跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 07:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:董峰呈
研究生(外文):Feng-Cheng Tung
論文名稱:利用新混合模型探討影響消費者使用網路銀行行為意圖之實證研究
論文名稱(外文):A New Hybrid Model for Exploring Consumer Behavioral Intentions to use the Internet Banking- An Empirical Study
指導教授:張淑昭張淑昭引用關係
指導教授(外文):Su-Chao Chang
學位類別:博士
校院名稱:國立成功大學
系所名稱:企業管理學系碩博士班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:96
中文關鍵詞:科技接受模型創新擴散理論電腦自我效能網路銀行
外文關鍵詞:Diffusion of Innovation TheoryComputer Self-EfficacyTechnology Acceptance ModelInternet Banking
相關次數:
  • 被引用被引用:31
  • 點閱點閱:831
  • 評分評分:
  • 下載下載:355
  • 收藏至我的研究室書目清單書目收藏:7
由於全世界網際網路使用人口不斷地快速增加,網際網路使用人口總數已從1997年底的七千萬人,增加到2007年的十二億人,網路金融服務使用人口亦呈現快速成長的情形,在網際網路衝擊下,銀行利用網際網路來提供金融服務成為一種必然的趨勢。台灣自從2000年3月財政部核准了富邦商業銀行透過開放性電腦網路,辦理客戶之轉帳、查詢、申請作業、理財試算等服務之申請,這是國內首度核准銀行以開放性網際網路辦理網路銀行業務,也建立了台灣金融發展的一個新里程碑,各家銀行也陸續紛紛對於網路銀行的經營投注了大量的心力,以提高本身的競爭力,因此如何建立良好的網路銀行巳成為非常重要的課題。
本研究結合Davis et al.(1989)提出的科技接受模型(Technology Acceptance Model,TAM) 和 Rogers (1983)提出的創新擴散理論並増加電腦自我效能及資訊品質二個研究變數設計出一個新混合科技接受模型去研究在台灣影響網路銀行使用者行為意圖的因素。本研究在2008年4月28日開始進行問卷調查,問卷調查期間為3個星期,總計發出900份問卷調查給消費者,最後收集了303份有效問卷。
最後本研究實證結果發現,相容性、認知有用性、認知易用性、資訊品質及電腦自我效能皆是會正向影響到使用網路銀行的行為意圖的重要因素,認知易用性對認知有用性也有正向的顯著影響,而使用網路銀行的行為意圖對實際使用網路銀行也有正向的顯著影響。本研究實證結果也可以提供給金融業者,幫助金融業者未來在發展網路銀行時,能開發出較為適合消費者使用的網路銀行,吸引更多的消費者來使用網路銀行,進而提升銀行業的競爭力。
Since the people of the world who resort to Internet have been increasing quickly, the total population who exploits Internet has reached from 70 million of people by the end of 1997 to 1.2 billion by 2007. Besides, the population that exploits financial network service has also been increasing. Under the impact of Internet, it is a trend of inevitability that banks would makes use of Internet to provide financial service. In March 2000, the Ministry of Finance approved the application by Fubon Bank resorting to open-ended computer network to help clients with account transfer, inquiry, application, assets management, and other services, and it was considered the first that banks are approved to resort to open-ended Internet to deal with internet banking service. As such, it has become a most important issue how favorable internet banking can be established.
This study has integrated technology acceptance model (TAM) put forth by Davis et al (1989) as well as Diffusion of Innovation Theory by Rogers (1983), while two other research variables as computer self-efficacy and information quality are added to design a newly-blended technology acceptance model to research the factors that would affect user behavioral intention of internet banking in Taiwan. This study has begun to conduct questionnaire on 28th of April, 2008, and the duration of it lasted for three weeks. As a whole, 900 copies of questionnaires are sent out, and 303 valid copies are retrieved.
The substantial results of this study discover at the end that compatibility, perceived usefulness, perceived easy of use, computer self-efficacy and information quality are of positive impact, and they are considered to be of important factors that affect behavior intention of network banking, while perceived easy of use has also rendered prominent positive impact on perceived usefulness. As for behavioral intention with the use of internet banking, it would also impact positively with prominent effect with the use of internet banking in practice.
The substantial results from the study can help provide to suppliers of financial services so that they can develop internet banking that is well-tailored to use for consumers as they develop internet banking in the future. As a result, more consumers can be attracted to use internet banking, thus enhancing the competitiveness of the banking industry.
目 錄

