high-pressure gas cylinders, liquid hydrogen, high surface absorbent, carbon nanotube, metal hydride), chemical hydrogen storage has more advantages such as high density of weight and low volume. Sodium borohydride is a strong candidate for hydrogen storage because of its hydrogen storage capacity, chemistry, safety, and functionality. Besides, the ability of recycling the spent fuel (borates) back to borohydride is more and more important.
In this study, the rate of hydrogen generation was measured using Ru/Al2O3 catalyst as a function of the concentrations of NaOH and NaBH4, as well as the reaction temperature, in the hydrolysis and methanolysis of alkaline NaBH4 solution. With increasing NaOH concentration, hydrogen generation rate decreased. The hydrogen generation rate increases for lower NaBH4 concentrations in the hydrolysis of alkaline NaBH4 solution and decreases after reaching a maximum at 10 wt.% of NaBH4. However, the hydrogen generation rate is found to be constant with respect to the concentration of NaBH4 in the methnaolysis of alkaline NaBH4 solution. Activation energy for the hydrolysis and methnaolysis of alkaline NaBH4 solution were found to be 41.8 and 42.1 kJmol-1. We found that the hydrolysis by-product of borohydride through heterogeneous catalyst is borax or sodium metaborate. The electrochemical reduction method is not available.
摘 要 II
ABSTRACT 1
致謝 2
總 目 錄 3
圖 目 錄 6
第一章 緒論 12
1.1 背景 12
1.2 目的 15
第二章 文獻回顧 16
2.1 硼氫化鈉的發現與應用 16
2.2 硼氫化鈉應用於儲氫的瓶頸 24
2.3 硼氫化鈉的再生方法 28
2.3.1 金屬鎂還原法 28
2.3.2 電化學還原法 37
第三章 實驗方法 51
3.1 研究架構 51
3.1.1 魚骨圖 51
3.1.2 實驗架構 52
3.2 實驗藥品與分析方法 53
3.2.1 實驗藥品 53
3.2.2 硼氫化鈉分析方法 54
3.2.3 硼氫化鈉副產物的鑑定 61
3.3 儀器設備和實驗步驟 66
3.3.1 Ru觸媒的製備步驟 66
3.3.2 硼氫化鈉的產氫實驗 67
3.3.3 硼氫化鈉廢液電化學還原法 70
第四章 結果與討論 73
4.1 硼氫化鈉的水解產氫實驗 74
4.1.1產氫效率 74
4.1.2 氫氧化鈉濃度對產氫速率的影響 77
4.1.3 硼氫化鈉濃度對產氫速率的影響 80
4.1.4 溫度對產氫速率的影響 86
4.1.5 觸媒重量對產氫速率的影響 90
4.1.6 觸媒使用次數對產氫速率的影響 93
4.2 硼氫化鈉的醇解產氫實驗 96
4.2.1產氫效率 96
4.2.2 氫氧化鈉濃度對產氫速率的影響 98
4.2.3 硼氫化鈉濃度對產氫速率的影響 101
4.2.4 含水量對產氫速率的影響 104
4.2.5 溫度對產氫速率的影響 107
4.3 硼氫化鈉的副產物鑑定 112
4.3.1 Ru觸媒表面形態觀察(SEM)與成分分析(EDS) 112
4.3.2 XRD結晶晶相分析 118
4.3.3超導核磁共振(NMR)分析 124
4.4 硼氫化鈉廢液電化學還原法 133
4.4.1 水溶液系統中硼氫化鈉的檢量線 133
4.4.2 水溶液系統中的電化學還原 136
第五章 結論與建議 139
5.1 結論 139
5.2 建議 140
參考文獻 141
Amendola, S.C., Sharp-Goldman, S.L., Janjua, M.S., Spencer, N.C., Kelly, M.T., Petillo, P.J., and Binder, M., “A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst.”, Int. J. Hydrogen. Energ., 25, 969-975, 2000.
Amendola, S.C., Sharp-Goldman, S.L., Janjua, M.S., Kelly, M.T., Petillo, P.J., and Binder, M., “An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst.”, J. Power. Sources., 85, 186-189, 2000.
Broja, G., GE Patent: 1108670, 1959.
Brown, H.C., and Brown, C.A., J. Am. Chem. Soc., 84, 1493, 1962.
Berner, R.G., Berni, R.P., and Klach, S.J., “Sodium borohydride from sodium hydride and excess trimethyl borate.”, US Patent: 2939762, 1963.
Bayer, A.G., BR Patent: 871569, 1964.
Bayer, A.G., BR Patent: 962005, 1964.
Bayer, A.G., BR Patent: 1047311, 1966.
Corp, E., BR Patent: 1056117, 1966.
Cooper, B.H., “Electrolytic process for the production of alkali metal borohydrides”, US Patent: 3734842, 1973.
Chou, S., Huang, Y.H., Lee, S.N., Huang, G.H., and Huang, C., “Treatment of high strength hexamine-containing wastewater by electro-Fenton method.”, Water. Res., 33, 751-759,1999.
