跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 16:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張雅雯
研究生(外文):Ya-Wen Chang
論文名稱:固體顆粒和Carbopol940漿體混合後之流變特性
論文名稱(外文):Rheological characteristics of the mixtures of solid particles and Carbopol 940 slurries
指導教授:詹錢登詹錢登引用關係羅偉誠羅偉誠引用關係
指導教授(外文):Chyan-Deng JanWei-Cheng Lo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:59
中文關鍵詞:賓漢黏滯度賓漢屈服應力流變參數丙烯酸聚合物
外文關鍵詞:acrylic polymerrheologyBingham viscosityBingham yield stress
相關次數:
  • 被引用被引用:5
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
土石流體是由泥、砂、礫石等固態物質與水混合後所形成之流體,
其流變特性與顆粒濃度、粒徑大小、級配與礦物組成成分等因子有關。本研究以採取Carbopol 940粉末(丙烯酸聚合物)與水混合成漿體,來模擬土石流漿體。實驗中先分析此種漿體之流變特性,然後探討粗顆粒(粒徑大於2mm以上)加入漿體中,粗顆粒含量及粒徑分布對其流變特性之影響。粗顆粒材料玻璃珠(5mm、10mm、16mm)與聚苯乙烯顆粒(5mm)分別加入漿體中,進行各種不同濃度、不同密度及不同粒徑分布條件下之流變特性實驗研究。結果顯示:(1)粗顆粒對漿體之流變特性影響可以賓漢模式來表達,其流變參數受粗顆粒濃度與粒徑之影響而有所不同。(2)在相同剪切率(≦20 s-1)條件下,粗顆粒加入漿體中,其所產生之賓漢屈服應力與賓漢黏滯度會隨顆粒含量濃度的增加而增加。(3)在相同漿體濃度條件下,顆粒粒徑較小者對增加屈服應力與黏滯度的影響較大。(4)在漿體濃度較稠時,顆粒密度對漿體之賓漢屈服應力及賓漢黏滯度影響不顯著。(5)非均勻顆粒漿體所產生之賓漢屈服應力與賓漢黏滯度都較單一粒徑分布時大。(6)對於細顆粒與粗顆粒雙粒徑混合漿體,在總顆粒體積濃度相同條件下,當細顆粒含量佔總顆粒體積約為25%~75%時,和純細顆粒情況比較,賓漢屈服應力約增加10%~30%。賓漢黏滯度約增加20~70%。
Debris flow consists of mud, sand, gravel, and other solid materials mixed with water;therefore, its the rheological property depends on particle concentration, particle size distribution, and mineral composition. The Carbopol-940 slurry (acrylic polymer slurry) was used to simulate debris-flow slurry in the present study. The rheological properties of the Carbopol-940 slurry were measures first, and then the rheological properties of the mixtures of gravel-slurry that were formed by adding glass beads(5mm,10mm,16mm) and polystyrene particles(5mm) into the Carbopol-940 slurries respectively, were measured. The experimental results show that: (1) Both rheological properties of the Carbopol-940 slurry and the gravel-slurry mixtures could be described by the Bingham model, with rheological parameters (Bingham yield stress and Bingham viscosity) varied with particle concentration and particle size; (2) Under the same shearing rate (≦20 s-1), the Bingham yield stress and Bingham viscosity increased with the increase of particles concentration; (3) Under the same particle concentration of the gravel-slurry mixture, the smaller-size particles had larger influence on the Bingham yield stress and viscosity; (4) When the Carbopol-940 slurry had higher viscosity, the effect of the particle density on the Bingham yield stress and Bingham viscosity is not significant; (5) Non-uniform size of particles added in to the slurry resulted in greater increases of the Bingham yield stress and Bingham viscosity, compared with that added with uniform size particles. ; (6) Under the same particle concentration, the increase of Bingham yield stress could be 10%~30%, and the increase of Bingham viscosity could be 20~70% for the mixtures of two particle sizes in which the finer particles content was about 25% to 70%, compared with those for mixtures of uniform finer particles.
