跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 10:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張家憲
研究生(外文):Chia-hsien Chang
論文名稱:各種特殊中孔洞碳材合成方法之研究
論文名稱(外文):Study on Synthetic Methods of Mesoporous Carbons for Various Potential Applications
指導教授:林弘萍
指導教授(外文):Hong-ping Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:89
中文關鍵詞:中孔洞碳材金屬氧化物碳材複合物
外文關鍵詞:carbon compositesmetal oxidesmesoporous carbons
相關次數:
  • 被引用被引用:2
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:0
孔洞性碳材因為具有廣泛的應用性,如吸附劑、固態模板、催化擔體及電極材料等,所以引起許多研究的關注。本研究以具有高表面積(900~1500 m2g-1)與大的孔洞體積(1.0~2.0 cm3g-1)之中孔洞碳材為原料,利用獨創及簡單合成方法,合成各種特殊用途之中孔洞碳材。
首先,以中孔洞碳材當固態模板,含浸各種金屬前驅物,因為中孔洞碳材的存在,金屬前驅物被限制於孔道間,經過高溫煅燒,移除碳材並提昇金屬氧化物之結晶度,最後生成高結晶度、大表面積與孔體積的中孔洞金屬氧化物孔洞材料。
此外,將中孔洞碳材含浸硝酸鐵、硝酸鎳、硝酸鈷等金屬前驅物,再利用(1)氮氣環境下高溫金屬催化碳材石墨化或(2)以化學氣相沉積方式,在碳材表面生長碳管,增加碳材導電度,以利於發展導電及電容材料方面之應用。
最後,碳材中加入鐵、鈷、鎳等金屬前驅物,微波照射下生成鐵、鈷、鎳等金屬顆粒,形成磁性中孔洞碳材;加入鈦的前驅物,微波照射高溫反應下形成氧化鈦/碳材複合體。除此之外,碳材中加入鈦的前驅物及尿素,經由微波照射及鍛燒方式,生成具有吸收可見光能力之微黃色氧化鈦粉末(N-doped TiO2)。
Porous carbons with high surface area, large porosity and good electric conductivity are of great interest for its extensive applications, such as adsorbents, solid templates, catalytic supports or raw materials of electric conduction and electric capacity. In this study we present novel synthetic methods based on the mesoporous carbons to fabricate other metal and metal oxide@mesoporous carbons, mesoporous metal oxides for various potential applications.
First, we used the mesoporous carbons as solid template, by impregnating various metal precursors into the mesopores of the carbon. The metal ions or metal alkoxides was adsorbed and confined in the nanochannels of the mesoporous carbons. Then, a high-temperature calcination at 600–700oC was used to remove the carbon templates and enhance the crystallization degree. Therefore, the mesoporous metal oxides with high surface area, large pore volume and high crystalline have been efficiently prepared.
Secondly, the mesoporous carbons was impregnated with the Fe(NO3)3, Ni(NO3)2 or Co(NO3)2 salt, and then treated under different two atmosphere: (1) heated at 1000 oC under N2 to increase the graphite extent of carbons; (2) heated at 700oC under C2H2/H2 environment for chemical vapor deposition of carbon nanotubes anchored on the mesoporous carbon spheres. These two treatment procedures can enhance the electric conduction of the mesoporous carbons to extend the applications of the electric conduction and electric capacity.
In addition to the thermal treatments aforementioned, we used a fast and high-efficiency method to generate the metal or metal oxides@carbons by using microwave radiation as heating source. The Fe, Co or Ni precursors containing mesoporous carbon were subsequently exposed to an microwave oven for 5–10 min. The mesoporous carbon materials containing magnetic nanoparticles were quickly synthesized. Extending this method, we can also obtain the anatase-TiO2/Carbon composites from a fast microwave radiation of the TiO2 precursor@mesoporous carbon. To incorporate the nitrogen into the TiO2 framework, the mixture of carbons, TiO2 precursor and urea was directly exposed to microwave radiation, and then calcined at 600–700oC. The light yellow N-doped TiO2 powders which could absorb visible light were easily produced.
