跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 13:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:左秀文
研究生(外文):Hsiu-Wen Tso
論文名稱:海嘯沿溪溯升之研究
論文名稱(外文):Tsunami runup in the intertidal zone using shallow water wave model
指導教授:黃煌煇黃煌煇引用關係劉正琪
指導教授(外文):Hwung-hui HwungCheng-Chi Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:60
中文關鍵詞:溯升孤立波海嘯
外文關鍵詞:tsunamirunupsolitary
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
西元1983年於日本Yatsumori發生因外海地震引起之海嘯暴潮溯溪而上侵襲 Iwaki 河口造成百餘人傷亡與百餘萬美元之經濟損失。部分科學家指出,如果建立了海嘯預警機制,給人們提供防護教育,海嘯災害也許不會奪去這麼多人的生命。科學發展至今,人類雖然無法準確預報地震、海嘯等天災的發生,但是人類確實已有能力根據理論推導、試驗研究及數值模擬等探討海嘯可能衝擊之區域,進而加強岸壁防護與預警機制減輕災害傷亡與損失。
台灣四周環海河川眾多,感潮河段坡度不均,平均而言陡坡約為 、緩坡約為 ,基於試驗設備、經濟等可行性因素之考量, 之坡度甚難進行,僅能仰賴數值模式提供災害模擬,故本文旨在應用THLNSW模式模擬海嘯孤立波衝擊河川時所造成之溯升狀況,並考量河床坡度與河口寬度不一,作一範圍性模擬與探討。
根據模擬結果顯示,孤立波進入河口時,當波浪條件超過碎波型態理論值,波浪於斜坡上前進將產生前波面分裂成數個短週期波之非對稱波形現象並消弭波能,導致對乾床上之溯升影響極小甚可忽略。而若波浪非線性符合非碎波型態理論值,波浪將可傳遞至最終乾床處,其造成之溯升受波高影響成正比。而若底床為光滑無摩擦時,坡度越緩底床造成之波浪溯升越大,當波浪條件 時,相同入射波條件下底床坡度相差1個order造成之溯升高相差約 ;當底床摩擦存在時,則因坡度越緩,波浪爬升至乾床所需行進路程越長,摩擦能量累積導致坡度越緩時造成之溯升高越低。此外河口寬度越大,衝擊進入河道之水量相對更多,加上波浪通過束縮段造成波高變大現象,因此河口越寬將造成越大之溯升高度。
In A.D1983, had seaquake disasters caused by tsunami at Yatsumori in Japan. The bore that caused by tsunami attacked the outfall of the Iwaki river and run-up along watercourse. The disaster included hundreds of casualties and millions dollars economic loss. Some scientists pointed tsunami didn’t bring a large of disaster loss if matured tsunami warning system and hazard mitigation programs.
There are many rivers in Taiwan. The slopes of riverbed from 1:1000 to 1:50 have discrepant. It was not feasible for experimental instrument and economy to experiment on a 1/1000 slope, so we must rely on numerical model to simulate disasters. This paper presents treats of tsunami wave run-up in the intertidal zone using THLNSW model and considers dissimilar slope of riverbed and width of outfall.
This result is shown solitary waves fission on slopes and the run-up high is negligible if wave condition over the breaking criterion. If wave condition answer to the breaking criterion, wave height. Additionally, the run-up high is direct proportion of the width of outfall.
摘要 I
ABSTRACT III
謝誌 IV
目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2.1 孤立波溯升 2
1-3 組織架構 5
第二章 理論介紹 6
2-1 淺水波理論 6
2-1.1 線性淺水波理論 6
2-1.2 非線性淺水波理論 7
2-2 孤立波 8
第三章 數值方法 9
3-1 數值模式簡介 9
3-2 模式計算方法 9
3-2.1 線性淺水波方程有限差分解 10
3-2.2 非線性淺水波方程有限差分解 11
3-3 邊界條件 13
3-3.1 移動邊界 13
3-3.2 輻射邊界 15
3-4 求解流程 16
3-5 模式校驗 17
3-5.1 非碎波孤立波通過線性複合式斜坡底床之模擬 17
3-5.2 孤立波通過南濱斷面之模擬 23
3-5.3 孤立波於1/60斜坡之溯升模擬 27
第四章 模式應用之計算結果與討論 28
第五章 結論與建議 54
5-1 結論 54
5-2 建議 55
參考文獻 56
自述 60
1.黃煌煇, 2006, 海嘯的模擬, 行政院國家科學委員會科學發展月刊2005年10月版394期, 第46-51頁
2.Shuto, 2007, Present practice of tsunami warning system and hazard mitigation programs in Japan, 南中國海域海嘯預警與災害防治研討會
3.Synolakis, C.E. & Bernard, E.N., 2006, Tsunami science before and after Boxing Day 2004, Phil. Trans. R. Soc. A 364, 2231-2265
4.Cho, Y.S., 1995, Numerical simulations of tsunami propagation and run-up, PhD Thesis, Cornell University
5.Hall, J.V. and Watts, J.W., 1953, Laboratory investigation of the vertical rise of solitary waves on impermeable slopes, Beach Erosion Board, US Army Corps of Engineers, 33
6.Camfield, F.E. and Street, R.L., 1969, Shoaling of solitary waves on small slopes, Proc. ASCE WW95, 1–22
7.Synolakis, C.E., 1987. The run-up of solitary waves, J. Fluid Mech. 185, 523–545
8.Carrier, G. F. and Greenspan, H. P., 1958, Water waves of finite amplitude on a sloping beach, J. Fluid Mech. 17, 97–110
9.Tadepalli, S. and Synolakis, C.E., 1994, The run-up of N-waves on sloping beaches, Proc. R. Soc. Lond. A 445, 99–112
10.Kânoĝlu, U. and Synolakis, C.E., 1998, Long wave runup on piecewise linear topographies, J. Fluid Mech. 374, 1–28
11.Li, Y. and Raichlen, F., 2001, Solitary wave runup on plane slopes, J. Waterw. Port Coast. Ocean Eng. 127 (1), 33–44
12.Carrier, G.F., Wu, T.T. and Yeh, H., 2003, Tsunami run-up and draw-down on a plane beach, J. Fluid Mech. 475, 79–99

