跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 11:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳瑞宗
研究生(外文):Ray-thun Chen
論文名稱:二仁溪河水中的鉛-210、釙-210不平衡及其環境意義
論文名稱(外文):210Pb、210Po disequilibrium in Erren River and its environmental implications
指導教授:羅尚德
指導教授(外文):Shang-De Luo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:地球科學系專班
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:68
中文關鍵詞:清除速率停留時間210Po/210Pb比值放射性活度的不平衡210Pb和210PoKd分配係數
外文關鍵詞:distribution coefficient Kdradioactive disequilibriumscavenging rateresidence time210Pb210Po/210Pb ratio210Po
相關次數:
  • 被引用被引用:2
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
過去利用『210Pb和210Po』的放射性活度不平衡,在水體自然淨化與環境間生地化循環的探討皆著重在海洋方面,關於河流的研究可謂寥寥可數。有鑑於此,本研究利用河水中210Pb和210Po放射性活度的不平衡,推演出微量元素或汙染物於自然水體中的停留時間,清除速率和清除時間等生地化傳輸、溶解及循環機制,藉以了解其對環境研究的影響及意義。

本研究由三部份組成。(1)210Pb和210Po在雨水中放射性活度的不平衡(2)210Pb和210Po在河水中的地球化學行為(3)以210Po為示蹤劑探討顆粒活性汙染物在河水中的遷移機制。

實驗結果顯示雨水中210Po的活度介於3.5~42.0 dpm/100kg,平均10.4 dpm/100kg,210Po的活度較不受季節因素影響。比較而言210Pb的活度則呈較大時序變化,其變化範圍介於10.0~1181.0 dpm/100kg,平均192.0 dmp/100kg,並且210Pb活度在颱風期間隨降雨量增加而增加,而使210Po/210Pb比值隨颱風降雨量增加而減小。本研究顯示210Po/210Pb比值介於0.04~0.48之間,經計算在大氣中顆粒活性汙染物停留時間約為12~200 天,而210Po/210Pb比值大小與活性汙染物在大氣停留時間成正相關。

河水研究結果表明二仁溪河水中溶解相210Po的活度平均1.53 dpm/100kg,其活度遠小於雨水,說明210Po很快地被顆粒物吸附並從河水中清除。二仁溪河水中顆粒相210Po的活度是溶解相210Po活度的3~90倍,而顆粒相的210Po含量約佔總210Po含量77%,顆粒相210Pb活度是溶解相210Pb活度2.2 ~102.3倍,平均佔總210Pb含量68 %。顯然,二仁溪中210Pb和210Po是以顆粒相為主,與大洋210Pb和210Po以溶解相為主的情形正好相反(Nozaki et al.,1976)。反映了顆粒物在二仁溪中對活性汙染物遷移具決定性作用。研究還表明二仁溪溶解相210Po/210Pb的比值,介於0.45~4.87,平均1.44,證明二仁溪河水有大量過剩210Po存在。由於雨水210Po/210Pb比值大部分介於0.04~0.48之間,顯然大氣不是二仁溪河水中大量過剩210Po的主要來源。我們推測這未知來源210Po可能與二仁溪有機物汙染有關。

在雨季(春夏)時,二仁溪河水中溶解相與顆粒相均以210Po過剩為主。在乾季(秋冬)時只有接近出海口地方其210Po/210Pb比值會小於1,這是由於在乾季時缺少雨水造成河水流量顯著降低,而海水又向河水方向混合,導致所測210Po/210Pb比值與表層海水相似(即210Po/210Pb比值小於1)。利用水中固、液兩相放射性活度,我們求得顆粒活性汙染物210Po的分配係數Kd值為2.4×10^4~6.03×10^5,而210Pb的Kd值為 4×10^3~4.52×10^5。這些計算結果顯示210Pb與210Po Kd值均與總懸浮顆粒物濃度SPM(mg/kg)成反相關關係,表明顆粒活性汙染物可能以膠態形式進入河水溶解相中,使顆粒汙染物停留在水中的時間加長,即分配係數小停留時間長。

