跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 07:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴彥棻
研究生(外文):Yen-fen Lai
論文名稱:錫鋅銀鋁鎵五元無鉛銲錫接點之摔落可靠度與失效模式及機構之分析
論文名稱(外文):Drop Test Reliability and Failure Modes of Sn-Zn-Ag-Al-Ga Lead-Free Solder Joint
指導教授:林光隆
指導教授(外文):Kwang-lung Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:98
中文關鍵詞:可靠度摔落測試錫鋅銀鋁鎵
外文關鍵詞:Sn-Zn-Ag-Al-Gareliabilitydrop test
相關次數:
  • 被引用被引用:1
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
由於可攜式電子產品種類及市場增加,電子產品承受意外摔落、撞擊的頻率大增,且現今電子封裝產業中常使用的無鉛銲錫通常較為硬、脆,使得無鉛銲錫接點在遭受撞擊時會顯得較為脆弱。本研究係探討本實驗室所開發之錫鋅系五元無鉛銲錫在製作成電子元件後的摔落可靠度與破壞模式及破壞機構之分析,並與傳統Sn-37Pb銲錫及現今工業界常使用的錫銀銅系之無鉛銲錫比較。
由摔落測試結果顯示,錫鋅系五元無鉛銲錫及傳統Sn-37Pb銲錫與NiAu金屬層所構成的銲錫接點有較佳的摔落可靠度,而Sn-1.0Ag-0.5Cu/Cu及Sn-3.0Ag-0.5Cu/NiAu接點的摔落壽命則較低。Sn-37Pb/NiAu接點在經摔落測試後的破壞皆產生在銲錫基地內;而Sn-3.0Ag-0.5Cu/NiAu接點則破斷在界面介金屬化合物(Cu,Ni)6Sn5與Ni層的界面上;Sn-1.0Ag-0.5Cu/Cu的摔落破斷則是在銲錫基地中及界面介金屬化合物上皆有發現;錫鋅系五元/NiAu接點中的摔落破壞則與界面介金屬化合物AuZn3、AgZn3脫離界面與否有關: 若界面IMC脫離界面浮起,則摔落測試造成的破壞皆會產生在銲錫基地中,若界面IMC仍緊貼界面沒有浮起,則摔落破壞會產生在AgZn3與Solder的界面上。
根據實驗分析結果顯示,當銲錫接點中若缺乏脆弱的界面與擁有易於變形的銲錫基地相,則此種銲錫接點會有較佳的摔落可靠度。
Portable electronic products are growth areas for electronics manufacturing industry. These portable products are prone to accidental drops which can cause internal circuit board damage e.g., solder joint failures. Lead-free solder are stiffer and more brittle than lead-based solders. This makes the solder joints using lead free solders more fragile to dynamics loads.
A new lead-free solder Sn-Zn-Ag-Al-Ga (5e) has been developed in this laboratory. The objective of this research was to understand the reliability of 5e solder joints and analyze the solder joint failure modes and mechanisms. Further, reliability performance of 5e was compared with Sn-37Pb, Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu solders.
According to experimental results, drop reliability of 5e/NiAu and Sn-37Pb/NiAu solder joints was much better than Sn-1.0Ag-0.5Cu/Cu and Sn- 3.0Ag- 0.5Cu/NiAu solder joints. It was observed that failure of Sn-37Pb /NiAu solder joint occurred at the eutectic phase inside solder matrix whereas it took place at the brittle interface between (Cu,Ni)6Sn5 IMC and Ni layer in Sn-3.0Ag-0.5Cu/NiAu solder joint. Drop fracture in case of Sn-1.0Ag-0.5Cu/Cu solder joint was found to be located within solder matrix as well as at the interfacial IMC. However, failure mode of 5e solder joint varied with respect to the morphology of the interfacial IMC. Most of the failures occurred inside solder matrix due to the floating of the AuZn3 and AgZn3 layers far away from interface in liquid solder. Other types of failure were observed at the interface between AgZn3 and solder. This was due to absence of floating and formation of IMC at interface. The results of analysis showed that absence of a weak interface and the existence of easy-deformed solder matrix within a solder joint exhibits better drop reliability.
