(3.236.175.108) 您好!臺灣時間:2021/02/27 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃文生
研究生(外文):Wen-sheng Huang
論文名稱:金瓜石金銅礦區石英安山岩黑雲母熱液蝕變之礦物學研究
論文名稱(外文):A mineralogical study of hydrothermally altered biotite from a dacite outcrop in the Chinkuashih gold-copper mining area, northern Taiwan
指導教授:江威德江威德引用關係
指導教授(外文):Wei-Teh Jiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:地球科學系專班
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:107
中文關鍵詞:金瓜石黑雲母蛭石熱液蝕變
外文關鍵詞:biotitevermiculitehydrothermal alterationChinkuashih
相關次數:
  • 被引用被引用:0
  • 點閱點閱:322
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
本研究以偏光顯微鏡、X光粉末繞射和掃瞄式電子顯微鏡等方法研究金瓜石第一長仁金銅礦區一石英安山岩體中黑雲母之熱液蝕變作用,經由鑑定次生礦物之特性,探討次生礦物生成、熱液性質和元素遷移行為之關係。
金瓜石金銅礦區路尖山石英安山岩遭受不同程度之熱液蝕變作用,蝕變程度由淺而深,火成組織漸失,質地逐漸鬆軟,而至顯著黏土化,片狀矽酸鹽礦物發生下列轉變:原生黑雲母+蛭石→原生黑雲母+黑雲母╱蛭石規則混層+蛭石→黑雲母╱蛭石規則混層+蛭石+高嶺石→蛭石+高嶺石,初期黑雲母相對於黑雲母╱蛭石混層比例逐漸減少,初始黑雲母╱蛭石混層含高比例之黑雲母組成,後期產生水黑雲母(黑雲母╱蛭石規則混層),其相對於蛭石比例逐漸減少,可見蛭石與斜長石包裹體蝕變形成之高嶺石伴生,高嶺石並局部充填片狀矽酸鹽解理裂縫。熱液性質推測由初期弱酸性轉為酸性,後期溫度約為200~300°C,形成蛭石,熱液活動初期溫度應略高,以利形成水黑雲母。
上述黑雲母之蝕變過程中仍能完整保存原自形晶形,形成假晶,推論初期熱液沿礦物晶界邊緣、裂隙和解理局部發生溶解和離子交換,平行(001)解理面推進蝕變前緣,形成黑雲母與黑雲母╱蛭石混層之交錯層狀組織,溫度稍低、水岩比較大和蝕變程度較深之情況下,則形成蛭石,惟仍依局部溶解及再沉澱方式進行蝕變,以維持假晶形態。上述黑雲母熱液蝕變之元素遷移行為依先後順序為鉀、鈉層間陽離子→鎂、鐵八面體陽離子→鋁、矽離子,符合一般預測之元素特性。黑雲母→水黑雲母→蛭石之階梯式轉變顯示水黑雲母確可為一特有晶相,異於單純之混層礦物。
Optical microscopy, X-ray powder diffraction, and scanning electron microscopy were utilized to characterize a sequence of hydrothermal alteration products of biotite collected from a dacite outcrop in the Chinkuashi Au-Cu mining area. The purpose is to understand the relationships among the formation of secondary minerals, properties of hydrothermal fluids, and migration behaviors of major elements during the hydrothermal alteration processes.
The studied dacite was locally affected by hydrothermal fluids, losing igneous textures by progressive argillitization. A transition sequence of layer-silicate assemblage involving primary biotite + vermiculite �_ primary biotite + mixed-layer biotite/vermiculite (B/V) + vermiculite �_ hydrobiotite + vermiculite + kaolinite �_ vermiculite + kaolinite was identified to occur with increasing degree of alteration. The proportion of biotite relative to B/V decreased in early stages with the initial B/V having a high biotite component. In the advanced stage of alteration, hydrobioite was formed and its abundance relative to vermiculite progressively decreased. The occurrence of vermiculite was associated with the formation of kaolinite derived from altered plagioclase inclusions. The kaolinite locally filled in the microfissures of other phyllosilicates. The hydrothermal fluids probably changed from early weakly acidic to acidic with a temperature of 200-300°C for the formation of vermiculite in later stages. The initial stage of hydrothermal activities had probably involved a higher fluid temperature favoring the formation of hydrobiotite.