本文根據二仁溪河水溶解相與顆粒相210Pb和210Po不平衡,第一次提出河水210Po清除模型,模型計算表明二仁溪流域水體的停留時間為0.26~28.8年,平均12.8 年,同時210Po被顆粒物清除的常數介於0.003~
0.067,平均0.025,清除時間為14.8~345.7 天平均84.6天。除乾季時受海水影響的站位,或南雄橋上游的某些站位,由於210Po/210Pb比值小於或接近於平衡值,則該模型不可適用外,我們的清除模型可以合理解釋顆粒活性汙染物在河流中清除和遷移行為。
In the past, researches on the natural purification and biogeochemical cycling of contaminants in the environment that have been carried out based on 210Pb-210Po radioactive disequilibrium, all stressed on the ocean. Relatively few have been done on rivers. In this study, I investigated the 210Pb-210Po radioactive disequilibrium in river waters and based on this disequilibrium, to deduce the biogeochemical transport, dissolution, and cycling parameters of trace elements or contaminants such as residence time, scavenging rate and time, etc. The results helped understand the impacts and implications of 210Pb-210Po radioactive disequilibrium on the environmental studies.

This research is composed of three parts: (1) the 210Pb-210Po disequilibrium in rain water, (2) the geochemical behavior of 210Pb and 210Po in river water, and (3) the use of 210Po as a tracer to study the migration mechanisms of the particle-reactive pollutants in rivers.

Results showed that the activity of 210Po in rainwater ranges from 3.5~42.0 dpm/100kg, averaging ~10.4 dpm/100kg and showing insignificant seasonal variability. In contrast, the activity of 210Pb shows greater temporal changes, ranging from 10.0~1181.0 dpm/100kg, with an average of ~192.0 dmp/100kg. The activity of 210Pb increases progressively during the period of typhoon, causing the 210Po/210Pb ratio to decrease as the typhoon progresses. This research shows that the 210Po/210Pb ratio varies from 0.04~0.48. It is estimated that the residence time of particle-reactive pollutants in the atmosphere is about 12~200 days, positively correlated with the 210Po/210Pb ratios in rain water.

The measurements on river waters indicated that the activity of dissolved 210Po in Erren River averages 1.53 dpm/100kg, much smaller than in rainwater. It is suggested that 210Po was easily absorbed and removed from the solution by the riverine particles. The activity of particulate 210Po in Erren River was 3~90 times that of dissolved one, or averaging about 77% of total 210Po activity in river water. In comparison, the activity of particulate 210Pb was 2.2 ~102.3 times that of dissolved 210Pb, or ~68 % of the total 210Pb. Obviously, 210Pb and 210Po in Erren river waters were mainly carried by particulates, in contrast with those in the open oceans (Nozaki et al., 1976).
This reflected that the particulates exert an important control on the transport of the particle-active pollutants. The research also indicated that the ratio of 210Po to 210Pb in the dissolved phases ranges from 0.45~4.87, averaging 1.44, proving that a significant excess of 210Po existed in Erren River waters. Because the 210Po/210Pb ratio in rainwater is in the range of 0.04~0.48, the atomsphere is obviously not the main source of the excess 210Po in Erren River. It is inferred that this unknown source of 210Po may be related to the organic pollution in Erren River.

During the rainy season (spring and summer), the dissolved and particulate phases in the Erren river waters both contain excess 210Po. However, In the dry season (fall and winter), their 210Po/210Pb ratio in stations adjacent to the estuary changes to < 1, a ratio close to that in seawater. It is likely that during the dry season, seawater may flow into the river and mix with river waters, causing the 210Po/210Pb ratio to decrease. It is estimated from the measured 210Po and 210Pb activities in the particulate and dissolved phases that the distribution coefficient (Kd) of particle-reactive pollutant is about 2.4×10^4 ~6.03×10^5 for 210Po and 4×10^3~4.52×10^5 for 210Pb. The calculated Kd values of 210Pb and 210Po both show negative correlations with the concentration of suspended particulate matter (SPM, mg/kg). This indicated that a significant amount of particle-active pollutant may exist in river waters in the form of colloid, decreasing the Kd values and increasing the residence time of pollutants in river waters.

