跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:褚偉廷
研究生(外文):Wei-Ting Chu
論文名稱:含苯並奎寧之銥(III)環金屬錯合物之光物理、電化學性質以及理論計算之研究
論文名稱(外文):Photophysical, Electrochemical Properties and Theoretical Study of New Cyclometalated Complexes of Iridium (III) Containing Benzo[h]quinoline
指導教授:王小萍
指導教授(外文):Shao-Pin Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:149
中文關鍵詞:光物理密度泛函理論電化學
外文關鍵詞:DFT calculationelectrochemistryphoto-physical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用不同的氮、氮配位基「2,2’-dipyridylamine (HDPA)、deprotonated form of 2, 2’-dipyridylamine (DPA)、2,2’-dipyridylketone (dpk)、2,2'-bipyrimidine(dpp)、2,3-dipyridin-2-ylpyrazine (bpym)和2-pyridin-2-yl-1H- benzimidazole (pbi)」與銥三價金屬和氮、碳配位基「benzo[h]quinoline (bzq)」形成六種混配位基型環金屬錯合物,利用不同配位子有不同的推拉電子性質、立體結構阻礙與共振結構,進行光物理、電化學與密度泛函理論之研究。首先從光物理方面發現,錯合物[Ir(bzq)2(HDPA)][PF6]與[Ir(bzq)2(pbi)]主要是triplet ligand centered (3LC) [��-��*(bzq)]磷光放光,最大放光波長分別在室溫和77 K分別是514 nm、532 nm和513 nm、514 nm。接著,錯合物[Ir(bzq)2(DPA)]主要是以triplet ligand-to-ligand charge transfer (3LLCT) [��(DPA)-��*(bzq)]磷光放光,其最大放光波長在室溫和77 K分別是559 nm、534 nm。接著,錯合物[Ir(bzq)2(dpp)][PF6]和[Ir(bzq)2(bpym)][PF6]主要是以triplet metal-to-ligand charge transfer (3MLCT) [d��(Ir)-��*(dpp and bpym)]磷光放光,其最大放光波長在室溫和77 K分別是620 nm、623 nm和595 nm、588 nm。最後,錯合物[Ir(bzq)2(dpk)][PF6] 主要是以triplet metal-to-ligand charge transfer (3MLCT) [d��(Ir)-��*(dpk)]磷光放光,其最大放光波長在77 K是613 nm,然而在室溫卻不放光。然而從電化學方面發現,除了[Ir(bzq)2(pbi)]以外,五個錯合物在氧化電位皆為擬可逆,分別為「[Ir(bzq)2(HDPA)][PF6]在+0.80 V、[Ir(bzq)2(DPA)][PF6]在+0.14 V、[Ir(bzq)2(dpk)][PF6]在+0.97 V、[Ir(bzq)2(dpp)][PF6]在+0.89 V、[Ir(bzq)2(bpym)][PF6]在+0.85 V vs. Fc/Fc+」。然而,錯和物[Ir(bzq)2(pbi)]則未觀察到氧化峰。另一方面,一樣的除了[Ir(bzq)2(HDPA)][PF6]、[Ir(bzq)2(DPA)]、[Ir(bzq)2(pbi)]以外,四個錯合物在還原電位皆為可逆,分別為「[Ir(bzq)2(dpk)][PF6]在-1.25 V、[Ir(bzq)2(dpp)][PF6]在-1.45 V、[Ir(bzq)2(bpym)][PF6]在-1.42 V vs. Fc/Fc+」,然而[Ir(bzq)2(HDPA)][PF6]的還原峰以不可逆的形式還原在-1.71 V vs. Fc/Fc+,以上還原都在氮氮配位基上。最後,錯和物[Ir(bzq)2(DPA)]、[Ir(bzq)2(pbi)] 則未觀察到還原峰。
In this work involves photo-physical and electrochemical properties of six new cyclometalated iridium (III) complexes. The six new cyclometalated iridium (III) complexes of the formula [Ir(bzq)2(N^N)], bzq = benzo[h]quinoline and N^N = 2,2’-dipyridylamine (HDPA), de-protonated form of 2,2’-dipyridylamine (DPA), 2,2’-dipyridylketone (dpk), 2,2'-bipyrimidine(dpp), 2,3-dipyridin-2-ylpyrazine (bpym), and 2-pyridin-2-yl-1H-benzimidazole (pbi), have been synthesized and subjected to photo-physical, electrochemical and density function theory calculations studies. Complexes [Ir(bzq)2(HDPA)][PF6] and [Ir(bzq)2(pbi)] show triplet ligand centered (3LC) [��-��*(bzq)] phosphorescence at room temperature (514 and 532 nm) and at 77 K (513 and 514 nm), respectively. The complex [Ir(bzq)2(DPA)] displays triplet ligand-to- ligand charge transfer (3LLCT) [��(DPA)-��*(bzq)] phosphorescence at room temperature (559 nm) and at 77 K (534 nm). However, the complexes [Ir(bzq)2 (dpp)][PF6] and [Ir(bzq)2(bpym)][PF6] exhibit triplet metal-to-ligand charge-transfer (3MLCT) [d��(Ir)-��*(dpp and bpym)] at room temperature (620 and 623 nm) and at 77 K (595 and 588 nm), respectively. Finally, the complex [Ir(bzq)2(dpk)][PF6] exhibit triplet metal-to-ligand charge transfer (3MLCT) [d��(Ir)-��*(dpk)] at 77 K (613 nm). All the iridium (III) complexes have similar quasi-reversible oxidation potentials that are assigned metal-perturbed bzq ligand (+0.80 V for [Ir(bzq)2(HDPA)] [PF6],+0.97 V for [Ir(bzq)2(dpk)][PF6], +0.89 V for [Ir(bzq)2(dpp)][PF6] and +0.85 V for [Ir(bzq)2 (bpym)][PF6]) expect the complex [Ir(bzq)2(DPA)] at +0.14 V which is ascribed to oxidation at DPA ligand. However, these iridium (III) complexes exhibit different characteristics in reduction processes: the irreverent for [Ir(bzq)2(HDPA)] [PF6] at -1.82 V and reverent for [Ir(bzq)2(dpk)][PF6], [Ir(bzq)2(dpp)][PF6] and [Ir(bzq)2 (bpym)][PF6] at -1.25 V, -1.45 V and -1.42 V, respectively, that are attributed to reduction at N^N ligand (HDPA, dpk, dpp and bpym). Density function theory calculations have also been performed to get rationalization of the optical orbitals and redox orbitals concerning photo-physical and electrochemical date.