Chang, P.H., Huang, Y.H., Hsueh, C.L., Lu, M.C., and Huang, G.H., “Treatment of Non-Biodegradable Wastewater by Electro-Fenton Method.”, Water. Sci. Technol., 49, 213-218, 2004.
Celikkan, H., Sahin, M., Aksu, L., and Veziroglu, T.N., “The investigation of the electrooxidation of sodium borohydride on various metal electrodes in aqueous basic solution.”, Int. J. Hydrogen. Energ., 32,588-593, 2007.
Dai, H.B., Liang, Y., Wang, P., and Cheng, H.M., “Amorphous cobalt–boron/nickel foam as an effective catalyst for hydrogen generation from alkaline sodium borohydride solution.”, J. Power. Sources., 177, 17-23, 2008
Gyenge, E.L., and Oloman, C.W., “Electrosynthesis attempts of tetrahydridoborates.”, J. Appl. Electrochem., 28,1147-1151, 1998.
Gervasio, D., Xu, M., and Thomas, E., “Properties of aqueous alkaline sodium borohydride solutions and by-product formed during hydrolysis.”, Arizona State University, 2005.
Huff, G.F., and Adams, R.M., “Electrochemical method for the prepation of metal borohydrides.”, US Patent: 2855353, 1958.
Horn, E.M., “Process for the production of alkali metal borohydrides.”, US Patent: 3505035, 1970.
Hale, C.H., and Sharifan, H., “Production of metal borohydrides and organic onium borohydrides”, US Patent: 4931154, 1990.
Huang, Y.H., Chen, C.C., Huang, G.H., and Chou, S.S., “Comparison of a novel electro-Fenton method with Fenton’s reagent in treating a highly contaminated wastewater.”, Water. Sci. Technol., 43, 17-24, 2001.
Ingersoll, J.C., Mania, N., Thenmozhiyal, J.C., and Muthaiah, A., “Catalytic hydrolysis of sodium borohydride by a novel nickel–cobalt–boride catalyst.”, J. Power. Sources., 173, 450-457, 2007
Jenkner, H., GE Patent: 1061301, 1959.
Jeong , S.U., Kim, R.K., Cho, E.A., Kimb, H.J., Nam, S.W., Oh, I.H., Hong, S.A., and Kim, S.H., “A study on hydrogen generation from NaBH4 solution using the high performance Co-B catalyst.”, J. Power. Sources., 144, 129–134, 2005.
Kreevoy, M.M., and Jacobson, R.W., “The rate of decomposition of NaBH4 in basic aqueous solutions.”, Ventron Alembic, 15, 2-3, 1979.
Kojima, Y., and Haga, T., “Recycling process of sodium metaborate to sodium borohydride.”, Int. J. Hydrogen. Energ., 28, 989-993, 2003.
Kaufman C.M., Sen B., “Hydrogen generation by hydrolysis of sodium tetrahydroborate: effects of acids and transition metals and their salts.”, J Chem Soc, Dalton Trans, 307, 1985.
Kim, J.H., Lee, H., Han, S.C., Kim, H.S., Song, M.S., and Lee, J.Y., “Production of hydrogen from sodium borohydride in alkaline solution: development of catalyst with high performance.”, Int. J. Hydrogen. Energ., 29, 263-267, 2004.
Krishnan, P., Yang, T.H., Lee, W.Y., Kim, C.S., “PtRu-LiCoO2—an efficient catalyst for hydrogen generation from sodium borohydride solutions.” J. Power. Sources., 143, 17–23, 2005.
Krishnan, P., Hsueh, K.L., Yim, S.D., “Catalysts for the hydrolysis of aqueous borohydride solutions to produce hydrogen for PEM fuel cells.”, Appl. Catal. B-Environ., 77, 206–214, 2007.
Li, Z.P., Liu, B.H., Arai, K., Morigazaki, N., and Suda, S., “Protide compounds in hydrogen storage systems.”, J. Alloy. Compd., 356-357, 469-474, 2003.
Li, Z.P., Morigazaki, N., Liu, B.H., and Suda, S., “Preparation of sodium borohydride by the reaction of MgH2 with dehydrate borax through ball milling at room temperature.”, J. Alloy. Compd., 349, 232-236, 2003.
Linehan, S.W., Lipiecki, F.J., and Chin, A.A., “Novel Approaches to Hydrogen Storage: Conversion of Borates to Boron Hydrides.”, DOE Hydrogen Program FY 2006 Annual Progress Report IV.B.4c, 402, 2006.
Liu, B.H., Li, Z.P., and Suda, S., “Nickel- and cobalt-based catalysts for hydrogen generation by hydrolysis of borohydride.”, J. Alloy. Compd., 415, 288-293, 2006
Li, Z.P., Liu, B.H., Zhu, J.K., Morigazaki, N., and Suda, S., “NaBH4 formation mechanism by reaction of sodium borate with Mg and H2.”, J. Alloy. Compd., 437, 311-316, 2007.