This study proposed for the first time a scavenging model based on the observed 210Po-210Pb disequilibria of the dissolved and particulate phases in Erren river waters. Model calculations indicated that the water resident time in the Erren River basin varies temporally, ranging from 0.26~28.8 years and averaging 12.8. The scavenging rate constant of 210Po particles was between 0.003~ 0.067 day-1, averaging 0.025 day-1 and the scavenging time were 14.8~345.7 days, averaging 84.6 days. Except for stations influenced by seawater intrusion during the dry season or some stations upstream of the Namyung Bridge, where this model is not applicable because the 210Po/210Pb ratio is smaller than or approaches to the equilibrium value, our scavenging model can reasonably explain the scavenging and transport behavior of particle-reactive pollutants in the rivers.
目 錄
摘要……………………………………………………………………I
英文摘要………………………………………………………………IV
誌謝……………………………………………………………………VII
章節目次………………………………………………………………VIII
表目次…………………………………………………………………X
圖目次…………………………………………………………………XI

章 節 目 次

第一章 緒論
1-1 前言………………………………………………………………… 1
1-2 生地化循環………………………………………………………… 1
1-3 放射性不平衡的意義與應用……………………………………… 2
1-4 研究動機及目的…………………………………………………… 3

第二章 研究方法與步驟
2-1 研究區域概況 …………………………………………………… 7
2-2 樣本採樣及前置處理……………………………………………… 11
2-3 實驗流程與步驟 ………………………………………………… 12
2-4 實驗方法 …………………………………………………… 13

第三章 實驗數據計算分析
3-1 活度計算分析 ………………………………………………… 17
3-2 通量計算 ………………………………………………………… 20
3-3 分配係數Kd值與汙染物在水中停留時間τ………………… 21

第四章 結果與討論
4-1 大氣中的210Pb與210Po不平衡 …………………………… 26
4-1-1 210Pb在大氣中的放射性活度與季節變化 ……………… 28
4-1-2 大氣中210Po/210Pb放射性活度比值與停留時間 ……… 30
4-1-3 大氣中210Pb的來源分析 ………………………………… 32
4-1-4 雨水中210Pb與210Po在大氣中沈降通量與降雨量的關係… 34
4-2 二仁溪河水中210Pb與210Po活度分析 ……………………… 37
4-2-1 210Pb與210Po相態季節性的變化 ……………………… 42
4-2-2 210Pb與210Po的不平衡意義 ……………………… 45
4-2-3 條件分配係數Kd值探討 ……………………………… 51
4-2-4 河水通量與清除時間 ………………………………… 55
4-2-4-1清除速率與Kd值 ………………………………… 57
4-2-4-2 河水通量與清除時間 ………………………………… 58

第五章 結論與未來研究
5-1 結論 ……………………………………………………… 61
5-2 未來研究 ………………………………………………… 65
參考文獻 ………………………………………………………… 66







表 目 次

表 2-1台南縣河川水質監測站水質部分監測數據……………………8
表 2-2二仁溪採樣站位、代號及里程數…………………………… 9
表 4-1 雨水中210Pb與210Po活度及210Po/210Pb的比值………………27
表4-2 雨水中210Po/210Pb及停留時間 …………………………………31
表 4-3 雨水中210Pb與210Po大氣通量與降雨量關係 ………………..34
表 4-4 二仁溪210Pb與210Po溶解相(D)與顆粒向(P)及總相(T)放射活
度測量結果…………………………………….……………… 38
表 4-5 210Pb與210Po溶解相與顆粒相百分比…………………… 39
表 4-6 二仁溪河水溶解相、顆粒相、總相210Po/210Pb比值 ……… 48
表 4-7二仁溪河水中210Pb與210Po的Kd值………………………….52
表 4-8 二仁溪的Fw(流量)、τc(停留時間)、Kc(清除速率)、τc
(移除時間)………………………………………………………56
表4-9南雄橋與崇德橋流量與通量關係…………………………… 59