Acknowledgment............................................................................................................I
摘要...............................................................................................................................II
Abstract........................................................................................................................III
List of Content.............................................................................................................IV
List of Tables................................................................................................................VI
List of Figures...........................................................................................................VIII

1-1 Introduction..............................................................................................................1
2-1 Experiment Section..................................................................................................9
2-1 Instrumentation........................................................................................................9
2-2 Measurement Technique........................................................................................12
2-3 Materials................................................................................................................14
2-4 Synthesis................................................................................................................15
3-1 Result.....................................................................................................................20
3-1 Synthesis................................................................................................................20
3-2 Mass Spectrometry.................................................................................................22
3-3 Infrared Spectrometry............................................................................................30
3-4 Nuclear Magnetic Resonance Spectrometry..........................................................36
3-5 X-Ray Diffraction Spectrometry............................................................................37
3-6 Ultraviolet Visible Molecular Absorption Spectrometry........................................46
3-7 Molecular Luminescence Spectrometry.................................................................59
3-8 Electroanalytical Chemistry...................................................................................73
3-9 Theoretical Approach.............................................................................................83
4-1 Discussions..........................................................................................................104
5-1 Conclusions..........................................................................................................110
6-1 References............................................................................................................112
Supplementary Information........................................................................................116
1. V. Balzani; F. Scandola, Supramolecular Photochemistry; Ellis Horwood: Chichester, U.K., 1991.
2. V. Balzani; A. Credi; F. Scandola, Transition Metals in Supramolecular Chemistry; L. Fabbrizzi, A. Poggi, Eds.; K. Dordrecht, The Netherlands, 1994, p1.
