跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 03:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林志勳
研究生(外文):Chih-hsun Lin
論文名稱:中孔洞材料應用於酵素固定化與氣體之吸附
論文名稱(外文):Application of Mesoporous Silica in Enzyme Immobilization and Gas Adsorption
指導教授:吳天賞吳天賞引用關係
指導教授(外文):Tian-shung Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:111
中文關鍵詞:中孔洞氧化矽幾丁質酵素固定化幾丁質水解脢奈米碳管磷化氫
外文關鍵詞:carbon nanotubephosphinemesoporous silicaenzyme immobilizationchitinasechitin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要分為兩個研究主題,第一個主題為利用中孔洞氧化矽材料應用於酵素的固定化部分。第二個主題為中孔洞氧化矽材料應用於氣體的吸附及奈米碳管催化劑。

第一部份:中孔洞氧化矽材料應用於酵素固定化
本研究利用三種不同型態的中孔洞氧化矽材料為酵素的擔體:中孔洞氧化矽薄片;囊泡狀中孔洞氧化矽材料及短棍狀中孔洞氧化矽材料。這三種不同型態的中孔洞氧化矽材料對於酵素的固定化能力主要是因為pH值的不同,造成酵素及材料表面所帶電荷不同所形成相異的固定化能力。而因為擔體型態的差異,也造成對酵素的固定化型態有所區別,進而造成酵素在固定化之後所表現出來的活性也不相同。本研究還利用中孔洞氧化矽薄片進行表現官能基修飾,使薄片狀的表面帶有-NH2官能基,嘗試對酵素進行固定化。發現-NH2修飾的擔體對酵素進行固定化也是可以有效達成,但是卻也發現了活性降低許多。所以擔體經過-NH2修飾之後,雖然提升了對酵素的固定化能力,但卻喪失了活性。最後,對固定化酵素進行回收再利用,發現固定化酵素可以成功的與產物及反應液分離,所以可以成功的回收固定化酵素並進行再次的水解反應。但是回收固定化酵素時,容易與外界的細菌接觸,造成再次反應的水解產物會被細菌分解掉。所以只要能夠對細菌有效的隔離,此固定化酵素的方法是可以成功的被回收再利用。

第二部份:中孔洞氧化矽材料應用於氣體的吸附
本研究的目標是發展一種簡單合成且便宜的材料,用來吸附一些工業所排放的有毒廢氣。所以重點在要能夠快速合成且原料便宜。利用工業級PEG成功的合成出中孔洞氧化矽球,藉由調整水熱時的pH值順利的將PEG從中孔洞氧化矽球中移除並同時達到擴孔的目的。在水熱同時,若加入金屬前驅物,更可以將金屬氧化物含浸進入中孔洞氧化矽球的骨架之中。所以此種方法確實可以快速的合成帶有金屬氧化物的中孔洞氧化矽材料。至於PH3氣體的吸附部分,CuO-Silica經過高溫鍛燒材料,可以大量的吸附PH3,目前已有很大的突破,這方面可能需要再多方面評估。此外發現Fe2O3-Silica的材料對H2S的吸附,具有很好的效果,所以這方面研究會持續進行,期望能發展出新型的吸附劑。觸媒方面,可以利用NiO-Silica、Fe2O3-Silica與CuO-Silica為觸媒成功地以化學氣相沈積法長出奈米碳管。
In this thesis, there are two major researching parts: 1. Application of mesoporous silica in enzyme immobilization. 2. Applications of mesoporous silica in gas adsorption and the catalysts of carbon nanotubes.