The crystal form of biotite had been well preserved throughout the entire processes of hydrothermal alteration. The early alteration processes were likely to occur via progressive local dissolution and re-precipitation along microfissures, forming pseudomorphs consisting of interlaced packets of biotite and B/V interlayers. The transformation to form vermiculite probably occurred through similar processes. EDS analyses suggest that the interlayer potassium and sodium cations of biotite were first removed and the octahedral magnesium and iron and tetrahedral aluminum and silicon cations were subsequently mobilized, consistent with the general trend of mobilization of major elements during hydrothermal alteration processes. The stepwise transformation of biotite �_ hydrobiotite �_ vermiculite implies that hydrobiotite may have a unique structure and a thermodynamic state different from common intermediate mixed-layer minerals.
中文摘要 I
英文摘要 II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究目的 3
1-3 文獻探討 4
1-3.1 黑雲母礦物的熱液蝕變 4
1-3.2 黑雲母、蛭石和高嶺石礦物的基本特徵 5
1-3.3 黑雲母風化 7
第二章 地質背景 8
2-1 臺灣北部火山活動成因與機制 8
2-2 金瓜石礦區的地質 9
2-3 金瓜石礦區的成礦年代 11
2-4 金瓜石礦區的熱液溫度 12
2-5 金瓜石礦區熱液的化學性質 14
第三章 採樣與研究方法 15
3-1 研究剖面與地理位置 15
3-2 採樣標本描述 18
3-3 流程圖 21
3-4 研究方法 22
3-4.1 岩象觀察 22
3-4.2 X光粉末繞射分析 23
3-4.3 掃瞄式電子顯微鏡觀察 29
3-4.4 X光能量分散光譜儀化學分析 30
第四章 結果 33
4-1 石英安山岩的岩象觀察 33
4-2 黑雲母斑晶蝕變觀察 36
4-3 X光粉末繞射分析 40
4-3.1 全岩X光粉末亂向繞射分析 40
4-3.2 黑雲母晶體X光粉末繞射分析 42
4-4 掃瞄式電子顯微鏡觀察 48
4-4.1 新鮮黑雲母的背向散射電子影像 49
4-4.2 輕度蝕變黑雲母的背向散射電子影像 50
4-4.3 中度蝕變黑雲母的背向散射電子影像 52
4-4.4 深度蝕變黑雲母的背向散射電子影像 53
4-5 X光能量分散光譜儀元素分析 56
4-5.1 黑雲母化學分析 56
4-5.2 黑雲母蝕變蛭石化學分析 58
4-5.3 黑雲母包裹體斜長石蝕變成高嶺石化學分析 60
4-5.4 黑雲母蝕變的元素遷移分析 62
第五章 討論 77
5-1 黑雲母礦物的熱液蝕變 77
5-2 金瓜石金銅礦區黏土化帶的熱液性質 80
5-3 黑雲母熱液蝕變蛭石化之機制 83
5-4 元素遷移分析 84
第六章 結論 86
參考文獻 88
中文參考文獻 88
西文參考文獻 90
附錄 97
中文參考文獻
方建能、余炳盛 (1995) 金瓜石-九份金銅礦床導覽,台灣省立博物館,第32-39頁。
王國龍、鍾孫霖、陳正宏、陳中華、藍晶瑩 (1996) 草嶺山高鉀玄武岩的地化特性與地質意義。中國地質學會八十五年年會手冊及論文摘要,第123–127 頁。
王國龍、鍾孫霖、陳中華、楊燦堯、陳正宏 (1997) 台灣北部及外海火山活動的地球化學特性新譯。中國地質學會八十六年年會手冊及論文摘要,第407–411 頁。
王國龍 (2000) 台灣北部及外海晚上新世-第四紀火山岩的地球化學特性與岩石成因,國立台灣大學地質研究所博士論文,共169 頁。
余炳盛 (1994) 金瓜石含金角礫岩礦筒之研究。台灣大學地質研究所博士論文,共322頁。
余炳盛、葉學文 (2000) 金瓜石金銅礦床成因之回顧與探討。地質第二十卷第一、二期合刊本,第25~40頁。
李協長 (1998) 金瓜石地區岩漿與礦化作用之定年學研究及其大地構造運動之隱示。國立台灣大學地質研究所碩士論文,共61 頁。
洪崇勝 (1984)金瓜石礦床、圍岩置換帶地球化學及同位素之研究 國立臺灣大學海洋研究所碩士論文。
陳中華 (1989) 台灣新生代島弧火山岩之釹、鍶及氧同位素地球化學研究。國立台灣大學地質研究所博士論文,共198 頁。
陳正宏(1990)台灣之火成岩。經濟部中央地質調查所。第 6∼14頁及第111∼113頁。
黃文彥 (1969 ) 金瓜石九份陽明山熱水性換質帶中黏土礦物之研究。國立臺灣大學地質科學研究所碩士論文。
黃鑑水、劉桓吉 (1988) 雙溪地質圖,1:50000 :經濟部中央地質調查所
劉清華 (1993) 金瓜石第三長仁金銅床鏡煤素之研究。國立臺灣大學地質科學研究所碩士論文,共71頁。
謝瑩玲 (1990) 金瓜石地區金銅礦床礦物群之化學成分及其在地質溫度計之應用礦物學研究。國立臺灣大學地質科學研究所碩士論文。
顏滄波、陳培源 (1953) 瑞芳圖幅,1:50000,台灣地質調查所。
譚立平、郭政隆、余炳盛 (1990) 鏡煤素反光率-金瓜石探金的最靈敏方法。礦冶,34卷3期,43-50頁。
嚴致中 (1975) 從液包體研究金瓜石金銅礦床之生因。礦業技術,第16卷,第1號,第54-64頁。

西文參考文獻
Aagard, P. and Helgeson, H.C. (1982) Thermodynamic and Kinetic constraints on reaction rates among minerals and aqueous solution. I Theoreical consideration. Amer. J. Sci., 282, 237-285.
