跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳振臺
研究生(外文):Chen-tai Chen
論文名稱:利用連續式波長近紅外光雷射探討以金為主的奈米材料在三種癌細胞的光熱治療效果:金奈米棒、金銀奈米空球、二氧化矽-金奈米球
論文名稱(外文):A systematic study of photothermal therapeutic efficiency of Au-based nanomaterials with three malignant cells using CW near-infrared laser : Au nanorods , Au/Ag hollow nanospheres , silica@Au nanoparticles
指導教授:葉晨聖
指導教授(外文):Chen-sheng Yeh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:84
中文關鍵詞:光熱治療
外文關鍵詞:photothermal therapyAu nanorodsAu/Ag hollow nanospheressilica@Au nanoparticlrs
相關次數:
  • 被引用被引用:3
  • 點閱點閱:431
  • 評分評分:
  • 下載下載:139
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究中,比較三種以金為主的奈米材料(金奈米棒、金銀奈米空球及二氧化矽-金核殼奈米球)對於A549(人類肺癌)、HeLa(人類子宮頸癌)及TCC-N5(人類膀胱癌)細胞的光熱治療效果。首先合成出此三種奈米材料,在近紅外光(800 nm)都有最強的表面電漿共振吸收(SPR)。另外,由光熱轉換實驗證實三種奈米材料都具有良好的光熱轉換效果,且從細胞毒性分析也證實三種材料都有很好的生物相容性,因此可應用於生物體的光熱治療。
光熱治療實驗分別從奈米材料的金原子濃度、雷射照射時間及照射功率進行探討,比較奈米材料之間與癌細胞之間的光熱治療效果。對於影響光熱治療效果的因素包含癌細胞本身的耐熱性、抗原數目及奈米材料在癌細胞表面的標定粒子數。在三種癌細胞的光熱治療比較以A549癌細胞效果最佳,TCC-N5癌細胞次之,HeLa癌細胞最差;而奈米材料標定在三種癌細胞表面的粒子數都有相同的趨勢,都以金奈米棒最多,金銀奈米空球次之,二氧化矽-金奈米球最少。因此奈米材料的光熱治療效果為金奈米棒最佳,金銀奈米空球次之,二氧化矽-金核殼奈米球最差。
In this study, the photothermal therapeutic efficiency of gold-based nanomaterials were compared for A549, HeLa, TCC-N5 malignant cell lines. First of all, three types of gold-based nanomaterials with near-infrared absorption at 800 nm were prepared. Their excellent photothermal properties and biocompatibilities were confirmed by measuring temperature experiments and MTT assays. Therefore they were suitable for the application of photothermal therapy for cancers.
In order to study the photothermal therapeutic efficiency of gold-based nanomaterials, the experiments were discussed with gold atomic concentrations, laser irradiation powers and irradiation times. The factors of photothermal therapeutic efficiency included the heat-resistant capacities of malignant cells and the numbers of antigens and targeted nanomaterials on the surfaces of malignant cells. The comparison of the photothermal therapeutic efficiency for three cancer cells showed that A549 malignant cells were the best effective and HeLa malignant cells were the worst. There was the same tendency that the targeted numbers of gold nanorods were the most and silica@Au nanoparticles were the least. Therefore the comparison of the photothermal therapeutic efficiency for gold-based nanomaterials showed that gold nanorods were the most effective and silica@Au nanoparticles were the worst.