總目錄
中文摘要……………………………….Ι
英文摘要…………………………… Ⅱ
總目錄…………………………………Ⅲ
表目錄……………………………………Ⅴ
圖目錄……………………………………Ⅵ
第壹章 緒論………………………………1
1-1前言……………………………………1
1-2文獻回顧………………………………1
1-2-1文獻摔落試驗結果…………………1
1-2-1-1共晶錫鉛…………………………1
1-2-1-2錫銀系合金………………………2
1-2-1-3錫銀銅系合金……………………3
1-2-2破壞模式歸納………………………9
1-3 JEDEC摔落試驗規範簡述……………10
1-3-1元件…………………………………10
1-3-2測試板………………………………10
1-3-3實驗條件……………………………10
1-3-4失效判定……………………………15
1-4可靠度判定……………………………15
1-4-1偉伯分佈簡介………………………15
1-4-2偉伯參數求法………………………18
1-4-3故障種類及偉伯物理意義…………19
1-5研究目的………………………………19
第貳章 實驗方法與步驟…………………21
2-1實驗構想………………………………21
2-2實驗試片介紹…………………………21
2-3表面黏著技術作業……………………27
2-4摔落試驗………………………………27
2-4-1實驗裝置說明………………………27
2-4-2摔落實驗規劃………………………33
2-5試片分析………………………………33
第參章 結果與討論………………………35
3-1摔落測試前試片初始狀態……………35
3-2不同銲錫材料之Drop Reliability比較……36
3-3摔落失效模式分析……………………………36
3-3-1共晶錫鉛銲錫接點之摔落失效模式………36
3-3-2錫銀銅銲錫接點之摔落失效模式…………36
3-3-3五元銲錫接點之摔落失效模式……………44
3-4不同銲錫接點產生破壞之機構探討…………45
3-4-1共晶錫鉛銲錫接點之破壞機構探討………45
3-4-2錫銀銅銲錫接點之破壞機構探討…………47
3-4-3錫鋅五元銲錫接點之破壞機構探討………61
3-4-3-1機構探討…………………………………61
3-4-3-2錫鋅五元銲錫接點摔落試驗之即時觀察……63
3-5影響摔落失效次數的因素……………………71
3-5-1不同失效模式與其摔落壽命的關聯…………71
3-5-2 實驗裝置與摔落壽命的關聯…………………80
3-6綜合比較與討論…………………………………81
3-6-1文獻综合比較…………………………………81
3-6-1-1 Bulk性質對摔落測試的影響………………81
3-6-1-2界面性質對摔落測試的影響…………………82
3-6-2综合討論…………………………………………87
第肆章 結論……………………………………………89
參考文獻…………………………………………………90
誌謝………………………………………………………97
自述………………………………………………………98
1. Y. S. Lai, P. F. Yang, and C. L. Yeh, “Experimental studies of board-level reliability of chip-scale packages subjected to JEDEC drop test condition” , Microelectronics Reliability, Vol. 46, 2006, pp. 645~650.
2. J. E. Luan, T. Y. Tee, E. Pek, C. T. Lim, and Z. Zhong, “Dynamic responses and solder joint reliability under board level drop test”, Microelectronics Reliability, Vol. 47, 2005, pp. 450~460.
3. J. W. Jang, A. P. D. Silva, J. E. Drye, S. L. Post, N. L. Owens, J. K. Lin, and D. R. Frear, “Failure morphology after drop impact test of ball grid array(BGA) package with lead-Free Sn-3.8Ag-0.7Cu and eutectic SnPb solders”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 30, No. 1, January 2007, pp. 49~53.
4. D. Y. R. Chong, H. J. Toh, B. K. Lim, and P. T. H. Low, “Drop reliability performance assessment for PCB assemblies of chip scale packages(CSP)”, Proceedings of 7th, Electronic Packaging Technology Conference, Singapore, December 2005, pp. 262~269.
5. D. Y. R. Chong, F. X. Che, J. H. L. Pang, K. Ng, J. Y. N. Tan, and P. T. H. Low, “Drop impact reliability testing for lead-free and lead-based soldered IC packages”, Microelectronics Reliability, Vol.46, 2006, pp. 1160~1171.
6. J. E. Luan, T. Y. Tee, X. Zhang, and E. Hussa, “Solder joint failure modes, mechanisms, and life prediction models of IC packages under board level drop impact”, Proceedings of 6th, International Conference on Electronic Packaging Technology, China, August 2005, pp. 382-388.
7. J. Y. Kim, Y. C. Sohn, and J. Yu, “Effect of Cu content on the mechanical reliability of Ni/Sn–3.5Ag system”, Journal of Materials Research, Vol. 22, No. 3, March 2007, pp. 770~776.