3. J. M. Lehn, Supramolecular ChemistrysConcepts and Properties; VCH Weinheim, Germany, 1995.
4. C. A. Bignozzi; J. R. Schoonover, F. Scandola, Inorg. Chem. 1997, 44, 1.
5. K. Kalyanasundaran, Coord. Chem. Rev., 1982, 46, 159.
6. K. F. Chin, K. K. Cheung, H. K. Yip, T. C. W. Mak, C. M. Che, J. Chem. Soc., Dalton Trans. 1995, 4, 657.
7. N. Sonoyama, O. Karasawa, Y. J. Kaizu, Chem. Soc., Faraday Trans. 1995, 91, 437.
8. T. S. Hee, L. Mesmaeker, J. Chem. Soc., Dalton Trans. 1994, 24, 3651.
9. K. Kalyanasundaram, M. Gratzel, Coord. Chem. Rev., 1998, 177, 347.
10. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E Lee, C. Adxchi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am Chem. Soc., 2001, 123, 4304.
11. M. A. Baldo, D. F. O’Brien; Y. You; A. Shoustikov; S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
12. M. A. Baldo; S. Lamansky, P. E. Burrows, M. E. Thompson; S. R. Forrest, Appl. Phys. Lett. 1999, 75, 4.
13. M. E. Thompson, P. E. Burrows, S. R. Forrest, Cur. Opinion Solid State Mater. Sci. 1999, 4, 369.
14. P. A. Anderson, R. F. Anderson, M. Furue, P. C. Junk, F. R. Keene, B. T. Patterson, B. D. Yeomans, Inorg. Chem. 2000, 39, 2721.
15. C. Li, M. Z. Hoffman, Inorg. Chem. 1998, 37, 830.
16. C. B. Brennan, P. Subramanian, M. Absi, C. Stern, J. T. Hupp, Inorg. Chem. 1996, 35, 3719.
17. Y. Kawanishi, N. Kitamura, S. Tazuke, Inorg. Chem. 1989, 28, 2968.
18. V. Balzani, A. Juris, M. Venturi, S. Campagna, S. Serroni, Chem. Rev. 1996, 96, 759.
19. J. R. Shaw, G. S. Sadler, W. F. Wacholtz, C. K. Ryu, R. H. Schmehl, New J. Chem. 1996, 20, 749.
20. K. Kalyanasundaran, Coord. Chem. Rev., 1982, 46, 159.
21. K. F. Chin, K. K. Cheung, H. K. Yip, T. C. W. Mak, C. M. Che, J. Chem. Soc., Dalton Trans. 1995, 4, 657.
21. N. Sonoyama, O. Karasawa, Y. Kaizu, J. Chem. Soc., Faraday Trans. 1995, 91, 437.
22. L. T. S. Hee, A. K. D. Mesmaeker, J. Chem. Soc., Dalton Trans. 1994, 24, 3651.
23. K. Kalyanasundaram, M. Gratzel, Coord. Chem. Rev. 1998, 177, 347.
24. K. Dedeian, P. I. Djurovich, F. O. Garces, G. Carlson, R. J. Watts, Inorg. Chem. 1991, 30, 1685.
25. P. H. Constable, J. H. Medley, A. R. Garber, N. S. Bhacca, J. Sebin, Inorg. Chem., 1985, 24, 1096.
26. E. C. Constable, J. M. Holmes, J. Organomet. Chem., 1986, 301, 203
27. D. Sandrini, M. Maestri, M. Ciano, U. Maeder, A. von Zelewsky, Helv. Chim. Acta., 1990, 73, 1306.
28. M. Maestri, D. Sandrini, V. Balzani, U. Maeder, A. von Zelewsky, Inorg. Chem., 1987, 26, 1323.
29. F. Barigelletti, D. Sandrini, M. Maestri, V. Balzani, A. von Zelewsky, L. Chassot, P. Jolliet, U. Maeder, Inorg. Chem., 1988, 27, 3644.