第一章 緒論 1
1-1 奈米科學與技術 1
1-2 奈米材料的特性 1
1-2.1 表面效應 2
1-2.2 體積效應 3
1-2.3 量子化效應 4
1-3 金屬奈米粒子的表面電漿共振 5
1-4 奈米粒子的穩定性 6
1-5 奈米粒子的衍生化 7
第二章 癌症的治療方法 8
2-1 癌症的治療 8
2-1.1 外科手術切除 8
2-1.2 局部放射線照射治療 8
2-1.3 化學藥物治療 9
2-1.4 溫熱治療 10
2-1.5 標靶治療 11
2-1.6 奈米材料的光熱治療 12
2-2 光熱治療材料的製備 16
2-2.1 金奈米棒的製備 16
2-2.2 中空型金/金銀奈米材料的製備 19
2-2.3 二氧化矽-金核殼奈米球的製備 20
第三章 實驗部份 22
3-1 研究動機與目的 22
3-2 實驗藥品 23
3-3 實驗細胞株 25
3-4 儀器設備 25
3-5 實驗流程 27
3-6 奈米材料的合成 28
3-6.1 金奈米棒的製作 28
3-6.1.1 高分子聚合物的修飾 28
3-6.1.2 抗體的修飾 28
3-6.1.3 樣品分析 29
3-6.2 金銀奈米空球的製作 30
3-6.2.1 銀奈米粒子的製作 30
3-6.2.2 金銀奈米空球的製作 30
3-6.2.3 抗體的修飾 30
3-6.2.4 樣品分析 31
3-6.3 二氧化矽-金核殼奈米球的製作 32
3-6.3.1 金奈米晶種的製備 32
3-6.3.2 二氧化矽奈米粒子的製備 32
3-6.3.3 二氧化矽-金核殼奈米球的製備 32
3-6.3.4 抗體的修飾 33
3-6.3.4 樣品分析 33
3-7 光熱轉換實驗 34
3-8 細胞培養 35
3-9 細胞毒性測試 35
3-10 光熱治療實驗 36
3-11 細胞存活率計算與原子吸收光譜的測量 37
第四章 結果與討論 38
4-1 奈米光熱治療材料的探討 38
4-1.1 金奈米棒 38
4-1.2 金銀奈米空球 42
4-1.3 二氧化矽-金核殼奈米球 47
4-2 三種以金為主的奈米材料在吸光性質與放熱性質的比較 51
4-3 三種以金為主的奈米材料在光熱治療效果的比較 54
4-3.1奈米材料的細胞毒性 54
4-3.2 A549人類肺癌細胞的光熱治療結果 56
4-3.3 HeLa人類子宮頸癌細胞的光熱治療結果 61
4-3.4 TCC-N5人類膀胱癌細胞的光熱治療結果 66
4-4 探討光熱治療效果與光熱轉換效率 72
第五章 結論 79
參考文獻 80
1.李奮生, 史紅虎,“打造奈米經濟:引爆21世紀科技”, 書泉出
版, 2002.
2.林建中,“奈米科技:基礎與實務”, 新文京, 2006.
3.張立德,“奈米材料”, 五南出版.
4.B. Z. Zhan, M. A. White, T. K. Sham, J. A. Pincock, R.
J. Doucet, K. V. R. Rao, K. N. Robertson, T. S. Cameron,
J. Am. Chem. Soc. 2003, 125, 2195-2199.
5.賴宏仁, 林景正, “奈米材料與技術專題”, 工業材料153 期,
88, 9.
6.奈米科技, 馬遠榮著, 商洲出版, 2002.
7.A. P. Alivisatos, Science. 1996, 271, 933-937.
8.Schimid G, “Clusters and Colloids”: From Theory to
Application, VCH: New York, 1994.
9.Link S, Wang ZL, El-Sayed MA, J. Phys. Chem. B. 1999,
103, 3529-3533.
10.K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz,
J. Phys. Chem. B. 2003, 107, 668-677.
11.R. Elghanian, Chad A. Mirkin, Science. 1997, 277, 1078-
1080.
12.J. Lee, J. Yang, H. Ko, S. J. Oh, J. Kang, J. H. Son,
K. Lee, S. W. Lee, H. G. Yoon, J. S. Suh, Y. M. Huh, S.
Haam, Adv. Funct. Mater. 2008, 18, 258–264.
13.R. Weissleder, nature biotechnology. 2001, 19, 316-317.