目錄
摘要...................................................I
Abstract.............................................. II
謝誌...................................................III
目錄...................................................IV
表目錄................................................ VI
圖目錄................................................ VII
符號表... ..............................................XI

第一章 緒論........................................... 1
1.1 研究背景.......................................... 1
1.2 文獻回顧.......................................... 2
1.3 研究目的與內容.................................... 3
1.4 本文組織架構...................................... 4
第二章 流變模式與實驗方法............................. 5
2.1 流變模式.......................................... 5
2.2 實驗設備.......................................... 8
2.3 實驗材料.......................................... 9
2.4 不沉粒徑.......................................... 12
2.5 實驗步驟流程...................................... 14
2.6 剪切率與剪應力計算方法............................ 16
第三章 結果與分析..................................... 17
3.1 Carbopol 940漿體之流變特性........................ 17
3.2 顆粒含量對漿體流變特性之影響與評估................ 18
3.2.1顆粒含量對漿體流變特性之影響..................... 19
3.2.1.2 賓漢屈服應力之評估............................ 29
3.2.2顆粒粒徑對漿體流變特性之影響..................... 32
3.3 顆粒密度對漿體流變特性之影響...................... 39
3.4 混合顆粒對漿體流變特性之影響...................... 49
第四章 結論與建議..................................... 55
4.1 結論.............................................. 55
4.2 建議.............................................. 56
參考文獻.............................................. 57
自述………………………………………………………………….59
參考文獻
1. 王志賢,(2000),「粗顆粒材料對土石流體流變特性影響之實驗研究」,成功大學碩士學位論文。
2. 王志賢,(2007),「泥砂顆粒組成對黏性土石流體流變參數影響之研究」,成功大學博士學位論文。
3. 余昌益,(1996),「高含沙水流流變參數之研究」,成功大學碩士學位論文。
4. 郭啟文,(2002),「泥漿體及礫石泥漿體之流變特性」,成功大學碩士學位論文。
5. 陳弘殷,(1998),「阿公店水庫淤泥之流變特性」,成功大學碩士學位論文。
6. 費祥俊,(1983),「高含砂水流的顆粒組成及流動特性」,第二屆河流泥砂國際學術研討會,第 296-308頁。
7. 費祥俊,(1994),「漿體與粒狀物料輸送水力學」,清華大學出版社,中國。
8. 詹錢登,(2000),「土石流概論」,科技圖書股份有限公司,台灣。
9. 楊美卿,(1993),「高含沙漿體絮凝的微觀結構及其流變參數」,黃河高含沙水流運動規律及應用前景,科學出版社,第 39-55頁,中國。
10.韓文亮,(1991),「細顆粒漿體的應力鬆弛模型」,泥砂研究,第 3期,第 87-92頁,中國。
11. Bagnold, R. A. (1954), “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear.” Proc. of the Royal Society of London, A 225, pp. 49-63.
12. Chen, C.L. (1988), “Generalized viscoplastic modeling of debris flow.” Journal of Hydraulic Engineering, Vol.114, No.3, p.237-258.
13. Coussot, P. and Piau, J. M. (1994), “On the behavior of fine mud suspensions.”Rheologica Acta, Vol. 33, p.175-184.
14. Jan, C. D., and Wang, J. S. (2002), “Rheological Properties of Mud and Gravel-Mud Mixtures” Proceeding of the Fifth Taiwan-Japan Joint Seminar on Natural Hazards Mitigation, p. 75-82, Taiwan.
15. Mitschka, P. (1982), “Simple conversion of Brookfield R.V.T. readings into viscosity functions”, Rheologica. Acta, Vol.21, p.207-209.
16. Major, J.J. and Pierson, T. (1992), “Debris flow rheology:Experimental analysis of fine-grained slurries.”Water resource research, Vol.28, No, 3, p.841-857.
17. O'Brien, J.S. and Julien, P.Y. (1985), “Physical processes of hyperconcentrated sediment flows.” Proc. of the ASCE Specialty Conf. on the Delineation of Landslides, Floods, and Debris Flow Hazards in Utah, Utah Water Research Laboratory, Series UWRL/g-85/03, p.260-279.
18. Phillips, C.J. and Davies, T.R.H. (1991), “Determining rheological parameter of debris flow material.”Geomorphology, Vol. 4, p.101-110.
19. Savage, S. B. and Sayed, M. (1984), “Stresses Developed by Dry Cohesionless Granular Materials Sheared in an Annular Shear Cell,” Journal of Fluid Mechanics, Vol. 142, p. 391-430.
20. Schatzmann, M., Fischer, P. and Bezzola, G.R. (2003), “Rheological Behavior of fine and large partical suspensions.”Journal of Hydraulic Engineering, Vol.129, No.10, p.796-803.
21. Wang, J. S., and Jan, C. D. (2002), “Rheological behaviors of gravel-mud mixtures.” Proceeding of the Fifth International Conference of Hydro-Science and Engineering, Soft copy, No. C-167, IAHR, Warsaw.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