8. Y. K. Jee, Y. H. Ko, and J. Yu, “Effect of Zn on the intermetallics formation and reliability of Sn-3.5Ag solder on a Cu pad”, Journal of Materials Research, Vol. 22, No. 7, July 2007, pp. 1879~1887.
9. T. T. Mattila, E. Kaloinen, A. Syed, and J. K. Kivilahti, “Reliability of SnAgCu interconnections with minor additions of Ni or Bi under mechanical shock loading at different temperatures”, Proceedings of 57th, Electronic Components and Technology Conference, USA, May 2007, pp. 381~390.
10. D. Suh, D. W. Kim, P. Liu, H. Kim, J. A. Weninger, C. M. Kumar, A. Prasad, B. W. Grimsley, and H. B. Tejada, “Effects of Ag content on fracture resistance of Sn–Ag–Cu lead-free solders under high- strain rate conditions”, Materials Science and Engineering A, Vol. 460~461, 2007, pp. 595~603.
11. X. Xie, L. Wang, and T. Lee, “Drop test failure analysis of SAC BGA solder joints using Ni/Au and Cu-OSP pad finish”, Proceedings of 7th, International Conference on Electronic Packaging Technology, China, August 2006, pp. 1~4.
12. S. W. Shin, P. W. Kim, H. J. Woo, E. C. Ahn, I. S. Cho, and T. G. Chung, “Effect of Ni surface finish on half etched Cu on solder joint reliability”, Proceedings of 57th, Electronic Components and Technology Conference, USA, May 2007, pp. 415~419.
13. Y. S. Lai, P. C. Yang, and C. L. Yeh, “Effects of different drop test conditions on board-level reliability of chip-scale packages”, Microelectronics Reliability, Vol. 48, 2008, pp. 274~281.
14. L. Xu and J. H. L. Pang, “Effect of intermetallic and Kirkendall voids growth on board level drop reliability for SnAgCu lead-free BGA solder joint”, Proceedings of 56th, Electronic Components and Technology Conference, CA, May 2006, pp. 275~282.
15. J. W. Jang, J. K. Lin, and D. R. Frear, “Failure morphology after the drop impact test of the ball grid array package with lead-free Sn-3.8Ag-0.7Cu on Cu and Ni under-bump metallurgies”, Journal of Electronic Materials, Vol. 36, No. 3, 2007, pp. 207~213.
16. E. F. D. Monlevade and W. Peng, “Failure mechanisms and crack propagation paths in thermally aged Pb-free solder interconnects”, Journal of Electronic Materials, Vol. 36, No. 7, 2007, pp. 783~797.
17. W. Peng and M. E. Marques, “Effect of thermal aging on drop performance of chip scale packages with SnAgCu solder joints on Cu pads”, Journal of Electronic Materials, Vol. 36, No. 12, 2007, pp. 1679~1690.
18. Y. Liu, S. Gale, and R. W. Johnson, “Investigation of the role of void formation at the Cu-to-intermetallic interface on aged drop test performance”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 30, No. 1, January 2007, pp. 63~73.
19. A. Syed, S. M. Kim, W. Lin, J. Y. Kim, E. S. Sohn, and J. H. Shin, “A methodology for drop performance modeling and application for design optimization of chip-scale packages”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 30, No. 1, January 2007, pp. 42~48.
20. J. E. Luan, T. Y. Tee, E. Pek, C. T. Lim, Z. Zhong, and J. Zhou, “Advanced numerical and experimental techniques for analysis of dynamic responses and solder joint reliability during drop impact”, IEEE Transactions on Components and Packaging Technologies, Vol. 29, No. 3, September 2006, pp. 449~456.
21. T. Y. Tee, H. S. Ng, C. T. Lim, E. Pek, and Z. Zhong, “Impact life prediction modeling of TFBGA packages under board level drop test”, Microelectronics Reliability Vol. 44, 2004, pp. 1131~1142.
22. C. L. Yeh and Y. S. Lai, “Insights into correlation between board-level drop reliability and package-level ball impact test characteristics”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 30, No. 1, January 2007, pp. 84~91.
23. D. Goyal, T. Lane, P. Kinzie, C. Panichas, K. M. Chong, and O. Villalobos, “Failure mechanism of brittle solder joint fracture in the presence of electroless nickel immersion gold(ENIG) interface”, Proceedings of 52nd, Electronic Components and Technology Conference, CA, May 2002, pp. 732~739.