Acker J. G. and Bricker O. P. (1992) The influence of pH on biotite dissolution and alteration kinetics at low temperature. Geochim. Cosmochim. Acta 56, 3073–3092.
Ahn J. H. and Peacor D. R. (1987) Kaolinitization of biotite:TEM data and implications for an alteration mechanism. Amer. Mineral. 72,353–356.
Ananias T. and Kleopas M. (1999) An X-ray, EPMA, and oxygen isotope study of vermiculitized micas in the ultramafic rocks at Askos, Macedonia, Greece. Applied Clay Science 14, 121-140
Aoudjit, H. Elsass, F., Righi, D., and Robert, M. (1996) Mica weathering in acidic soils by analytical electron microscopy. Clay Minerals, 31, 319–332.
Banfield J. F. and Eggleton R. A.(1988) Transmission Electron Microscope study of biotite weathering. Clays Clay Mineral. 36, 47–60.
Banfield, J. F. and Eggleton, R. A.(1990)Analytical transmission electron microscope studies of plagioclase, muscovite, and K-feldspar weathering. Clays and Clay Minerals, 38, 77-89.
Boettcher A.L.(1966) Vermiculite,hydrobiotite and biotite in the Rainy Creek igneous complex near Libby,Montana. Clay Minerals 6, 283-296
Brindley G.W. (1966) Ethylene glycol and glycerol complexes of smectites and vermiculites. Clay Minerals. 6, 237-260.
Brindley G.W.,Zalba P.E. and Bethke C.M. (1983 ) Hydrobiotite, a regular 1:1 interstratification of biotie and vermiculite layers. Am. Miner. 68,420-425.
Brown, G. Crystal structures of clay minerals and their X-ray identification.
Barshad I. (1948) Vermiculite and its relation to biotite as revealed by base exchange reactions, X-ray analysis, differential thermal curves and water content. American Mineralogist, 33, 655-678
Chen, C. H.(1978)Petrochemistry and origin of Pleistocene volcanic rocks from northern Taiwan. Bull. Volcano, 41, p. 513–528.
Chen, C. H., Tan, L. P., Tien, R. L., Chung, S. H., and Liu, T. K. (1993) Fission track age dating of igneous rocks and silicified sandstones from the Chilung Volcano Group, northern Taiwan: implication of mineralization events of the Chinkuashih gold-copper deposits. Jour. Geol. Soc. China,36, 157-174.
Chen, C. H.(1999)Petrogenesis of the Chilung Volcano Group andesites in northern Taiwan: mixing with shallow sediments and amphibole-rich nodules in the andesitic melts. Jour. Geol. Soc.China, 42, 559–592.
Chen,J.C. and Huh, C.A. (1982) Geochemistry of dacites from Chinkuashih area, northeastern Taiwan. Proc. Geol. Soc. China, 25, 67-81.
Coleman N.T., Le Roux F.H., & Cady K.G. (1963) Biotite-hydrobiotite-vermiculite in soil. Nature, 198, 409-410.
Craw, D., 1981. Oxidation and microprobe-induced potassium mobility in iron-bearing phyllosilicates from the Otago schists. New Zealand. Mineral. Lithos, 14, 49-57
Craw, D., Coombs, D.S. and Kawachi, Y., 1982. interlayered biotite-kaolin and other altered biotites, their relevance to the isograd in eastern Otago, New Zealand. Mineral. Mag., 45, 79-85.