摘要••••••••••••••••••••••••••••••••••••••••••Ⅰ
Abstract••••••••••••••••••••••••••••••••••••••Ⅱ
致謝••••••••••••••••••••••••••••••••••••••••••Ⅲ
目錄••••••••••••••••••••••••••••••••••••••••••Ⅳ
表目錄••••••••••••••••••••••••••••••••••••••••IV
圖目錄••••••••••••••••••••••••••••••••••••••••IV
第一章 緒論••••••••••••••••••••••••••••••••••••1
第一節 研究背景與動機•••••••••••••••••••••••••••1
第二節 研究目的•••••••••••••••••••••••••••••••••5
第三節 研究流程與論文結構••••••••••••••••••••••••6
第二章 文獻探討•••••••••••••••••••••••••••••••••8
第一節 網路銀行的定義及發展概況••••••••••••••••••8
第二節 科技接受模型化•••••••••••••••••••••••••••20
第三節 創新擴散理論•••••••••••••••••••••••••••••40
第四節 科技接受模型與創新擴散理論的關係•••••••••••49
第五節 電腦自我效能•••••••••••••••••••••••••••••50
第六節 資訊品質••••••••••••••••••••••••••••••••52
第三章 研究設計••••••••••••••••••••••••••••••••55
第一節 研究架構••••••••••••••••••••••••••••••••55
第二節 研究假設••••••••••••••••••••••••••••••••56
第三節 研究變項的操作性定義與衡量••••••••••••••••56
第四節 問卷設計••••••••••••••••••••••••••••••••59
第五節 研究樣本••••••••••••••••••••••••••••••••60
第六節 資料分析方法••••••••••••••••••••••••••••60
第四章 研究結果分析與討論•••••••••••••••••••••••63
第一節 樣本資料的敘述性統計•••••••••••••••••••••63
第二節 因素分析••••••••••••••••••••••••••••••••65
第三節 內部一致性分析••••••••••••••••••••••••••70
第四節 複迴歸分析••••••••••••••••••••••••••••••74
第五節 實證結果••••••••••••••••••••••••••••••••78

第五章 結論與建議••••••••••••••••••••••••••••••79
第一節 研究結論及管理意涵•••••••••••••••••••••••79
第二節 研究貢獻••••••••••••••••••••••••••••••••82
第三節 研究限制與未來研究建議•••••••••••••••••••83
參考文獻••••••••••••••••••••••••••••••••••••••85
附錄 : 研究問卷••••••••••••••••••••••••••••••••92

表 目 錄

表2-1-1 銀行各服務管道成本分析表••••••••••••••••18
表2-2-1 科技接受模型國外相關文獻整理••••••••••••33
表2-3-1 創新擴散理論國外相關文獻整理••••••••••••46
表4-1-1 樣本特性分佈表•••••••••••••••••••••••••64
表4-1-2 相關係數矩陣表•••••••••••••••••••••••••64
表4-2-1 相容性之因素分析•••••••••••••••••••••••65
表4-2-2 認知有用性之因素分析•••••••••••••••••••66
表4-2-3 認知易用性之因素分析•••••••••••••••••••67
表4-2-4 電腦自我效能之因素分析•••••••••••••••••67
表4-2-5 資訊品質之因素分析•••••••••••••••••••••68
表4-2-6 行為意圖之因素分析•••••••••••••••••••••69
表4-2-7 實際使用之因素分析•••••••••••••••••••••69
表4-3-1 相容性之信度分析•••••••••••••••••••••••70
表4-3-2 認知有用性之信度分析•••••••••••••••••••71
表4-3-3 認知易用性之信度分析•••••••••••••••••••71
表4-3-4 電腦自我效能之信度分析•••••••••••••••••72
表4-3-5 資訊品質之信度分析••••••••••••••••••••72
表4-3-6 行為意圖之信度分析••••••••••••••••••••73
表4-3-7 實際使用之信度分析••••••••••••••••••••73
表4-4-1 相容性對使用網路銀行的行為意圖之複迴歸分析••••74
表4-4-2 相容性對認知有用性之複迴歸分析•••••••••••••••75
表4-4-3 認知有用性對使用網路銀行的行為意圖之複迴歸分析••75
表4-4-4 認知易用性對認知有用性之複迴歸分析•••••••••••••76
表4-4-5 認知易用性對使用網路銀行的行為意圖之複迴歸分析••76
表4-4-6 電腦自我效能對使用網路銀行的行為意圖之複迴歸分析•76
表4-4-7 資訊品質對使用網路銀行的行為意圖之複迴歸分析••••77
表4-4-8 使用網路銀行的行為意圖對實際使用之複迴歸分析••••77
表4-5-1 本研究假設與實證結果對照表••••••••••••••••••••78