13.Hughes, S.A., 2004, Estimation of wave run-up on smooth, impermeable slopes using the wave momentum flux parameter, Coast. Eng. Vol.51, 1085–1104
14.Hwung, H.H., Chiang, W.S. and Hsiao, S.C., 2007, Observations on the evolution of wave modulation, Proc. R. Soc. Lond., A 463, 85–112
15.Hsiao, S.C., Hsu, T.-W., Lin, T.C. and Chang Y.H, 2008, On the evolution and run-up of breaking solitary waves on a mild sloping beach, Coast. Eng. in press
16.Madsen, P.A. and Fuhrman ,D.R., 2008, Runup of tsunamis and long waves in terms of surf-similarity, Coast. Eng. Vol.55, 209-223
17.Battjes, J.A., 1974, Surf similarity, Proc., 14th Coast. Eng. Conf., ASCE, Vol.1, 466–480
18.Hibberd, S. and Peregrine, D.H., 1979, Surf and run-up on a beach: a uniformbore, J. FluidMech. 95, 323–345
19.Liu, P.L.-F., Cho, Y.-S., Yoon, S.-B., and Seo, S.-N., 1994, Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii, In Recent development in tsunami research, edited by M. I. El-Sabh, Kluwer Academic, Dordrecht, The Netherlands, 99-115
20.Titov, V.V. and Synolakis, C.E., 1995, Modeling of breaking and nonbreaking long wave evolution and runup using VTCS-2, J. Waterw. Port Coast. Eng. Vol.121, 308–316
21.Titov, V.V. and Synolakis, C.E., 1998, Numerical modeling of tidal wave runup, J. Waterw. Port Coast. Ocean Eng. Vol.124 (4), 157–171
22.. Zelt, J.A., 1991. The runup of nonbreaking and breaking solitary waves. Coast. Eng. Vol.15, 205– 246
23.. Lin, P., Chang, K.-A., Liu, P.L.-F., 1999. Runup and rundown of solitary waves on sloping beaches. J. Waterw. Port Coast. Ocean Eng. Vol.125 (5), 247–255.

24.Lynett, P.J., Wu, T.R. and Liu, P.L.-F., 2002, Modeling wave runup with depth-integrated equations, Coast. Eng. Vol.46, 89–107
25.Liu, P.L.-F., Cho, Y.-S., Briggs, M.J., Kânoĝlu, U. and Synolakis, C.E., 1995, Runup of solitary waves on a circular island, J. Fluid Mech. 302, 259–285
26.Li, Y. and Raichlen, F., 2002, Non-breaking and breaking solitary wave run-up, J. Fluid Mech. 456, 295–318
27.Wang, X. and Liu, P.L.-F., 2006, An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami, Journal of Hydraulic Research, 44(2),147–154
28.Liu, P.L.-F., Lynett, P., Fernando, H., Jaffe, B.E., Fritz, H., Higman, Morton, R., Goff, J. and Synolakis, C.E., 2005, Observations by the International Tsunami Survey Team in Sri Lanka, Science, Vol.308 (5728), 1595
29.Liu, P.L.-F., Woo, S.B., and Cho, Y.S., 1998, Computer programs for tsunami propagation and inundation, Cornell University
30.Koreteweg, D.J. and G. de Vries, 1895, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philosophical Magazine, Series 5, Vol.39, 422-443
31.Isobe, M., H. Nishimura, and K. Horikawa, 1987, Expression of permanent type, Bull. Fac. Eng. Yokohama Nat. Univ., Vol.31, 29-57
32.Russell, J.S., 1844, Report on Waves, 14th Meeting Brit. Assoc. Advanc. Sci.
33.McCowan, J., 1894, On the Highest Wave of Permanent Type, Philosophical Magazine, Series 5, Vol.38, 351-357
34.Shuto et al., 1995, Field survey of the 1993 tsunami disasters caused by Hokkaido Nansei-Oki Earthquake Tsunami, Pure and Applied Geophysics, Vol.144, 649-663

35.Imamura, F. and Goto, C., 1988, Truncation error in numerical tsunami simulation by the finite difference method, Coastal Engineering in Japan, JSCE, 31(2), 245-263
36.Kowalik, Z., 1993, Solution of the linear shallow water equations by the fourthorder leapfrog scheme, Journal of Geophysical Research, 98, Issue C6, 10205-10209
37.Goring, D. G., 1978. Tsunamis-thepropagation of long waves onto a shelf, Rep. No. KH-R-38, California Institute of Technology, Pasadena, Calif.
38.S.T. Grilli, I.A. Svendsen and R. Subramanya, 1997, breaking criterion and characteristics for solitary waves on slopes, Journal of Waterway, Port Coast. Ocean Eng.
39.Li, Y. and Raichlen, F., 2003, Energy balance model for breaking solitarywave runup, J.Waterw. Port Coast. Ocean Eng. 129 (2), 47–59
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top