跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 20:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李哲瑋
研究生(外文):Jhe-wei Li
論文名稱:毛細張力變化對膨脹波在未飽和孔彈性隙介質中傳波特性之影響評估
論文名稱(外文):An Assessment of the Effect of Capillary Pressure Changes on Dilatational Wave Propagation and Attenuation through Unsaturated Poroelastic Media
指導教授:羅偉誠羅偉誠引用關係
指導教授(外文):Wei-cheng Lo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:73
中文關鍵詞:膨脹波毛細張力震盪頻率傳波特性
外文關鍵詞:Attenuation coefficientPhase speedDilatational wavesCapillary pressureExcitation frequency
相關次數:
  • 被引用被引用:1
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
毛細張力(capillary pressure)的作用對於孔隙中含有兩種不相容流體扮演著重要的角色,但文獻上顯示膨脹波(dilatational wave)在低頻的震盪範圍傳遞時可忽略毛細張力變化對傳波特性的影響,因此本文主要探討的重點為考慮毛細張力變化後,其改變對於膨脹波的波速及衰退係數的影響。本研究比較Berryman et al. [1988] (忽略毛細張力變化)及Lo et al. [2005] (考慮毛細張力變化)兩個波傳控制方程式,並分別模擬膨脹波在含有空氣-水及油-水混合流體之哥倫比亞砂質壤土中給定一個震盪頻率(10Hz、1kHz、100kHz),觀察兩模式模擬結果(膨脹波的波速和衰退係數)的差異,進而討論毛細張力變化對膨脹波傳遞和衰減之影響。
在低頻(10Hz、1kHz)的震盪範圍,無論膨脹波在空氣-水或油-水混合流體中傳遞,毛細張力變化對膨脹波的傳波特性造成影響均非常小,因此我們驗證了文獻上所描述之膨脹波在低頻範圍傳遞時,可忽略毛細張力變化對傳波特性之影響的正確性。相對於低頻範圍,本研究亦藉由模擬膨脹波在高頻(100kHz)的震盪範圍,但模擬結果顯示其差異並不顯著。因此,膨脹波無論在低頻或高頻的震盪頻率傳遞,毛細張力變化均不會對其傳波特性造成影響。但透過敏感度分析可證實毛細張力的確對膨脹波的波速及衰退係數造成影響。雖然本研究以兩種非混合流體作為試體,試圖比較毛細張力變化的差異與流體黏滯性的關係,但由於模擬結果無法突顯毛細張力變化的影響,因此沒能說明上述之關係。
Capillary pressure plays an important role in the description of the two-phase fluid flows in unsaturated porous media. In literature studies, a prevalent argument states that the effect of changes in capillary pressure can be ignored when the dilatational wave undergoes low-frequency motions because the wave excitation is of long enough wavelength that two immiscible pore fluids experience the same pressure. Therefore, the main objective of this study is to investigate the effect of capillary pressure changes on dilatational wave propagation and attenuation through unsaturated poroelastic media.
We begin by driving a dispersion relation for the eigenvalues of two free dilatational modes from the Berryman et al. [1988] model, where capillary pressure changes are considered to be negligible due to the low-frequency assumption. Thus, we can predict the phase speed and attenuation coefficient of the fastest (P1) and second fastest (P2) dilatational waves from this relation and compare with Lo et al. [2005] model, in which capillary pressure effects are rigorously taken into account. As an illustrative example, Columbia fine sandy loan permeated by either an air-water or oil-water mixture was examined as functions of relative fluid saturation and wave excitation frequency (10 Hz, 1 kHz, and 100 kHz).
Regardless of an air-water or oil-water mixture, our numerical results show that in the low-frequency range, the phase speed and attenuation coefficient of the P1 and P2 waves are not substantially affected by capillary pressure changes, which confirms the physical assumption typically made in literature studies. When dilatational wave undergoes high-frequency (100 kHz) motions, there are still no noticeable differences between the two models. However, a sensitivity analysis reveals that if the magnitude of changes of capillary pressure is greater, they indeed give an influence on the phase speed and attenuation coefficient of the P1 and P2 waves.
中文摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
符號說明 IX
第一章 緒論 1
1.1 文獻回顧 1
1.2 研究動機 7
1.3 本文架構 8
第二章 理論模式 9
2.1 忽略毛細張力變化的擴散關係式 (Berryman et al. 模式) 9
2.1.1 控制方程式 9
2.1.2 應力-應變關係式 11
2.1.3 質量密度的定義 12
2.1.4 簡化控制方程式 13
2.1.5 波傳頻率方程式 16
2.2 考慮毛細張力變化的擴散關係式 (Lo et al. 模式) 19
2.2.1 控制方程式 19
2.2.2 應力-應變關係 21
2.2.3 膨脹波在包含兩個流體之彈性孔隙介質之傳遞及衰減模式 23
2.2.4 波傳頻率方程式 25
第三章 數值模擬 31
3.1 數值模擬所需之相關參數 31
3.1.1保水曲線 (water retention curve) 31
3.1.2 水力傳導函數 (Hydraulic conductivity function) 32
3.1.3 慣性互制參數 (Inertial coupling parameters) 32
3.1.4 參考頻率 (Reference frequency) 33
3.1.3 黏性互制參數 (Viscous coupling parameters) 34
3.2數值模擬結果 36
3.2.1 空氣-水 38
3.2.2 油-水 38
3.3 敏感度分析 (Sensitive analysis) 47
第四章 結論與建議 60
4.1 結論 60
4.2 建議 61
參考文獻 67
Anderson, W. G., Wettability literature survey, 4, The effect of wettability on capillary pressure, Journal of petroleum technology, Vol. 39, no. 10, pp. 1283-1300, 1987.