圖 目 錄

圖1-3-1 本研究之研究流程•••••••••••••••••••••6
圖2-2-1 科技接受模型架構•••••••••••••••••••••20
圖3-1-1 本研究之研究架構圖•••••••••••••••••••55
参考文獻:
一、中文文獻:

1. 林鈴玉 (2000),「國內網路銀行現況發展及交易安全之研究」,主計月報,8 月,pp.30-60。

2. 林名正 (2001),「網路銀行能為你做什麼?」,數位周刊,第33期,pp.68-73。

3. Steven Alter(2003),資訊系統概論:電子化企業的基礎。台北:培生教育出版集團。





二、英文文獻:

1. Agarwal, R., Prasad, J. (1998.), “A conceptual and operational definition of personal innovativeness in the domain of information technology. Information Systems Research ”,9(2), pp.204–215.

2. Ahn, T., Seewon, R., and Ingoo, H. (2004), “The impact of the online and offline features on the user acceptance of internet shopping malls”, Electronic Commerce Research and Applications, 3 (4), pp.405-420.

3. Ajzen, Icek., and Martin Fishbein. (1980), “Understanding Attitude and Predicting Social Behavior” ,Englewood Cliffs, N.J.: Prentice-Hall.

4. Arning, K., Ziefle, M. (2007) , “Understanding age differences in PDA acceptance and performance”, Computers in Human Behavior, 23, pp.2904-2927.

5. Aron,O., Tino, F.(2003), “ Web retailing adoption: exploring the nature of internet users Web retailing behaviour”, Journal of Retailing & Consumer Services, 10 (2), pp. 81-94.

6. Atkinson , N.L. (2007), “Developing a questionnaire to measure preceived attributes of ehealth innovations ”, American Journal of Health Behavio, 31(6), pp.612–621.

7. Bhattacherjee, A. (2001), “An Empirical Analysis of the Antecedents of Electronic Commerce Service Continuance”, Decision Support Systems ,32 (2),pp. 201-213.

8. Bienstock, C. C., Royne, M.B., Sherrell , D. and Stafford, T. F. (2008),“An expanded
model of logistics service quality: Incorporating logistics information technology ”
International Journal of Production Economics, 113(1), pp. 205-222.

9. Burnham, B. (1996), “The Internet’s Impact on Retail Banking”, Booz-Allen Hamilton Third Quarter, http://www.strategy-business.com/briefs/96301/.

10. Castañeda, J. A., Muñoz-Leiva, F. and Luque,T. (2007), “Web Acceptance Model (WAM): Moderating effects of user experience ” , Information & Management, 44, pp.384-396.

11.Chae and Kim (2001), Information Quality for Mobile Internet Services , Twenty-
Second International Conference on Information Systems.

12.Chang, S.H. and Tung , F.C.(2008) , “An empirical investigation of students’ behavioural intentions to use the online learning course websites”, British Journal of
Educational Technology, 39(1), pp. 71–83.

13.Chang, I. C., Li,Y.C., Hung, W.F. and Hwang, H.G.. (2005), “An empirical study on t he impact of quality antecedents on tax payers' acceptance of Internet tax-filing systems” , Government Information Quarterly, 22 (3), pp. 389-410.