第一章� 緒論 1
1.1 孔洞材料介紹 1
1.1.1 中孔洞碳材(Mesoporous Carbon)簡介 1
1.2多孔性碳材的製造 2
1.2.1 模板法製造多孔性碳材 2
1.2.2 高分子混掺方式合成中孔洞碳材 4
1.3 奈米金屬氧化物的簡介 5
1.4 奈米碳管的簡介 7
1.4.1 起源 7
1.4.2 奈米碳管的結構 9
1.4.3 奈米碳管的合成 10
1.5金屬/碳材及金屬氧化物/碳材複合材料的簡介 11
1.6 微波構造與原理 12
1.6.1 關於微波 12
1.6.2 關於微波加熱 13
1.6.3 化學反應方面的用途 14
1.7 研究動機與目的 14
1.7.1 金屬氧化物 14
1.7.2 高度石墨化中孔洞碳材 15
1.7.3 金屬或金屬氧化物/碳材複合材料 15
第二章 實驗部份 17
2.1 化學藥品 17
2.2中孔洞碳材的合成方法 18
2.2.1利用高分子混掺法合成中孔洞碳材之合成步驟 18
2.3各式特殊碳材的合成方法 19
2.3.1金屬氧化物之合成步驟 19
2.3.2高度石墨化碳材之合成步驟 20
2.3.3海膽狀碳材之合成步驟 20
2.3.4金屬或金屬氧化物/碳材複合材料之合成步驟 21
2.4 產物的鑑定 22
2.4.1穿透式電子顯微鏡(TEM) 22
2.4.2氮氣等溫吸附/脫附測量 22
2.4.3熱重分析儀 (TGA ) 24
2.4.4 X-射線粉末繞射光譜 (PXRD) 25
2.4.5掃描式電子顯微鏡 (SEM) 26
2.4.6拉曼光譜 (Raman) 26
第三章 中孔洞碳材應用於合成金屬氧化物 27
3.1 研究動機及目的 27
3.2實驗結果與討論 28
3.2.1氧化鎂(Magnesium Oxide;MgO) 28
3.2.2氧化鋁(Aluminum Oxide;Al2O3) 31
3.2.3氧化鈰(Cerium dioxide;CeO2) 35
3.2.4氧化鈦(Titanium Oxide;TiO2) 38
3.2.5氧化鐵(Iron(III) Oxide;Fe2O3) 40
3.3結論 42


第四章� 合成高度石墨化中孔洞碳材之研究 43
4.1 研究動機與目的 43
4.2實驗結果與討論 44
4.2.1氮氣環境下金屬催化碳材石墨化 44
(1)改變硝酸鐵與碳材的重量比所合成出的碳材 44
(2)改變硝酸鎳與碳材的重量比所合成出的碳材 47
(3)改變硝酸鈷與碳材的重量比所合成出的碳材 49
(4)結論 51
4.2.2以化學氣相沉積法於碳材表面生長碳管 52
(1)改變硝酸鎳與碳材的重量比所合成出的碳材 52
(2)改變硝酸鐵與碳材的重量比所合成出的碳材 54
(3)改變硝酸鈷與碳材的重量比所合成出的碳材 56
(4)改變硝酸銅與碳材的重量比所合成出的?58
(5)結論 61
第五章 合成金屬或金屬氧化物/碳材複合材料之研究 62
5.1 研究動機與目的 62
5.2 實驗結果與討論 63
5.2.1磁性中孔洞碳材 63
(1)鐵/中孔洞碳材複合體之合成 63
(2)鎳/中孔洞碳材複合體之合成 65
(3)鈷/中孔洞碳材複合體之合成 66
(4)磁性測試及應用 68
5.2.2銀/中孔洞碳材複合體 69
5.2.3氧化鈦/碳材複合體 71
(1)氧化鈦/中孔洞碳材複合體 71
(2)氧化鈦/奈米碳管複合體 72
5.3 Nitrogen-Doped TiO2 中孔洞材料 74
5.3.1一步合成方法 76
(1)改變尿素添加量 76
(2)改變微波照射強度及時間 78
5.3.2兩步合成方法 80
(1)高強度微波照射 80
(2)中度微波照射 82
5.3.3 結論 83


第六章 總結 84
參考文獻 86
1.IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry , Pure Appl. Chem. 1972, 31, 578.
2.C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
3.H. C. Foley, J. Microporous Mater. 1995, 4, 407.
4.C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
5.H. C. Foley, J. Microporous Mater. 1995, 4, 407.
6.J. Lee, S. Yoon, T. Hyeon, S. M. Oh and K. B. Kim, Chem. Commun. 1998, 2177.
7.M. Kuno, T. Naka, E. Negihsi, H. Matsui, O. Terasaki, R. Ryoo, N. Toyota, Synthetic Metals, 2003, 721.
8.H. Zhou, S. Zhu, M. Hibino, I. Honma and M. Ichihara, Adv. Mater., 2003, 15, 2107
9.T. Kyotani, Carbon 2000, 38, 269.