De Kimpe C. & Tardy Y. (1968) Etude de l’alteration d’une biotite en kaolinite par spectroscopie infrarouge Bulletin de Groupe franc﹐ais des Argiles, 19,81-85..
Dong, H., Peacor D. R., and Murphy S. F. (1998) TEM study of progressive alteration of igneous biotite to kaolinite throughout a weathered soil profile. Geochim. Cosmochim. Acta (in press).
Douglas, L. A. (1989) Vermiculites. In Minerals in Soil Environments (ed. J. B. Dixon and S. B. Weed), pp. 635–727. Soil Sci. Soc. Amer.
Eggleton R. A. and Banfield J. F. (1985) The alteration of granitic biotite to chlorite. Amer. Mineral. 70, 902-910
Eswaran, H. and Heng Y. Y. (1976) The weathering of biotite in a profile on gneiss in Malaysia. Geoderma 16, 9–20.
Folinsbee, R. E., Kirkland, K., Nekolaichuk, A., and Smejkal, V. (1972) Chinkuashih a gold-pyrite-barite hydrothermal deposit in Taiwan: Geol. Soc. Am. Mem., 135, 323-335.
Fordham A. W. (1990) Treatment of microanalyses of intimately mixed products of mica weathering. Clays Clay Mineral. 38, 179–186.
Foster, MD.,1963 Interpretation of composition of vermiculites and hydrobiotites. Clays Clay Miner. 10, 70-89
Gi Young Jeong and Hye Bin Kim(2003) Mineralogy, chemistry,and formation of oxidized biotite in the weathering profile of granitic rocks American Mineralogist , Volume 88,page 352-364
Gilkes R. J. and Suddhiprakarn A. (1979) Biotite alteration in deeply weathered granite. II. The oriented growth of secondary minerals. Clays Clay Mineral. 27, 361–367.
Gruner J.W. 1994. Hydrothermal alteration of feldspars in acid solutions between 300℃ and 400℃. Econ-Geol. 29, 578-589
Hoda, S.N. and Hood, W.C. (1972) Laboratory alteration of trioctahedral micas.Clays and Clay Minerals, 20, 343–358.
Huang, C.K. (1955) Gold-copper deposits of the Chinkuashih mine. Acta Geol. Taiwanica, 7,1-2.
Huh, C. A. and Chen, J. C. (1978) Geochemistry of dacites from Keelungtao, northern Taiwan. Acta Oceanogr. Taiwanica, 8, 63–79.
Hwang, J. Y. and Meyer, H. O. A. (1983) Dacite-andesite of the Chinkuashih region, northern Taiwan. Proc. Geol. Soc. China, 25,67–81.
Ismail F.T. (1970) Biotite weathering and clay formation in arid and humid regions, California. Soil Science,109, 257-261
Jackson M.L. 1965. Clay transformations in soil genesis during the Quaternary. Soil. Soc., 99,15-22
Juan, V.C. Wang Y. and Sun S.S 1959 Hydrothermal alteration of dacite at the Chinkuashih mine. Prod.Geol. Soc. China, 2, 73-92.
Justo, A., Maqueda, C., Perez-Rodriguez, J.L., Lagaly, G., (1987). An usually expandable low-charge vermiculite. Clay miner. 22, 319-327.
Kapoor B.S. (1972) Weathering of micaceous clays in some Norwegian podzols. Clay Minerals, 9,383-349.
Kawano, M. and Tomita, K.(1995)Experimental study on the formation of clay minerals from obsidian by interaction with acid solution at 150° and 200 ℃. Clays and Clay Minerals, 43, 212-222.
Kogure, T. and Murakami, T. (1996) Direct identification of biotite/vermiculite layers in hydrobiotite using high-resolution TEM, Mineralogical Journal, 18, 131–137
Komarneni, S., Roy, R., (1981). Hydrothermal transformations in candite overpack materials and their effects on cesium and strontium sorption. Ncul. Tchn. 54, 118-122.
Kretzschmar R., Robarge W.P., Amoozear A & Veprskas M.J., (1997) Biotite alteration to halloysite and Kaolinite in soil-saprolite profiles developed from mica schist and granite gneiss. Geoderma, 75,155-170
Lan, C Y., Chen C. H. Chen, C H., Chung, S. L., Lee, T., Wang, C. M.,and Yui, T. F.(1996) The crustal evolution of continental Taiwan. J.of Geol. Soc. of China, 39, 337-353.
Lindgren, Waldemar (1933) Mineral Deposits McGraw-Hill, New York, 930p.