14.Chau, P.K. (2001), “Influence of computer attitude and self-efficacy on IT usage behavior. Jou behavior” , Journal of End User Computing, 13(1),pp. 26-33.

15.Chen, C. D., Fan, Y.W. and Farn, C.K. (2007), “Predicting Electronic Toll Collection Service Adoption: An Integration of the Technology Acceptance Model and the Theory of Planned Behavior” , Transportation Research Part C, 15(5), pp. 300-311.

16.Cheng, T.C.E, Lam, D.Y.C. and Yeung, A.C.L. (2006), “Adoption of internet banking: an empirical study in Hong Kong”, Decision Support Systems, 42, pp. 1558–1572.

17.Chen, L., Gillenson, M.L. and sherrell, D. L . (2002),“ Enticing online consumers: an extended technology acceptance perspective” , Information & Management , 39(19), pp. 705-719

18.Chen, L. D., Tan, J. (2004), “Technology Adaptation in E-commerce: Key Determinants of Virtual Stores Acceptance” ,European Management Journal, 22(1), pp.74-86.

19.Chou, H. W. (2001), “Effects of training method and computer anxiety on learning performance and self-efficacy”, Journal of Computers in Human Behavior, 17(1), pp.51-69.

20.Chua, S. L., Chen, D., Wong, A. F. L. (1999), “ Computer anxiety and its correlates: a meta-analysis ” ,Computers in Human Behavior ,15,pp 609–623.

21.Chung, J., Tan, F. B. (2004) , “Antecedents of perceived playfulness: an exploratory study on user acceptance of general information-searching websites”, Information and Management, 41(7), pp.869-881.

22.Compeau, D. R., and Higgins, C. A. (1995), “Computer self-efficacy: Development of a measure and initial test,” MIS Quarterly, (19), pp. 189-211.

23.Davis, Fred D. (1989), “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology ” ,MIS Quarterly, 13(3), pp. 319-340.

24.Davis, F. D., Bagozzi, R. P. and Warshaw, P. R. (1989), “User acceptance of computer technology: a comparison of two theoretical models ” , Management Science, (35), pp. 982–1002.

25.Duclaux, D. (1996), “The Call of the Web”, ABA Banking Journal , 88(4),pp.20-22.

26.Durndell, A., Haag, Z. (2002), “Computer self efficacy, computer anxiety, attitudes towards the Internet and reported experience with the Internet, By gender, in an East European sample”, Computers in Human Behavior,pp. 521-535.

27.Fenech, T., (1998) , “Using perceived ease of use and perceived usefulness to predict acceptance of the world wide web ” ,Computer Networks and ISDN System, 30, pp.629-630.

28.Fu J. R., Chao, W. P. and Farn, C. K. (2006) , “ Acceptance of electronic tax filing: A study of taxpayer intentions” , Information &Management, 43 (1), pp. 109-126

29.Furst, K.; Lang, W.W., and Nolle, D. E. (2002), “Internet Banking: Developments and Prospects ” ,Harvard University and the Center for Information Policy Research, Cambridge MA, U.S.A., pp. 1-55.

30.Gravill, J.I., Compeau, D.R., and Marcloin, B.L. (2002) , Metacognition in IT: The
influence of self-efficacy and self-awareness, Eighth Americas Conference on
Information Systems.

31.Guriting, P., Ndubisi N.O. (2006), “Borneo online banking: Evaluating customer
perceptions and behavioral intention” , Management Research News, 29 (1/2),
pp.6-15.

32.Hardgrave, B.C., Davis, F.D., Riemenschneider, C.K. (2003), “Investigating determinants of software developers’ intentions to follow methodologies ” , Journal of Management Information Systems, 20(1),pp. 123–51.

33.Harrison, A. W., & Rainer, R. K. (1992), “An examination of the factor structures and concurrent validity for the computer attitude scale, the computer anxiety rating scale, and the computer anxiety rating scale,and the computer self-efficacy scale” ,Educational and Psychological Measurement, 52, pp 735 -745.

34.Hasan, B. (2006), “The influence of specific computer experiences on computer self-efficacy beliefs,” Computers in Human Behavior, pp.443-450.