Badiey, M., A. H-D. Cheng, and Y. Mu, From geology to geoacoustics – Evaluation of Biot-Stoll sound speed and attenuation for shallow water acoustics, Journal of the Acoustical Society of America, Vol. 103, no. 1, pp. 309-320, 1998.

Bear, J., Dynamics of Fluids in Porous Media, Dover, New York, 1988.

Beresnev, I. A., and P. A. Johnson, Elastic-wave stimulation of oil production: a review of methods and results, Geophysics, Vol. 59, no. 6, pp. 1000-1017, 1994.

Berryman, J. G., L. Thigpen, and R. C. Y. Chin, Bulk elastic wave propagation in partially saturated porous solids, Journal of the Acoustical Society of America, Vol. 84, no. 1, pp. 360-373, 1988.

Biot, M. A., Theory of propagation of elastic waves in a fluid saturated porous solid, I. Low-frequency range, Journal of the Acoustical Society of America, Vol. 28, no. 2, pp. 168-178, 1956a

Biot, M. A., Theory of propagation of elastic waves in a fluid saturated porous solid,II. Higher frequency range, Journal of the Acoustical Society of America, Vol. 28, no. 2, pp. 179-191, 1956b.

Biot, M. A., and D. G. Willis, The elastic coefficient of the theory of consolidation, Journal of Applied Mechanics, Vol. 24, pp. 594-601, 1957.

Biot, M. A., Mechanics of deformation and acoustic propagation in porous media, Journal of Applied Physics, Vol. 33, no. 4, pp. 1482-1498, 1962.

Bradford, S. A., and Leij, F. J., Wettability effects on scaling two- and three-fluid capillary pressure-saturation relations. Environmental science & technology, Vol. 29, no. 6, pp. 1446-1455, 1995.

Brooks, R. H., and A. T. Corey, Hydraulic properties of porous media, Hydrology paper 3, Civ. Eng. Dep., Colo. State Univ., Fort Collins, 1964.

Brutsaert, W., The propagation of elastic waves in unconsolidated unsaturated granular mediums, Journal of Geophysical Research, Vol. 69, no. 2, pp. 243 -257,1964.

Chen, J., J. W. Hopmans, and M. E. Grismer, Parameter estimation of two-fluid capillary pressure-saturation and permeability functions, Advances in Water Resources, Vol. 22, no. 5, pp. 479-493, 1999.

Cosenza, P., M. Ghoreychi, G. de Marsily, G. Vasseur, and S. Violette, Theoretical prediction of poroelastic properties of argillaceous rocks from in situ specific storage coefficient, Water Resources Research, Vol. 38, no. 10, pp. 1207, doi:10.1029/2001 WR001201, 2002.

Cowin, S. C., Bone poroelasticity, Journal of Biomechanics, Vol. 32, pp. 217-238, 1999.

Dane, J. H., Oostrom, M., and Missildine, B. C., An improved method for the determination of capillary pressure-saturation curves involving TCE, water and air, Journal of contaminant hydrology, Vol.11, no. 1-52, pp. 69-81, 1992.

Demond, A. H., and Roberts, P. V., Effect of interfacial forces on two-phase capillary pressure-saturation relationships, Water Resources Research, Vol. 27, pp. 423-437, 1991.

Fetter, C. W., Contaminant Hydrogeology, Prentice-Hall, Upper Saddle River, N. J, 1999.