Part I: Application of Mesoporous Silica in Enzyme Immobilization:
This research utilizes mesoporous silica with different morphologies (including mesoporous silica platelet; mesocellular foams, and rod-like SBA-15) as the supports to immobilize enzyme. The enzyme-loading capacity of these mesoporous silicas is depend on the pH value. This is because that surface charge and charge-density of enzyme and silica templates are different at different pH value. At a suitable pH value, interaction between enzyme and template will match, and interaction match leads to a maximum loading capacity of enzyme. It is known that the active immobilized enzyme should be accessible to the environments. Therefore, the mesoporous silica with different morphology determines the activity of immobilized enzyme. In this research, surface modification of mesoporous silicas are used as the supports of immobilized enzyme as well. However, we found the NH2 functional groups-modification onto the silica platelets as the support would reduce the activity of immobilized enzyme. The immobilized enzymes can be easily separated from the reaction solution via simples filtration or centrifugation. So the immobilized enzymes can retrieve and utilize again. A main problem is the bacteria pollution in the enzyme solution during retrieving. The bacterium will digest products. If we can isolate the bacterium effectively, the immobilized enzyme can retrieve and utilize efficiently.
Part II: Application of Mesoporous Silica in Gas Adsorption:
In this part, the goal is to develop cheap and simple synthetic method to synthesize the mesoporous absorbents and catalysts. This research utilizes industry-grades PEG to synthetic mesoporous silica. After a hydrothermal treatment at proper pH value, the organic template PEG can be nearly completely extracted from PEG-silica composites, and the surfactant-free mesoporous silica was generated. In addition to prepare the mesoporous silicas, the metal oxide can be easily introduced into the mesoporous silica framework by adding a proper amount of metal nitrate or other water-soluble salts. This method can be applied extensively to prepare various metal oxide-incorporated mesoporous silicas for potential applications. In gas adsorption, CuO-silica can adsorb phosphine even at low concentration (500 ppb). This is a great break-through in PH3 removal. The Fe2O3-silica can be used as a long-lasting absorbent for hydrogen sulfide. In addition to gas absorbent, the NiO-silica; Fe2O3-silica and CuO-silica can also act as high-effieciency catalysts for the growth of carbon nanotubes.
謝誌............................................................................................................I中文摘要................................................................................................II
英文摘要……...……………………………………………………...... IV
目錄…………...………………………………………………………....V
圖目錄…………...……………………………………………………....X
表目錄…………………………...........................................................XIV
第一章 緒論..............................................................................................1
1.1 中孔洞材料的介紹.....................................................................1
1.1.1 中孔洞材料的定義..........................................................2
1.1.2 中孔洞材料主要的研究範疇..........................................3
1.2 界面活性劑性質.........................................................................4
1.2.1 界面活性劑的分子結構..................................................4
1.2.2 界面活性劑的分類..........................................................5
1.3 矽酸鹽的基本概念.....................................................................6
1.4 固定化酵素的基本概念.............................................................8
1.4.1 酵素簡介..........................................................................8
1.4.2 固定化酵素的方法........................................................11
1.5 PH3氣體及其吸附特性............................................................12
1.5.1 PH3氣體的基本特性.....................................................12
1.5.2 局部廢氣處理設備去除廢氣之方法............................13
1.5.3 乾式吸附法處理氫化物系氣體之吸附劑....................15
第二章 實驗部分....................................................................................17
2.1 化學藥品...................................................................................17
2.1.1 酵素固定化....................................................................17
2.1.2 氣體之吸附....................................................................19
2.2 不同型態之中孔洞氧化矽材料合成法...................................20
2.2.1 中孔洞氧化矽薄片(⊥)的合成步驟.............................20
2.2.2 囊泡狀中孔洞氧化矽材料(Mesocellular Foams;MCF)的合成步驟....................................................................21
2.2.3 短棍狀中孔洞氧化矽材料(Rod-like SBA-15)的合成步驟....................................................................................21
2.2.4 中孔洞氧化矽材料表面修飾有機矽烷........................22
2.3 酵素催化反應...........................................................................23
2.3.1 酵素固定化(Immobilized enzyme)步驟........................23
2.3.2 酵素水解反應................................................................24
2.4 中孔洞氧化矽材料對金屬氧化物之吸附...............................24
2.4.1 中孔洞氧化矽球的合成................................................24
2.4.2 金屬氧化物-中孔洞氧化矽材料的合成....................25
2.5 產物的鑑定...............................................................................26
2.5.1 熱重分析儀 (Thermogravimetn’c analysis;TGA ) ...26
2.5.2 穿透式電子顯微鏡(Transmission Electron Microscopy ; TEM) .............................................................................26
2.5.3 能量分散光譜儀 (Energy Dispersive Spectrometer;EDX)...............................................................................26
2.5.4氮氣等溫吸附/脫附測量 (N2 adsorption / desorption isotherm) ........................................................................27
2.5.5 1H-NMR核磁共振光譜儀..............................................27
2.6 酵素催化反應的定量...............................................................29
第三章 不同型態之中孔洞氧化矽應用於酵素固定化........................30
3.1 研究動機及目的.......................................................................30
3.2 中孔洞氧化矽材料...................................................................31
3.2.1 中孔洞氧化矽薄片(⊥)的鑑定.....................................31
3.2.2 囊泡狀中孔洞氧化矽的鑑定........................................33
3.2.3 短棍狀中孔洞氧化矽的鑑定........................................34
3.3 1H-NMR偵測GlcNAc及(GlcNAc)2的偵測極限.....................36
3.4 中孔洞氧化矽材料對酵素固定化之能力...............................39
3.5 酵素水解反應及NMR定量分析............................................43
3.5.1 1H-NMR溶劑的使用......................................................43
3.5.2 幾丁質水解酵素的水解反應及定量............................45
3.6 固定化酵素的水解反應及定量...............................................49
3.6.1 酵素擔體為薄膜狀中孔洞氧化矽材料........................49
3.6.2 酵素擔體為囊泡狀中孔洞氧化矽材料........................53
3.6.3 酵素擔體為短棍狀中孔洞氧化矽材料........................56
3.6.4 表面修飾過之中孔洞氧化矽為酵素擔體....................59
3.7 固定化酵素的應用及發展.......................................................63
第四章 中孔洞材料應用在氣體之吸附................................................66
4.1 研究動機與目的.......................................................................66
4.2 中孔洞氧化矽球的鑑定...........................................................67
4.2.1 改變水熱時的pH值.....................................................68
4.2.2 改變水熱時的溫度........................................................71
4.3 金屬氧化物-中孔洞氧化矽材料..............................................73
4.3.1 氧化鋁-中孔洞氧化矽材料...........................................73
4.3.2 其他種類金屬氧化物-中孔洞氧化矽材料...................76
4.3.3 IR光譜的鑑定................................................................78
4.4 氣體吸附之測試.......................................................................79
4.5 奈米碳管的生成.......................................................................81
4.6 結論...........................................................................................83
第五章 總結論........................................................................................84
參考文獻..................................................................................................87
附錄一 不同pH值磷酸緩衝溶液下,幾丁質水解酵素水解幾丁質反應的定量數據..........................................................................................90
附錄二 不同pH值磷酸緩衝液下,固定化酵素對於幾丁質的水解反應的定量數據..........................................................................................93
1.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359,710.
2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C.T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem.Soc., 1992, 114, 10834.
3. Heather R. Luckarift, Jim C. Spain, Nature Biotechnology, 2004, 22, 211
4. Mihaela Mureseanu, Anne Galarneau, Langmuir 2005, 21, 4648-4655.
5. Yajun Wang, Frank Caruso, Chem. Mater., 2005, 17, 953-961.
6. C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
7. C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
8. C.-G. Wu, T. Bein, Chem. Mater., 1994, 6, 1109.
9. (a) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996, 12, 6202.
(b) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 1996, 2467 .
10. S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung,
P. J. Sadler, J. Chem. Soc., Chem. Commun., 1995, 1803.
11. T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem.
Commun., 1995, 1617.
12. A. Sayari, Chem. Mater., 1996, 8, 1840.
13. R. Neumann, K. Khenkin, Chem. Commun., 1996, 23, 2643.
14. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39, 63.
15. M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 1996, 100, 9906.