10.H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater.,1996, 8, 454.
11.W. Lu, D. D. L. Chung, Carbon 1997, 35, 427.
12.Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater. 2000, 12, 62.
13.S. Han, K. Sohn, T. Hyeon, Chem. Mater. 2000, 12, 3337.
14.C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc. 1999, 146, 3639.
15.D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater., 2000, 12, 3397.
16.C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
17.H. C. Foley, J. Microporous Mater. 1995, 4, 407.
18.T. Kyotani, Carbon 2000, 38, 269.
19.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992,359, 710.
20.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
21.A. Sayari, Chem. Mater., 1996, 8, 1840.
22.Neumann, K. Khenkin, Chem. Commun., 1996, 23, 2643.
23.B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39, 63.
24.M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 1996,100, 9906.
25.A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal., 1994, 84, 69.
26.J. S. Reddy, A. Sayari, J. Chem. Soc., Chem. Commun., 1995, 2231.
27.Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr. 1986, 352, 3
28.Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky,H. J. Shin and Ryong Ryoo, Nature, 2000, 408, 449.
29.Zhao,D.;Feng,J.;Huo,Q.;Melosh,N.;Fredirckson,G. H.;Chemlka, B. F.; Stucky, G. D. Science 1998, 279, 548.
30.M. Kruk, M. Jaroniec, S. H. Joo and R. Ryoo, J. Phys. Chem. B, 2003, 107, 2205.

31.S. H. Joo, R. Ryoo, M. Kruk and M. Jaroniec, J. Phys. Chem. B, 2002, 106, 4640.
32.R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 2001, 13, No. 9, 677.
33.S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
34.R. Ryoo, S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu and O. Terasaki, manuscript in preparation.
35.M. Kruk, M. Jaroniec, T.-W. Kim, and R. Ryoo, Chem. Mater. 2003, 15, 2815
36.M. J. Fuller, M. E. Warwick, J. Catal., 1973, 29, 441.
37.F. Sala, F. Trifiro, J. Catal., 1974, 34, 68.
38.M. Itoh, H. Hsttori, K. Tanabe, J. Catal. 1967, 43, 192.
39.H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley,Nature 1985, 318, 162.
40.S. Iijima, Nature 1991, 354 , 56.
41.Rice University:Rick Smalley's Group Home Page-Image Gallery.
42.T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, J. Phys. Chem. B 2000, 104, 2794.
43.S Amelinckx et. al. Electron diffraction and microscopy of nanotubes, pp-1475~1477.
44.M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg, "Graphite Fibers and Filaments"chapter 2.
45.C.T. Hsieh, Y.W. Chou, J.Y. Lin, Int. J.Hydrogen Energy 2007,32, 3457-3464
46.C.T. Hsieh,Y.W.Chou,W.Y.Chen, Journal of Solid-State Electrochemistry , In Press 2007
47.Zhong L. Wang , Adv. Mater. 2007,19,470-474.
48.Markus Niederberger , Chem. Mater. 2007, 19, 3499-3505.
49.Michael Tiemann , Chem. Mater. 2006 , 18, 4151-4156.
50.Antonio B. Fuertes ,Carbon 2006, 44, 468-474.
51.Michael J. Bronikowski , Carbon 2006, 44, 2822-2832.
52.Michio Inagaki , Carbon 2006, 44, 2360-2367.
53.K. Jurewicz , Carbon 2006, 44, 2368-2375.
54.Yoshikazu Homma, Nano Lett. 2006 , 6, No.12 2642-2645.
55.Theodore F. Baumann , Langmuir 2007, 23,5161-5166.
56.Michael Froba , Carbon 2007, 45, 304-314.
57.Pablo Maximiliano Arnal , Chem. Commun. 2006, 1203-1205.
58.Wuzong Zhou , Chem. Mater. 2006, 18, 3088-3095.
59.Jianfang Wang , Adv. Mater. 2008.
60.Tomoko Kasuga , Adv. Mater. 1999, 11, No. 15, 1307-1311.
61.Michael R. Hoffmann , J. Phys. Chem. C 2007,111, 15357-15362.
62.Chang-Yu Wu , Ind. Eng. Chem. Res. 2006, 45, 5110-5116.
63.Hua Chun Zeng , Chem. Mater. 2008.
64.Dong-Wan Kim , Eur. J. Inorg. Chem. 2008, 878-882.
65.Doron Aurbach , Adv. Funct. Mater. 2007, 17, 1487-1492.
66.Dionysios D. Dionysiou ,Environ. Sci. Technol. 2007,41, 7530-7535.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top