McDowell, S.D. and Elders, W.A. (1980). Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, Califorina, USA. Contrib. Mineral. Petrol., 74, 293-310.
Millot G., (1967).-Les deux grandes voies de levolution des silicates a la surface de lecorce terrestre. Rev. Quest. Sci., 138, 337-357
Moon, H.S. Song, Y. and Lee, S.Y. (1994). Supergene vermiculitization of phlogopite and biotite in ultramafic and mafic rocks, Centra Korea. Clays Clay Miner., 42, 259-268.
Moore D. M. and Reynolds R. C. (1989) X-ray Diffraction and Identificationand Analysis of Clay Minerals. Oxford Press.
Murphy, S.F., Brantley, S.L., Blum, A.E., White, A.F., and Dong, H. (1998) Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: II.Rate and mechanism of biotite weathering. Geochimica et Cosmochimica Acta,62, 227–243.
Norrish K. (1973a) Factors in the weathering of mica to vermiculite. Proc. Int. Clay Conf. 1972, Madrid, pp417-432. Divison de Ciencias, Madrid.
Newman, A. C. D., (1929) Chemistry of clays and clay minerals , P 1~116.
Paolo F.,Giuseppe M. and Alessandro S. (1997) The Pantelleria caldera geothermal system:Data from the hydrothermal minerals Joural of Volcanology and Geothermal Research 75, 251-270
Rebertus R. A., Weed S. B., and Buol S. W. (1986) Transformations of biotite to kaolinite during saprolite-soil weathering. Soil Sci. Soc.Amer. J. 50, 810–819.
Reynolds R. C. (1985) NEWMOD a computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays. R. C. Reynolds.
Roy, R. and Romo, L.A., (1957). Weathering studies, 1. New data on vermiculite. J. Geol., 65, 603-610.
Sales, R. and Meyers C. (1948). Wall rock alteration at Butte, Montana. A.I.M.E. Pub. 2400.
Suquet H., DE LA Calle C. and Pezert H. (1975) Swelling and structure organization of saponite. Clays Clay Miner. 23, 109.
Stoch L. and Sikora W. (1976) Transformation of micas in the process of kaolinization of granites and gneisses. Clays Clay Mineral. 24,156–162.
Suppe, J. (1984) Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Mem. Geol. Soc. China, 6, 21–34.
Tsai, Y. B., Teng, T. L., Chiu, J. M. & Liu, H. L. (1977) Tectonic implication of seismicity in the Taiwan region. Mem Geol. Soc. China, 2, 13-41.
Teng, L. S. (1996) Extensional collapse of the northern Taiwan mountain belt. Geology, 24, 949–952.
Teng, L. S., Chen, C. H., Wang, W. S., Liu, T. K., Juang, W. S., and Chen, J. C. (1992) Plate kinematic model for late Cenozoic arc magmatism in northern Taiwan. Jour. Geol. Soc. China, 35, 1–18.
Walker G.F. (1957) Differentiation of vermiculites and smectites in clays. Clay Miner. Bull. 3, 154-163.
Wang, Y. (1953) Geology of the Chinkuashih and Chiufen districts, Taipeihsien, Taiwan. Acta Geol. Taiwan, 5, 47–64.
Wang, Y. (1955). Fracture Pattern in Chinkuash area, Taiwan Acta Geol. Taiwanica,7, 21-34
Wang, Y. 1973. Wall rock alteration of late Cenozoic mineral deposits in Taiwan: Mineralogical and physiochemical aspects. Acta Geol. Taiwanica,16,1-30
Wang, Y.S. & Yu, B.S. (1996) Geochemical and Mineralogical Characteristics of Breccia Pipes of The Changjen Group, Chinkuashih Gold-Copper Deposits. Bulltin of the central geological survey No. 11 p.23-36
Whitting, L.D. and Allardice, W.R., (1986). X-ray diffraction techniques. In: A.K. Klute (Editor), Methods of Soil Analysis. Part 1. 2nd. Ed. Agron. Monogr., 9. ASA/SSSA, Madison, WI, pp. 331-362.
Wilson M. J. (1966) The weathering of biotite in some Aberdeenshire soil. Mineral. Mag. 35, 1080-1093
Yen, C.C. (1976) Trapping temperature and pressure of the fluid inclusions in the gangue minerals of gold-silver-copper deposits at Chinkuash mine, Taiwan. Proc. Geol. Soc. China, 19, 127-133.
Yen, T. P., Tzon, Y. H., and Wu, S. W. (1979) Geology of the Chilung Volcano Group district, northern Taiwan.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