16. A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf.
Sci. Catal., 1994, 84, 69.
17. J. S. Reddy, A. Sayari, J. Chem. Soc., Chem. Commun., 1995, 2231.
18. W. Wang, S. Xie, W. Zhou and A. Sayari., Chem. Mater. 2004, 16, 1756.
19. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao., Angew. Chem. 2003, 115, 3254.
20. A. Vinu, V. Murugesan, M. Hartmann., Chem. Mater., 2003, 15, 1385.
21. H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49, 981.
22. V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
23. H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
24. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. - Uk Kwon, O. Terasaki, S. – Eon. Park and G. D. Stucky. J. Phys. Chem. B., 2002, 106, 2552.
25. A. Bhaumik and S. Inagaki. J. Am. Chem. Soc., 2001, 123, 691.
26. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou Xiao., Angew. Chem. Int. Ed., 2001, 7, 1258.
27. A. Walcarius, M. Etienne, B. Lebeau., Chem. Mater. 2003, 15, 2161.
28. T. Yokoi, H. Yoshitake, T. Tatsumi., J. Mater. Chem. 2004, 14 , 951.
29. J. M. Cha, G. D. Stucky, D. E. Morse, T. J. Deming., Nature 2000, 48, 289.
30. E. B. Erlein., Angew. Chem. Int. Ed. 2003, 42, 614.
31. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie, H. Xu., Angew. Chem. Int. Ed. 2003, 42, 413.
32. T. F. Todros, Surfactants, Academic Press : London, 1984.