35.Hasan, B. (2006), “Delineating the effects of general and system-specific computer self-efficacy beliefs on IS acceptance”, Information & Management, 43 (5),pp. 565-571.

36.Herna’ndez , B., Jime’nez , J. and Marti’n ,M. J. (2007) , “Extending the technology acceptance model to include the IT decision-maker: A study of business management software ” ,Technovation, 28, pp.112-121.
37.Hsu , C.L., Lu ,H.P. (2004), “ Why do people play on-line games? An extended TAM with social influences and flow experience” , Information & Management, 41, pp.853-868.

38.Hsu , C.L., Lu ,H.P. and Hsu ,H.H. (2007) , “Adoption of the mobile Internet:An empirical study of multimedia message service (MMS) ” ,Omega , 35, pp.715-726.

39.Hu, P. J., Lin, C. and Chen, H. (2005) , “User Acceptance of Intelligence and Security Informatics Technology: A Study of COPLINK ” , Journal of the American Society for Information Science and Technology, 56 (3) , pp.235-244.

40. Johnson, R.D.(2005), “An empirical examination of the sources of application specific computer self-efficacy and mediators of the efficacy – performance relationship”, International Journal of Human Computer Studies, 62, pp.737 – 758.

41. Joiner, R., Gavin, J., Duffield, J,, Brosnan, M., Crook, C., Durndell, A., Maras, P., Miller, J., Scott, A. J. & Lovatt, P.( 2005), “Gender, Internet Identification, and Internet Anxiety: Correlates of Internet Use ” , CyberPsychology & Behavior , 8, pp 371-378.

42.Kaiser, H. F. (1960), “The application of electronic computers to factor analysis ” , Educational and Psychological Measurement, 20, pp. 141-151.

43.Kass, R. (1994), “Looking for the Link to Customer”, Bank Systems and Technology , pp.64.

44.Kevin , Z.,Shutao , D.,Xin ,S.X. and Kenneth , K.L. (2006) , “Innovation diffusion in global contexts: determinants of post-adoption digital transformation of European companies ” ,European Journal of Information Systems, 15(6), pp.601-616.

45.Kim , H.W.,Chan ,H.C. and Gupta ,S. (2007) , “Value-based Adoption of Mobile Internet: An empirical investigation ” ,Decision Support System , 43(1), pp.111-126.

46.Kim , T.G., Lee ,J.H. and Law ,R. (2008) , “An empirical examination of the acceptance behaviour of hotel front office systems: An extended technology acceptance model ” ,Tourism Management, 29, pp.500-513.

47.Klopping, I. M. and Mckinney, E. (2004),“Extending the Technology Acceptance Model and the Task-Technology Fit Model to Consumer E-Commerce” , Information Technology, Learning, and Performance Journal, 22(1), pp.35-48.

48.Kolter, P. (2000), “Marketing Management : The Asia View ” , Prentice Hall.

49.Kuo, T., Lu, I.Y., Huang, C.H., and Wu, G.C.(2005), “Measuring Users Perceived Portal Service Quality ” , Total Quality Management & Business Excellence, 16(3), pp 309-320.

50.Lai, V. S. and H. Li. (2005), “Technology acceptance model for internet banking: an invariance analysis ” , Information & Management, 42, pp.373-386.

51.Lee,Y. C. (2006), “An empirical investigation into the factors influencing the adoption of an e-learning system” , Online Information Review, 30(5),pp. 517-541.

52.Liao, S., Y. P. Shao, H. W. and Chen , A. (1999), “The Adoption of Virtual Banking: an Empirical Study ” , International Journal of Information Management, 19, pp.63-74.

53.Lin, J. C. C. and Lu, H. (2000) ,“Towards an understanding of the behavioral intention to use a web site”, International Journal of Information Management, 20, p197-208.

54.Lederer , A.L., D.J.Maupin , M. P. Sena and Y.Zhuang .(2000) , “The technology acceptance model and the World Wide Web ” ,Decision Support System , 29(3), pp.269-282.

55.Lennon ,S. J., Kim ,M., Johnson ,K.K.P., Jolly ,L.D., Damhorst ,M.L.and Jasper ,C.R.(2007) , “A Longitudinal Look at Rural Consumer Adoption of Online Shopping ” ,Psychology & Marketing, 24(4),pp 375–401.