30. M. G. Colombo, A. Zilian, H. U. Güdel, J. Am. Chem. Soc., 1990, 112, 4581.
31. A. Zilian, H. U. Güdel, Inorg. Chem., 1992, 31, 830.
32. C. Giesbergen, M. Glasbeek, J. Phys. Chem., 1993, 97, 9942.
33. J. H. van Dimen, R. Hage, J. G. Haasnoot, H. E. B. Lempers, J. Reedijk, J. G. Vos, L. D. Cola, F. Barigelletti, V. Balzani, Inorg. Chem., 1992, 31, 3518.
34. E. C. Constable, T. A. Leese, D. A. Tocher, polyhedron, 1990, 9, 1613.
35. S. Campagna, S. Serroni, A. Juris, M. Venturi, V. Balzani, New J. Chem., 1996, 20, 773.
36. M. Maestri, D. Sandrini, V. Balzani, L. Chassot, P. Jolliet, A. von Zelewsky, Chem. Phys. Lett., 1985, 122, 375.
37. P. Reveco, R. H. Schmehl, W. R. Cherry, F. R. Fronczek, J. Selbin, Inorg. Chem., 1985, 24, 4078.
38. Y. Ohsawa, S. Sprouse, K. A. King, M. K. DeArmond, K. W. Hanck, R. J. Watts, J. Phys. Chem., 1987, 91, 1047.
39. A. P. Wilde, K. A. King, R. J. Watts, J. Phys. Chem., 1991, 95, 629.
40. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwang, I. Tsyba, M. Bortz, B. Mui, R. Bau, M. E. Thompson, Inorg. Chem., 2001, 40, 1704
41. K. Kam-Wing Lo, Chi-Keung Chung, T. Kwok-Ming Lee, Lok-Hei Lui, K. Hing-Kit Tsang, Nianyong Zhu, Inorg. Chem., 2003, 42, 6886.
42. M. S. Lowry, W. R. Hudson, R. A. Pascal, Jr., S. Bernhard, J. Am. Chem. Soc., 2004, 126, 14129.
43. Y. C. Yu, masteral dissertation of Department of Chemistry, National Cheng Kung University, 2007.
44. A. B. Tamayo, S. Garon, T. Sajoto, P. I. Djurovich, I. M. Tsyba, R. Bau, M. E. Thompson, Inorg. Chem., 2005, 44, 8723.
45. T. J. Durnick, A. H. Kalantar, J. Chem. Phys., 1977, 66, 1914.
46. S. Sprouse, K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc., 1984, 106, 6647.
47. D. M. Jewell,G. K. Hartung, J. Chem. Eng. Data, 1964, 9, 2, 297.
48. F. Neve, M. La Deda, A. Crispini, A. Bellusci, F. Puntorieo, S. Campagna, Organometallics, 2004, 23, 5856.
49. W. L. Huang, D. P. Segers, M. K. DeAemond, J. Phys. Chem., 1981, 85, 14, 2080.
50. G. Favaro, A. Romani, G. Poggi, Z. Phys. Chem., 1990, 168, 1, 55.
51. N. Neto, G. Sbrana, M. Muniz-Miranda, Spec. Acta Part A, 1990, 45, 5, 705.
52. Khail, M. H. Mostafa, A. A. Saadia, M. R. Ramadon, Spec. Acta Part A, 2001, 47, 5, 1017.
53. D. W. Abbott, T. Vo-Dinh, Anal. Chem., 1985, 57, 1, 41.
54. D. Sandrini, M.aestri, V. Balzani, U. Maeder, A. V. Zelewsky, Inorg. Chem., 1988, 27, 2640.
55. K. K.-W. Lo, C.-K. Chung, N. Zhu, Chem. Eur. J., 2003, 9, 475.
56. K. K.-W. Lo, C.-K. Li, K.-W. Lau, N. Zhu, Dalton Trans., 2003, 4682.
57. Q. Zhao, S. Liu, C. Wang, M.Yu, L. Li, F. Li, T. Yi, C. Huang, Inorg. Chem., 2006, 45, 6152.
58. M. Busby, P. Matousek, M. Towrie, L. P. Clark, M. Motevalli, F. Hartl, A. Vlček, Jr., Inorg. Chem., 2004, 43, 4523.
59. Y. Kawamura , K. Goushi , J. Brooks, J. J. Brown, H. Sasabe, C. Adachi, Appl. Phys. Lett., 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top