跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/07/31 21:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉瀚聰
研究生(外文):Han-Tsung Liou
論文名稱:以有限路段流量資訊推估路網旅次起迄量
論文名稱(外文):Inferring Network Origin-Destination Demands Using Strategic/Partial Link Traffic Flow Information
指導教授:胡守任胡守任引用關係
指導教授(外文):Shou-Ren Hu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:交通管理學系碩博士班
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:148
中文關鍵詞:旅次起迄量車輛偵測器路徑選擇流量守恆線性獨立基底
外文關鍵詞:linear independencevehicle detectorroute choicelink flow conservationTrip Origin-Destinationbasis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
旅次起迄量(Trip Origin-Destination Demand)不僅為影響交通的重要因素,同時在運輸規劃、路網設計,以及場站選擇等課題中,更為不可或缺的重要資料;然而傳統上旅次起迄量大多透過路邊訪查、回郵問卷、家庭訪查等途徑獲得,不僅耗時且費力。隨著智慧型運輸系統(Intelligent Transportation Systems, ITS)的發展與應用,透過先進的車輛偵測設備可以迅速而有效的蒐集相關交通資料,例如利用車輛偵測器(Vehicle Detector, VD)易於蒐集路段流量資料的功能,可以進行流量倒推旅次起迄量的工作。雖然透過車輛偵測器蒐集車流資料的過程比傳統的調查方法來得有效率;但是考量到偵測器佈設的成本與交通主管單位的預算限制,實務上在某一特定路網下,大多無法進行全面性車輛偵測器的佈設。因此,在一般路網中,針對車輛偵測器關鍵佈設位置之探討,除了考量車輛偵測器的佈設成本之外,同時又能滿足流量倒推旅次起迄量的需求,將是一重要之研究課題。
在車輛偵測器佈設區位選擇中,本研究藉由線性代數有關線性相依與獨立之觀念,找出重要基底路段,即在某一般路網中,具線性獨立性質的基底路段為適於佈設車輛偵測器的位置,透過基底路段上所蒐集的路段流量資訊,可以求出其他線性相依路段的流量資訊,據以進行流量倒推旅次起迄量之工作。
本研究旨在針對一般路網,探討如何藉由路段流量推估旅次起資訊,一方面不需要先驗旅次起迄量的前提假設,另一方面亦避免路口轉向比例或路徑選擇比例已知的不合理假設,再配合路段/路徑鄰接矩陣中的流量守恆觀念,研提相關求解演算法,據以進行路段流量倒推路網旅次起迄量的工作。最後,進一步探討車輛偵測器關鍵的佈設位置,以符合流量倒推旅次起迄量的需求。
Trip Origin-Destination (O-D) demand in a transportation network is one of the important components for transportation planning and traffic operation. An O-D matrix estimate can be used to determine travel patterns on a zonal network at a given time period. Traditional means of obtaining an O-D matrix, such as roadside interview, postcard survey and/or license-plate survey are becoming infeasible, because they are constrained by time and monetary resources. With the rapid development of Intelligent Transportation Systems (ITS) and advanced traffic data collection technology, it is easily to estimate O-D matrix by using relatively easily collected link traffic flow obtained from Vehicle Detectors (VDs). Such a traffic flow data collection approach is economically feasible in view of its relatively low cost; however, it is impossible to conduct a full-scale VD deployment plan due to budgetary constraint. Therefore, how to determine the optimum locations of VD deployment to minimize the number of required VDs within the certain accuracy requirement of O-D estimation is a crucial research issue. The purpose of this research is to consider VD deployment locations for O-D demand estimation from partial link traffic flows in a general network.
To deal with the problem of VD deployment under O-D demand estimation consideration methods in linear algebra. Specifically, it is desirable to install VDs on the basis links to collect the link traffic flow information and infer other flow information on linearly dependent links for network O-D trip demand estimation purpose.
The main purpose of this research is to investigate the relationships between observed partial link flow and O-D matrix based on flow conservation rule without the unreasonable assumptions on known prior O-D information and turning proportion or route choice probability, which are generally not known or difficult to observe. Further, it is aimed to find out the critical deployment locations of VDs accordingly.