56.Lin, J., and Lu, H.(2000),“Towards an understanding of the behavioural intention to use a web site ” ,International Journal of Information Management, 20,pp 197-208.

57.Luarn, P., Lin, H.H. (2005),“Toward an understanding of the behavioral intention to use mobile banking ”, Computers in Human Behavior, 21 (6), pp.873-891.

58.Mahoney, L. (1994), “Virtual banking”, Bank Marketing , (26), pp.77.

59.Mcilroy, D., Sadler ,Carol ., and Boojawon, Nadine.(2007), “Computer phobia and computer self-efficacy: their association with undergraduates’ use of university computer facilities ”, Computers in Human Behavior, 23 (3), pp.1285-1299.

60.Miller, H.E.(1996), “The multiple dimensions of information quality ” ,Information Systems Management, spring.

61.Moon, J.W.; Kim, Y.G.. (2001) ,“ Extending the TAM for a World-Wide-Web context”, Information and Management ,38(4), pp. 217-230.

62.Moore, G. C. and Benbasat, I. (1991), “Development of instrument to measure the perceptions of adopting an information technology innovation ” , Information Systems Research, 2(3), pp.192–222.

63.Morosan, C., Jeong, M. (2008) , “ Users' perceptions of two types of hotel reservation Web sites ” , International Journal of Hospitality Management, (accepted).

64.Neter, J., Kutner, M., Nachtsheim, C. and Wasserman, W. (1996), Applied linear statistical models, 4th ed., Chicago:Irwin.

65.Ngai, E.W.T., Poon , J.K.L. and Chan ,Y.H.C. (2007), ” Empirical examination of the adoption of WebCT using TAM,” Computers & Education, 48, pp.250-267.

66.Nunnally, J. C. (1978), Psychometric theory. NY: McGraw-Hill.

67.Ong, C.S., Lai, J.Y., and Wang, Y.S . (2004) , “ Factors Affecting Engineers’ Acceptance of Asynchronous E-Learning Systems in High-Tech Companies ” , Information & Management, 41(6), pp.795-804.

68.Orr, B. (1998), “Where Will Internet Banking be in Two Years?”, APA Banking
Journal, p.56.

69.Pavlou, P. A.(2003), “Consumer Acceptance of Electronic Commerce -Integrating Trust and Risk with the Technology Acceptance Model” , International Journal of Electronic Commerce, 7(3), pp. 69-103.

70.Pikkarainen, T., Pikkarainen, K., Karjaluoto, H. And Pahnila, S. (2004), “Consumer acceptance of online banking: an extension of the technology acceptance model ” , Internet Research, 14(3),pp. 224-235.

71.Porter, C. E. and Donthu, N. (2006), “Using the Technology Acceptance Model to Explain How Attitudes Determine Internet Usage: The Role of Perceived Access Barriers and Demographics ” , Journal of Business Research, 59(9), pp. 999-1007.

72.Ramamurthy ,K., Sen ,A. and Sinha ,A.P. (2008) , “An empirical investigation of the key determinants of data warehouse adoption ” ,Decision Support System , 44, pp.817-841.

73.Robertson, T. S. (1967), “The Process of innovation and the Diffusion of Innovation ” , Journal of Marketing , 31 , pp.14-19.

74.Robinson, L., Marchall, G.W.,and Stamps, M.B. (2005) , “ An empirical investigation of technology acceptance in a field sales force setting” ,Industrial Marketing Management, 34 (4), pp.407-15.

75.Rogers, E. M. (1983). “The diffusion of innovation ” , 3rd. New York: Free Press.

76.Rosen, L. D ., and Weil, M. M. (1995), “Computer anxiety: A cross –cultural comparison of university students in ten countries ” , Computers in Human Behaviors, 11(1),pp 45-64.

77.Sathye, M.(1999), “Adoption of Internet banking by Australian consumers: an empirical investigation” , International Journal of Bank Marketing, 17 (7), pp. 324-334.

78.Schiffman, L. G. and Kanuk, L. L. (1994 ), ”Consumer Behavior ” , 5rd,Prentice-Hall.