圖 目 次

圖 1-1 一般水體的生地化循環簡易圖示…………………………… 5
圖 1-2 210Pb與210Po不平衡示意圗…………………………………… 6
圖 2-1 採水站位、站名及代號名稱圖……………………………… 9
圖 2-2 南部地區每月平均氣溫………………………………… 10
圖 2-3 南部地區每月平均雨量……………………………… 10 圖 3-1 鍍釙到測量中點的時間……………………………………… 19
圖 3-2 穩相清除模型圖…………………………………………… 23
圖 4-1 大氣中210Pb與降雨量變化關係圖 ……………………… 29
圖 4-2 降雨前、後210Pb變化關係圖 ……………………………… 30
圖 4-3 停留時間與210Po/210Pb比值 ……………………………… 32
圖 4-4 210Pb日通量與降雨量關係圖 …………………………… 35
圖 4-5 210Pb在大氣中沉降通量與月降雨量變化關係圖…………… 35
圖 4-6 210Po日通量與降雨量關係圖 …………………………………….36
圖4-7 210Po在大氣中沉降通量與月降雨量變化關係圖……36 圖 4-8 上中下游雨季溶解相與顆粒相佔總210Po百分比長條圗… ….......41
圖 4-9 上中下游乾季溶解相與顆粒相佔總 210Pb百分比長條圗…… …41
圖 4-10 ER-6 ER-7降雨量與總懸浮顆粒物濃度通量關係圖………..43
圖 4-11 ER-1顆粒相溶解相時間系列圗………………………………44
圗 4-12 ER-2顆粒相溶解相時間系列圗………………………………44
圖 4-13 ER-3顆粒相溶解相時間系列圗………………………………44
圖 4-14 不同站位顆粒相溶解相時間系列圗………………………….45
圖 4-15 二仁溪十一月份全部站位顆粒相溶解相時間系列圗……….45
圖 4-16 ER-1、ER-3、ER6溶解相、顆粒相、總相210Po/210Pb比值
長條圖……………………………………………………………49
圖4-17 ER-6、ER-7、ER-8、ER-9溶解相、顆粒相、總相210Po/210Pb
比長條圖…………………………………………………… 49
圖 4-18 ER-7、ER-8、ER-9溶解相、顆粒相、總相210Po/210Pb比值
長條圖 ……………………………………………………… 50
圖 4-19 二仁溪乾季溶解相、顆粒相、總相210Po/210Pb比值長條圖… 51
圖 4-20(a) ER-1 logSPM與logKd(210Po)…………………………………54圖 4-20(b) ER-1 logSPM與logKd(210Pb)……………………………… 54
圖 4-21(a) ER-2 logSPM與logKd(210Po) …………………………………54
圖 4-21(b) ER-2 logSPM與logKd(210Pb)………………………………….54
圖 4-22(a) ER-3 logSPM與logKd(210Po)………………………………….54
圖 4-22(b) ER-3 logSPM與logKd(210Pb)…………………………………54
圖 4-23(a) ER 11月logSPM與logKd(210Po)……………………………..55
圖 4-23(b) ER 11月 logSPM與logKd(210Pb)…………………………….55
圖 4-24清除速率與Kd值之間關係圖……………………………………58
圖 4-25 二仁溪河流通量(ER-6)與清除時間關係圖……………………..60
圖 4-26 二仁溪河流通量(ER-7)與清除時間關係圖……………………. 60
參考文獻
壹、中文部份
1. 吳炫賦 , 南沖繩海槽深部水體顆粒體清除與傳輸作用:210Po/210Pb
不平衡應用。國立台灣大學海洋研究所碩士論文,2000.
2. 楊偉鋒 , 210Po、210Pb的海洋生物地球化學及其顆粒物循環與輸出的
意義。廈門大學博士學位論文,2005.
3. 朱燐燦, 南沖繩海槽兩端之鉛-210釙-210:分佈型相及其活性不平衡
現象。國立中山大學海洋地質及化學研究所碩士論文,2000.
4. 林季儒, 南北部之鐳-226及鉛-210/鐳活度比。國立中山大學海洋地質
及化學研究所碩士論文,2004.
5. 賴奕蓁, 高屏溪流域主要及微量元素地球化學;自然風化與人為作用之影響。國立中山大學海洋地質及化學研究所碩士論文,2003.
6. 蔡康齡, 南沖繩海槽兩端顆粒物質中鉛-210與釙-210之不平衡現象。
國立中山大學海洋地質及化學研究所碩士論文,2002.
7. 吳宗恩,南海北部海域水體中210Pb與210Po活性不平衡狀相。國立中山
大學海洋地質及化學研究所碩士論文,2002.
8. 張慧貞, 南海北部海域之沈降顆粒及沈積物:顆粒通量與鉛-210之分
布。國立中山大學海洋地質及化學研究所碩士論文,2002.
9. 蘇育田, 呂宋海峽與南海北部水體中210Pb與210Po之活性不平衡狀
相。國立中山大學海洋地質及化學研究所碩士論文,2005.
10. 邱薰慧, 台灣周圍海域浮游生物之釙-210和鉛-210含量及釙-210之富
集現象。國立中山大學海洋地質及化學研究所碩士論文,2000.
11. 經濟部水利署第六河川 ,二仁溪河川情勢調查計劃。經濟部,2007.