TABLE OF CONTENTS..........................................I
LIST OF TABLES...........................................III
LIST OF FIGURES..........................................VII
CHAPTER 1 INTRODUCTION.....................................1
1.1 Motivation..........................................1
1.2 Research Scope......................................3
1.3 Research Objective..................................4
1.4 Outline.............................................5
CHAPTER 2 LITERATUE REVIEW.................................8
2.1 O-D Estimation Background...........................8
2.1.1 Ordinary Least-Square (OLS) Estimator.........9
2.2.2 Maximum Likelihood (ML) Estimator............11
2.2.3 Entropy Maximizing (EM) Estimator............11
2.2.4 Kalman Filter (KF) Algorithm.................13
2.2.5 Bayesian Inference Approach..................14
2.2.6 Probe Vehicle Inference......................14
2.2.7 Other Related O-D Estimation Methods.........18
2.2 References about VD Deployment Strategies..........19
2.3 Summary of the Literature Review 22
CHAPTER 3 MODEL SETTING...................................23
3.1 User Equilibrium Assignment Principle..............25
3.1.1 Basic Network Notation.......................25
3.1.2 User Equilibrium (UE) Principle..............26
3.1.3 Mathematical Programming for UE..............26
3.2 Linear Algebra for VD Deployment Strategy..........28
3.2.1 The Definition of Terms in Linear Algebra....29
3.3 Network Construction...............................33
3.3.1 Link/Path Incidence Matrix...................33
3.3.2 Reduced Row Echelon Form.....................34
3.3.3 Proof about Basis & Non-Basis Links..........38
3.3.4 Uniqueness of RREF...........................45
3.3.5 Multiple Solutions for the Location of Basis
Link.........................................46
3.3.6 Summary for VD Deployment Strategy Using Basis
Algorithm....................................48
3.4 O-D Estimation.....................................48
3.4.1 Multiple Solutions for O-D estimation........49
3.4.2 O-D Estimation Model.........................51
3.4.3 Errors in the Solution of Linear Equation
Systems......................................55
3.4.4 Left-Division Method.........................57
3.4.5 Least-Squares with Non-Negativity Constraint.58
3.4.6 Pseudo-Inverse Matrix........................59
3.5 Summary of Model Setting...........................66
CHAPTER 4 EMPIRICAL ANALYSIS..............................67
4.1 Experimental Setting...............................67
4.2 Accuracy of Inferring Full Information form Partial
Information........................................69
4.3 Number of Rank of Matrix and It Restriction........71
4.4 VDs Deployment Strategy 78
4.4.1 Scenario-1 Effect of O-D demand..............78
4.4.2 Scenario-2 Effect of Link/Path Incidence Matrix
.............................................85
4.4.3 Scenario 3 Effect of Network Configuration...89
4.4.4 Summary of VDs Deployment Strategy...........94
4.5 O-D Estimation.....................................95
4.5.1 O-D Estimation for Scenario-1 Effect of Demand
.........................................96
4.5.2 O-D Estimation for Scenario-2 Effect of
Link/Path Incidence Matrix...............98
4.5.3 O-D Estimation for Scenario-3 Effect of
Network Configuration...................103
4.5.4 Other Scenarios Test........................106
4.5.5 Summary of O-D Estimation...................119
CHAPTER 5 CONCLUSION AND RECOMMENDATION..................124
5.1 Conclusion........................................124
5.2 Recommendation....................................128

APPENDICES

Appendix A: Link/Path Incidence Matrix & RREF Tables.....133
Appendix B: O-D Estimation without Route Choice Information
.............................................144
1. Bianco, L., Confessore, G., and Reverberi, P., “A Network Based Model for Traffic Sensor Location with Implications on O/D Matrix Estimates,” Transportation Science, Vol. 35, Issue 1, 2001, pp. 50-60.
2. Ben-Israel, A. and Greville, T. N. E. Generalized inverses: theory and applications. Springer, New York, 2003.
3. Cascetta, E. and Nguyen, S., “A Unified Framework for Estimating or Updating Origin-Destination Matrices from traffic Counts,” Transportation Research-B, Vol. 22B, 1988, pp. 437-455.
4. Cremer, M. and Keller, H., “A New Class of Dynamic Methods for the Identification of Origin-Destination Flows,” Transportation Research-B, 1987, vol. 21B, pp. 117-132.
5. Chan, K.S., and Lam, W.H.K., “Optimal speed detector density for the network with travel time information,” Transportation Research-A, Vol. 36, 2002, pp.203-223.
6. Cho, H. J., “ Generalized Inverse Approach to Sensitivity Analysis of Equilibrium Network Flow,” Transportation Planning Journal, Vol. 20, No. 1, 1991, pp. 1-44.
7. Cho, H. J., “Comparison of Minimum Distance and Generalized Inverse Approach for the Sensitivity Analysis of Equilibrium Network Flow,” Transportation Planning Journal, Vol. 21, No. 1, 1992, pp. 23-34.
8. Chung, C. J., “The Optimization of Detector Deployment Locations for ATIS Information,” Master Thesis of Institute of Transportation Technology and Management, Nation Chiao Tung University, 2005.
9. Dixon, M.P. and Rilett, L.R., “Population Origin-Destination Estimation Using Automatic Vehicle Identification and Volume Data,” Journal of Transportation Engineering, Vol. 131, Issue 2, 2005, pp.75-82.