33. O. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier,P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stukey., Chem. Mater., 1994, 6, 1176.
34. Dongyuan Zhao, Jianglin Feng, Qisheng Huo, Nicholas Melosh, Glenn H. Fredrickson, Bradley F. Chmelka, G. D. Stucky, Science, 1998, 273, 548.
35. C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids, 1985, 70, 301.
36. L.R. Ludikhuyz, I.V. Broeck, Biotechnol. Prog., 1997, 13, 532–538.
37. Moon Il Kim, Jungbae Kim, Jinwoo Lee, Biotechnology and Bioengineering, 2007, 96, 210–218.
38. DeSantis G, Jones JB., Curr Opin Biotechnol., 1999, 10, 324–330.

39. Kim J, Grate JW., Nano Lett., 2003, 3, 1219–1222.

40. Livage J., Coradin T, Roux C, J Phys:Condes Matter, 2001, 13, R673–R691.

41. Tischer W, Wedekind F., Berlin: Springer-Verlag, 1999, 95–126.

42. Bickerstaff, G. F., Immobilization of Enzymes and Cells, 1997, 4.

43. D.J. Kushner, Alison Baker, T.G. Dunstall, Canadian Journal of Physiology and Pharmacology, 1999, 77, 79.
44. 劉福千,利用氫核磁共振光譜法對酵素水解幾丁質之產物的定量及其動力學研究,國立成功大學化學研究所碩士論文,2007。
45. Jie Fan. Jie Lei, Chem. Commun, 2003, 2140–2141.
46. Chenghong Lei, Yongsoon Shin, Jun Liu*, J. Am. Chem. Soc., 2002, 124, 11241–11243.
47. Humphrey H.P. Yiu, Paul A. Wright*, Journal of Molecular Catalysis B:Enzymatic, 2001, 15, 81–92.
48. 鄭凱文,淺談半導體製程廢氣處理,台灣環保產業雙月刊,18期,2003。
49. Cotton M. L., Johnson N. D. and Wheeland K. G., The Metallurgical Society of CIM, 1977, 205-209.
50. Hayes M., Woods K., Solid State Technology, 1996, 39, 141.
51. 李文智,以沸石擔持金屬氧化物製備吸附劑以進行磷化氫氣體吸附之研究,國立交通大學環境工程研究所碩士論文,2006。
52. Leondaridis P., Vendel A.S. and Akthar T., United States Patent, 1990, 5, 182, 088.
53. 福田秀樹、大塚健二、古浦永生,有害氣體之淨化劑及淨化 方法,專利說明書,460313,1998。
54. Ryoo R., Joo S. H.,Jun S., J. Phys. Chem. B, 1999, 103, 7743.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