14.Catherine J. Murphy, M. D. Wyatt, small. 2005, 1, 325-
327.
15.P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott,
J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R.
J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, S.
Krishnan, Nano Lett. 2008, 5, 1492-1500.
16.L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R.
Sershen, B. Rivera, R. E. Price, J.D. Hazle, N. J.
Halas, J. L. West, PNAS. 2003, 13549-13554.
17.J. P’erez-Juste et al, Coordination Chemistry Reviews.
2005, 249, 1870-1901.
18.C.R. Martin, Science. 1994, 266, 1961-1966.
19.C.R. Martin, Chem. Mater. 1996, 8, 1739-1746.
20.Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. C. Wang, J.
Phys. Chem. B. 1997, 101, 6661-6664.
21.S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. R.
C. Wang,Langmuir. 1999, 15, 701-709.
22.M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116,
7401-7402.
23.N.R. Jana, L. Gearheart, C.J. Murphy, Chem. Mater.
2001, 13, 2313- 2322.
24.N.R. Jana, L. Gearheart, C.J. Murphy, Langmuir. 2001,
17, 6782-6786.
25.J. P. Juste, L. M. L. Marz´an, S. Carnie, D.Y.C. Chan,
P. Mulvaney, Adv. Funct. Mater. 2004, 14, 571-579.
26.J. Gao, C.M. Bender, C.J. Murphy, Langmuir. 2003, 19,
9065-9070.
27.Danielle K. Smith and Brian A. Korgel, Langmuir. 2008,
24, 644-649.
28.R. Cortesi, E. Esposito, E. Menegatti, R. Gambari, C.
Nastruzzi, Int. J. Pharm. 1996, 139, 69-78.
29.D. Mirska, K. Schirmer, S. S. Funari, A. Langer, B.
Dobner, G.Brezesinski, Colloid Surf. B. 2005, 40, 51-59.
30.X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, J.
AM. CHEM. SOC. 2006, 128, 2115-2120.
31.R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, T. L.
Sabo-Attwood, Nano Lett. 2008, 8, 302-306.
32.Y. Sun, B. T. Mayers, Y. Xia, Nano Lett, 2002, 2, 481-
485.
33.Y. Sun, Y. Xia, J. AM. Chem. Soc. 2004, 126, 3892-3901.
34.Y. Sun, Y. Xia, Science. 2002, 298, 2176-2179.
35.D. P. O’Neala, L. R. Hirschb, N. J. Halasc, J. D.
Paynea, J. L. West, Cancer Letters. 2004, 209,171-176.
36.C. Loo, A. Lowery, N. Halas, J. West,.R. Drezek, Nano
Lett. 2005, 5, 709-711.
37.S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N.
J. Halas, Appl. Phys. Lett. 1999, 75, 2897-2899.
38.N. R. Jana, L. Gearheart, C. J. Murphy. J. Phys. Chem.
B. 2001, 105,4065-4067.
39.P. Zijlstra, C. Bullen, J. W. M. Chon, Min Gu, J. Phys.
Chem. B 2006, 110, 19315-19318.
40.R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, T. L.
Sabo-Attwood, Nano Lett. 2008, 8, 302-306.
41.J. Chen, B. Wiley, Z. Y. Li, D. Campbell, F. Saeki, H.
Cang, L. Au, J. Lee, X. Li, Y. Xia, Adv. Mater.2005,17,
2255-2261.
42.K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A.
Malpica, R. Lotan, R. R. Kortum. CANCER RESEARCH, 2003,
63, 1999-2004.
43.P. Y. Silvert, R. H. Urbina, N. Duvauchelle, V.
Vijayakrishnan, K. T. Elhsissen, J. Muter. Chem. 1996,
6, 573-577.
44.C. Graf, A. V. Blaaderen, Langmuir 2002, 18, 524-534.
45.S. J. Oldenburg, R.D. Averitt, S.L. Westcott, N.J.
Halas Chemical Physics Letters. 1998, 288, 243–247.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