10. Eisenman, S.M. and List, G. F., “Using Probe Data to Estimate OD Matrices,” IEEE Intelligent Transportation Systems Conference, 2004.
11. Friedberg, S. H., Insel A. J., and Spence, L. E., Linear Algebra, 4th Edition, New Jersey: Pearson Education, 2003.
12. Horiguchi, R., Kuwanhara, M., and Akahane,H., “The Optimal Arrangement of Infrared Beacons on A Road Network to Collect Vehicle Trajectories-Pattern Analysis Using Schema Theory,” Journal of the Eastern Asia Society for Transportation Studies, Vol. 4, 2001, pp.219-228.
13. Hu, S. R., “Fundamental Theory of Intelligent Transportation System (ITS) – Filtering Theory Application on OD matrix and Traffic Densities Estimation,” Interdisciplinary Research Division, 2001.
14. Lewis, C. D. Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting. Butterworth Scientific, London, 1982.
15. Lam, W. H. K. and Lo, H. P., “Accuracy of O-D estimates from traffic counts,” Traffic Engineering and Control, Vol. 31, 1991, pp. 358-367.
16. Leblanc, L. J. and Farhangian, K., “Selection of A Trip Table Which Reproduces Observed Link Flows,” Transportation Research-B, Vol. 16B, 1982, Issue. 2, pp. 83-88.
17. Liar, M. F., “The Study for Dynamic Trip O-D Matrix Estimation Model,” Master Thesis of Institute of Civil Engineering, Nation Central University, 2000.
18. Nihan, N. L. and Davis, G. A., “Recursive Estimation of Origin-Destination Matrices from Input/Output Counts,” Transportation Research-B, 1987, vol. 21B, pp. 149-163.
19. Nihan, N. L. and Hamed, M. M., “Fixed-Point Approach to Estimating Freeway Origin-Destination Matrices and the Effect of Erroneous Data on Estimate Precision,” Transportation Research Record 1357, 1992, pp. 18-28.
20. Nguyen, S., “An Algorithm for the Traffic Assignment Problem,” Transportation Science, Vol. 8, 1974, pp.203-216.
21. Nguyen, S., "Estimating an OD Matrix from Network Data: A Network Equilibrium Approach," University of Montreal Publication No. 60, 1977.
22. Nguyen, S., “Estimation Origin-Destination Matrices from Observed Flows,” Transportation Planning Models, Editor: M. Florian, Elsevier Science Publishers B.V., Netherlands, 1984, 363-380.
23. Penny, J. E. T., and Lindfield, G. R., Numerical Methods Using Matlab, 2th Edition, New Jersey: Prentice Hall, 2000.
24. Qrtuzar, J. D. D., and Willumsen, L. G., Modelling transport, 3th Edition, Chichester: John Wiely, 2001.
25. Sherali H. D., Narayanan, A., and Sivanandan, R., “Estimation of Origin-Destination Trip-Tables based on a partial set of traffic link volumes,” Transportation Research-B, 2003, vol. 37, pp. 815-836.
26. Sheffi, Y., Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall, Englewood Cliffs, New Jersey, 1985.
27. Teodorovic, D., Aerde, M.V., Zhu, F., and Dion, F., “Genetic Algorithms Approach to the Problem of the Automated Vehicle Identification Equipment Locations,” Journal of Advanced Transportation, 2002, Vol. 36, No. 1, pp.1-21.
28. Spiess, H., “A Maximum Likelihood Model for Estimating Origin-Destination Matrices,” Transportation Research-B, Vol. 21B, 1987, pp.395-412.
29. Shih, C. J., “Vehicle Detector Deployment Strategies for the Estimation of Network Origin-Destination Matrix,” Master Thesis of Institute of Defense Decision Science, Nation Defense Management College, 2007.
30. Van Zuylen, H. J. and Willumsen L. G.., “The Most Likely Trip Matrix Estimated From Traffic Counts,” Transportation Research-B, 1980, Vol. 14B, pp. 281-293.
31. Van Zuylen, H. J. and Branston, D.M., “Consistent Link flow estimation from counts,” Transportation Research-B, 1982, Vol. 16B, pp. 473-476.
32. Wang, C, H., “A Study on Vehicle Detector Deployment Configuration Strategies by Considering the Estimation of Origin-Destination Demands Using Link Traffic Flows,” Master Thesis of Institute of Transportation Science, Tamkang University, 2006.
33. Yang, H., Sasaki, T., Iida, Y., and Asakuba, Y., “Estimation of Origin-Destination Matrices from Link Traffic Counts on Congested Networks,” Transportation Research-B, 1992, Vol. 26B, No. 6, pp. 417-434.
34. Yang, H., and Zhou, J., “Optimal Traffic Counting Locations For Origin-Destination Matrix Estimation,” Transportation Research-B, 1998, Vol. 32, pp. 109-126.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top