12. 鍾小良 , 二仁溪河水地球化學和同位素初探。國立成功大學
地球科學研究所碩士論文,2002.
13. 王伯賢, 珊瑚骨格硼同位素記錄與其環境意義。國立成功大學
地球科學研究所碩士論文,2005.

貳、西文部份
Bacon,M.P.,D.W.Spencer,andP.G.Brewer,210Pb/226Ra,210Po/210Pb disequillbria in sea water and suspended particulate matter. Earth and planetary Science Letters ,32:277-296,1976.

Baskaran, M.,and P.H. Santschi , The role of particales and colloids in the
transport of radionunclides in the coastal environments of Texas Marine
Chemistry ,43:95-114,1993.

Baskaran, M., A search for the seasonal.variability on the depositional fluxes
Of 7Be and 210Pb .Journal of Gecphysical Reasearch, Vol.100,No.D2, Pages
2833-2840,1995.

Su,C.-C.,andC.-A.Huh,Atmospheric 210Po anomaly as a precursor of volcano
eruptions. Geophysical Reasearch Letters,Vol.29,No.5,10.1029/2001GL013 -856,2002.

Honeyman, B.D.,and P.H.Santschi ,A Brownian-pumping model for oceanic
tracemetal scavenging:Eridence from Th isotopes. Journal of Marine Resear-
ch,47:951-992,1989.

Heyraud, M.,and R.D.Cherry,Correlation of 210Po and 210Pb enrichment at
the sea-surface microlayer with neuston biomass .Continental shelf Research
,1(3):283-293,1983.

Moran S.B.,and R.M. Moore , The distribution of colloidal aluminum and
oganiccarbon in coastal and open ocean waters off Nova Scotia. Geochimica
et Cosmochimica Acta,53:2519-2527,1989.

Nozaki Y., J.Thomson ,and K. K.Turekian ,The distribution of 210Pb and 210Po in the surface waters of the Pacific Ocean. Earth and Planetary Science Letters,32:304-312,1976b.

Poet, S.E., H.E.Moore ,and E.A.Martell, Lead-210,bismuth-210,and
polonium-210 in the atmosphere:accurate ratio measurement and
application toaerosol residence time determination.Journal of Geophysical Research,77(33):6515-6527,1972.

Shimmield, G.B.,G.D.Ritchie , and T.W.Fileman , The impact of marginal ice zone processes on the distribution of 210Po, 210Pb and 234Th and implications For new production in the Bellingshausen Sea, Antarctica. Deep-Sea Research(II),42(4-5): 1313-1335, 1995.

Turekian, K.K., Y. Nozaki, and L.K.Benninger , Geochemistry of atmosph-
eric radon and radon products.Ann. Rev. Earth Planet.Science,5:227-255,
1977.

Turner,S.M., G. Malin , and P.D. Nightingale,et al. Seasonal variation of dimethyl sulphide in the North Sea and an assessment of fluxes to the atmosphere. Marine Chemistry,54:245-262,1996.

Taylar, S R., Abundance of chemical elements in the continental crust:a
new table. Geochim. Cosmochim. Acta,28:1273-1285, 1964.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