Lo, C.F., Karan K.. and Davis, B.R., “Kinetic Studies of Reaction between Sodium Borohydride and Methanol, Water, and Mixtures.”, Ind. Eng. Chem. Res., 46, 5478-5484, 2007
Liu, Z., Guo, B., Chan, S.H., Tang, E.H., and Hong, L., “Pt and Ru dispersed on LiCoO2 for hydrogen generation from sodium borohydride solutions.”, J. Power. Sources., 176, 306-311, 2008
Macdonald, D.D., Zhang, Y., Tokash, J.C., McLafferty, J.B., Bao, J., and Chen, Y., “Electrochemical Hydrogen Storage Systems.”, DOE Hydrogen Program FY 2006 Annual Progress Report IV.B.4e, 411, 2006.
Moreno, O.A., Kelly, M.T., and Ortega, J.V., “Process for the Regeneration of Sodium Borate to Sodium Borohydride for Use as a Hydrogen Storage Source.”, DOE Hydrogen Program FY 2007 Annual Progress Report IV.B.2, 450, 2007.
Metin, Ö., and Özkar, S., “Hydrogen generation from the hydrolysis of sodium borohydride by using water dispersible, hydrogen nphosphate-stabilized nickel(0) nanoclusters as catalyst.”, Int. J. Hydrogen. Energ., 32, 1707-1715, 2007
Moon, G.Y., Lee, S.S., Lee, K.Y., Kim S.H., and Song, K.H., “Behavior of hydrogen evolution of aqueous sodium borohydride solutions.” Journal of Ind. Eng. Chem., 14, 94-99, 2008
O¨zkar, S., and Zahmakıran, M., “Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst.”, J. Alloy. Compd., 404-406, 728-731, 2005
Park, E.H., Jeong, S.U., Jung, U.H., Kim, S.H., Lee, J., Nam, S.W., Lim, T.H., Park, Y.J., and Yu, Y.H., “Recycling of sodium metaborate to borax.”, Int. J. Hydrogen. Energ., 32, 2982-2987, 2007.
Pozio, A., Francesco, M.D., Monteleone, G., Oronzio, R., Galli, S., Angelo, C. D., and Marrucci, M., “Apparatus for the production of hydrogen from sodium borohydride in alkaline solution.”, Int. J. Hydrogen. Energ., 33, 51-56, 2008
Schlesinger, H. I., “Method of preparing alkali metal borohydrides.”, US Patent: 2534533, 1950.
Schubert, F., “Method for preparing alkali-metal borohydrides.”, US Patent: 3077376, 1963.
Sharifan, H., and Dutcher, J.S., “Production of quaternary ammonium and quaternary phosphonium borohydrides.”, US Patent: 4904357, 1990.
Schubert, D., “ Purdue Energy Center Hydrogen Initiative Symposium.”, U.S. Borax Inc, 2006.
Shang, Y., and Chen, R., “Semiempirical Hydrogen Generation Model Using Concentrated Sodium Borohydride Solution.”, Energy. Fuel., 20, 2149-2154, 2006
Wu, Y., “Hydrogen storage via sodium borohydride.”, GCEP Stanford University, Millennium Cell, 2003
Wu, Y., and Kelly, M.T., “Production of Sodium Borohydride in Iceland.”, IPHE Hydrogen Storage Conference Lucca, 2005
Wu, Y., Kelly, M.T., Ortega, J.V., and Moreno, O.A., “Process for Regeneration of Sodium Borate to Sodium Borohydride for Use as a Hydrogen Storage Source.”, DOE Hydrogen Program FY 2006 Annual Progress Report IV.B.1, 372, 2006.
Walter, J.C., Zurawski, A., Montgomery, D., Thornburg, M., Revankar, S., “Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts.”, J. Power. Sources., 179, 335-339, 2008
Ye, W., Zhang, H., Xu, D., Ma, Li., and Yi, B., “Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst.”, J. Power. Sources., 164, 544-548, 2007.
Zhang, J., Fisher, T.S., Gore, J.P., Hazra, D., Ramachandran, P.V., “Heat of reaction measurements of sodium borohydride alcoholysis and hydrolysis.”, Int. J. Hydrogen. Energ., 31, 2292, 2006
Zahmakıran, M., and O¨zkar, S., “Water dispersible acetate stabilized ruthenium(0) nanoclusters as catalyst for hydrogen generation from the hydrolysis of sodium borohyride.”, J. Mol. Catal. A-Chem., 258, 95-103, 2006.
Zhang, J.S., Delgass, W.N., Fisher, T.S., and Gore, J.P., “Kinetics of Ru-catalyzed sodium borohydride hydrolysis.”, J. Power. Sources., 164, 772-781, 2007.
Zhang, Q., Wu, Y., Sun X., and Ortega, J., “Kinetics of catalytic hydrolysis of sodium borohydride solutions.”, Journal of Ind. Eng. Chem., 46, 1120-1124, 2007
賴泓均, 奈米白金/金屬氧化物複合觸媒催化化學氫反應研究, 臺灣大學化學研究所碩士論文, 2006.
儲三陽, 科學人雜誌, 2002年7月號.
張允什等, CN 86108142, 1986.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