79.Seddon, P. and Kiew , M.Y. (1996),“A Partial Test and Development of DeLone and McLean's Model of IS Success ” , The Australian Journal of Information Systems, 4 (1),pp 90-109.

80.Selim, H. M. (2003), “An empirical investigation of student acceptance of course websites ” , Computers and Education, 40, pp.343-360.

81.Seyal, A. H., Rahman, N. A.(2007), “The influence of external variables on the executives' use of the internet” , Business Process Management Journal, 13(2), pp. 263-278.

82.Shih, H. P. (2004), “An empirical study on predicting user acceptance of e-shopping on the Web ” , Information & Management, 41, pp.351-368.

83.Slyke, C.V, Lou, H.and Day, J. (2002), “The impact of perceived innovation characteristics on intention to use groupware ” , Information Resource Management ,15(1),pp. 5–12.

84.Sneddon, Mark. (1997), “Cyberbanking: Remote Banking Using the Internet ” , Australian Business Law Review, 25(1), pp. 64-67.

85.Straeel, H. (1995), “Virtual Banking: Gearing up to play the no-fee retail game”,
Bank Systems and Technology, pp.20-22.

86.Suh, B. and Han, I. (2002), “Effect of Trust on Customer Acceptance of Internet Banking” ,Electronic Commerce Research and Applications, 1, pp.247- 263.

87.Tan, M., Teo, T.S. H. (2000), “Factors Influencing the Adoption of Internet Banking”, Journal of the Association for Information Systems, 1 (5), pp.1-42.

88.Taylor, S. and Todd, P. A. (1995), “Understanding information technology usage: a test of competing models ” , Information System Research, 6(2), pp.144–176.

89.Talmor, S. (1995), “New life for dinosaurs”, The Banker, (145), pp. 75-78.

90.Tung ,F.C., Chang, S.H. and Chou ,C.M. (2007), “An extension of trust and TAM model with IDT in the adoption of the electronic logistics information system in HIS in the medical industry ” , International Journal of Medical Informatics, In Press, Corrected Proof.

91.Venkatesh, V. and Davis, F. D. (1996), “A Model of the Antecedents of Perceived Ease of Use: Development and Test ” , Decision Sciences, 27 ( 3), pp. 451-481.

92.Venkatesh, V.,and Davis, F.D. (2000), “A theoretical extension of the technology acceptance model: four longitudinal field studies ” , Management Science, 46 (2), pp.186–204.

93.Venkatesh, V., and Morris, M.G. “Why don’t men Ever Stop to Ask For Directions? Gender, Social Influence, And Their Role in Technology Acceptance and Usage Behavior” , MIS Quarterly, 24(1), 2000, pp.115-139.

94.Vijayasarathy, L.R. (2004), “Predicting consumer intentions to use on-line shopping: the case for an augmented technology acceptance model ” , Information & Management , 41 (6), pp. 747–762.

95.Wang, A. Y., and Newlin, M. H. (2002), “ Predictors of web-student performance:
The role of self-efficacy and reasons for taking an on-line class ” , Computers
in Human Behaviors, 18, pp.151-163.

96.Wu, I.L. and Chen, J.L. (2005), “An extension of Trust and TAM model withTPB in the initial adoption of on-line tax:An empirical study”, Human-Computer Studies , 62, pp.784–808

97.Wang Y. S. (2002), “The adoption of electronic tax filing systems: An empirical study ” , Government Information Quarterly, 20 (4), pp. 333-352.

98.Wu, J. H. and Wang, S. C. (2005), “What Drives Mobile Commerce? : An Empirical Evaluation of the Revised Technology Acceptance Model ” , Information & Management, 42(5), pp. 719–729.

99.Wu, J.H., Wang, S.C., and Lin, L.M. (2007),“Mobile Computing Acceptance Factors in the Healthcare Industry: A Structural Equation Model,” International Journal of Medical Informatics, 76, pp. 66-77.

100.Yu, J., Ha, I., Choi, M., and Rho, J. (2005), “Extending the TAM for a t-commerce ” ,
Information & Management, 42, pp.965-976.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