Garg, S. K., and A. H. Nayfeh, Compressional wave propagation in liquid and/or gas saturated elastic porous media, Journal of Applied Physics, Vol. 60, no. 9, pp. 3045-3055, 1986.

Gray, W. G., General conservation equations for multi-phase systems: 4. Constitutive theory including phase change, Advances in Water Resources, Vol. 6, pp. 130-140, 1983.

Helle, H. B., N. H. Pham, J. M. Carcione, Velocity and attenuation in partially saturated rocks: poroelastic numerical experiments, Geophysical prospecting, Vol. 51, pp. 551-566, 2003.

Hovem, J. M., and G. D. Ingram, Viscous attenuation of sound in saturated sand, Journal of the Acoustical Society of America, Vol. 66, no. 6, pp. 1807-1812, 1979.

Hughes, E. R., T. G. Leighton, G. W. Petley, P. R. White, and R. Cm. Chivers, Estimation of critical and viscous frequencies for Biot theory in cancellous bone, Ultrasonics, Vol. 41, no. 5, pp. 365-368, 2003.

Johnson, D. L., Recent developments in the acoustic properties of porous media, in Proceedings of the International School of Physics “Enrico Fermi” Course XCIII, Frontiers in Physical Acoustics, edited by D. Sette, pp. 255-290, Elsevier, New York, 1986.

Lake, L. W., Enchanced Oil Recovery, Prentice-Hall, Englewood Cliffs, 1989.

Lenhard, R. J., and Park, J. C., Measurement and prediction of saturation-pressure relationships in three-phase porous media systems, Journal of contaminant hydrology, Vol. 1, pp. 407-424, 1987.

Leverett, M. C., Capillary behavior in porous media, Trans. A.I.M.E. 142, pp. 341-358, 1941. Lo, W. C., G. Sposito, and E. Majer, Immiscible two-phase flows in deformable porous media, Advances in Water Resources, Vol. 25 (8-12), pp. 1105-1117, 2002.

Lo, W. C., G. Sposito, and E. Majer, Wave propagation through elastic porous media containing two immiscible fluids, Water Resources Research, Vol. 41, no. 2, pp. W02025, 2005.

Lo, W. C., G. Sposito, and E. Majer, Low-frequency dilatational wave propagation through unsaturated poroud media containing two immiscible fluids, Transport in Porous Media, In press.

Mualem, Y., A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resources Research, Vol. 12, no. 3, pp3 513-522, 1976.

Roberts, P. M., A. Sharma, V. Uddameri, M. Monagle, D. E. Dale, and L. K. Steck, Enhanced DNAPL transport in a sand core during dynamic stress stimulation, Environmental engineering science, Vol. 18, no. 2, pp. 67-79, 2001.

Santos, J. E., J. M. Corbero, and J. Douglas, Static and dynamic behavior of a porous solid saturated by a two-phase fluid, Journal of the Acoustical Society of America, Vol. 87, no. 4, pp. 1428-1438, 1990a.

Santos, J. E., J. Douglas, J. Corbero, and O. M. Lovera, A model for wave propagation in a porous medium saturated by a two-phase fluid, Journal of the Acoustical Society of America, Vol. 87, no. 4, pp. 1439-1448, 1990b.

Santos, J. E., C. L. Ravazzoli, P. M. Gauzellino, J. M. Carcione, and F. Cavallini, Simulation of waves in poro-viscoelastic rocks saturated by immiscible fluids. Numerical evidence of a second slow wave, Journal of Computational Acoustics, Vol. 12, no. 1, pp. 1-21, 2004.

Schrefler, B. A., and X. Y. Zhan, A fully coupled model for water-flow and air-flow in deformable porous-media, Water Resources Research, Vol. 29, no. 1, pp. 155-167, 1991.

Stoll, R. D., Acoustic wave in saturated sediments, Physics of Sound in Marine Sediments, edited by L. Hampton, Springer, New York, pp. 19-39, 1974.

Tuncay, K., and M. Y. Corapcioglu, Body waves in poroelastic media saturated by two immiscible fluids, Journal of Geophysical Research, Vol. 101, pp. 25149-25159, 1996.

Tuncay, K., and M. Y. Corapcioglu, Wave propagation in poroelastic media saturated by two fluids, Journal of Applied Mechanics, Vol. 64, no. 2, pp. 313-320, 1997.

van Genuchten, M. T., A closed-form equation for predicting the hygraulic conductivity of unsaturated soils, Soil Science Society of America Journal, Vol. 44, no. 5, pp. 892-898, 1980.

Wood, A. B., A Textbook of sound; being an Account of the Physics of Vilbrations with Special Reference to Recent Historical Technical Development, G. Bell, London, 1960.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top