24. W. H. Bang, M. W. Moon, C. U. Kim, S. H. Kang, J. P. Jung, and K. H. Oh, “Study of fracture mechanics in testing interfacial fracture of solder joints”, Journal of Electronic Materials, Vol. 37, No. 4, 2008, pp. 417~428.
25. JEDEC Standard JESD22-B11. Board level drop test method of components for handheld electronic products, 2003.
26. JEDEC Standard JESD22-B110. Subassembly mechanical shock, 2001.
27. S. K. Sinha, “Reliability and life testing”, Wiley, New York, 1986.
28. H. Qiao and C. P. Tsokos, “Estimation of the three parameter Weibull probability distribution”, Mathematics and Computers in Simulation, Vol. 39, 1995, pp. 173~185.
29. Z. Chen, “Joint estimation for the parameters of Weibull distribution”, Journal of Statistical Planning and Interface Vol. 66, 1998, pp. 113~120.
30. T. B. Massalski, “Binary alloy phase diagrams”, ASM, Handbook, Vol. 2, 1986, p. 1759
31. G. Ghosh, “Interfacial microstructure and the kinetics of interfacial reaction in diffusion couples between Sn–Pb solder and Cu/Ni/Pd metallization”, Acta Materialia, Vol. 48, 2000, pp. 3719~3738.
32. H. Okamoto and S. D. Henry, “Alloy phase diagrams”, ASM, Handbook, Vol. 3, p. 40
33. C. Y. Lee, J. W. Yoon, Y. J. Kim, and S. B. Jung, “Interfacial reactions and joint reliability of Sn-9Zn solder on Cu or electrolytic Au/Ni/Cu BGA substrate”, Microelectronic Engineering, Vol. 82, 2005, pp. 561~568.
34. T. B. Massalski, “Binary alloy phase diagrams”, ASM, Handbook, Vol. 2, 1986, p. 965
35. J. W. Yoon, S. W. Kim, and S. B. Jung, “Effects of reflow and cooling conditions on interfacial reaction and IMC morphology of Sn–Cu/Ni solder joint”, Journal of Alloys and Compounds, Vol. 415, 2006, pp. 56~61.
36. J. H. Lee, J. H. Park, Y. S. Kim, and D. H. Shin, “Stability of channels at a scallop-like Cu6Sn5 layer in the solder interconnections”, J. Materials Research, Vol. 16, No. 5, 2001, pp. 1227~1230.
37. C. E. Ho, S. C. Yang, and C. R. Kao, “Interfacial reaction issues for lead-free electronic solders”, Journal of Materials Science, Materials in Electronics, Vol. 18, 2007, pp. 155~174.
38. A. Sharif and Y. C. Chen, “Dissolution kinetics of BGA Sn-Pb and Sn-Ag solders with Cu substrates during reflow”, Materials Science and Engineering B, Vol. 106, 2004, pp. 126~131.
39. K. Suganuma, K. Niihara, T. Shouttoku, and Y. Nakamura, “Wetting and interface microstructure between Sn-Zn binary alloys and Cu”, Journal of Materials Research, Vol. 13, No. 10, October 1998, pp. 2859~2865.
40. 洪慧慈, “錫鋅系無鉛銲錫與金屬化銅基材之接合行為與界面反應”, 國立成功大學碩士論文, 民國九十三年, pp. 71-77.
41. R. B. Ross, “Metallic materials specification handbook”, 4th Edition, Chapman & Hall, New York, 1992.
42. X. Deng, M. Koopman, N. Chawla, and K. K. Chawla, “Young's modulus of (Cu,Ag)-Sn intermetallics measured by nanoindentation”, Material Science and Engineering A, Vol. 364, 2004, pp. 240~243.
43. C. Kanchanomai, Y. Miyashita, and Y. Mutoh, “Low-cycle fatigue behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi lead-free solders”, Journal of Electronic Materials, Vol. 31, Iss 5, 2002, pp. 456~465.
44. L. Xu and J. H. L. Pang, “Nanoindentation on SnAgCu lead-free solder joints and analysis”, Journal of Electronic Materials, Vol. 35, No. 12, 2006, pp. 2107~2115.
45. D. Brandon and W. D. Kaplan, “Joining process”, Wiley, New York, 1997.
46. D. Y. R. Chong, K. Ng, J. Y. N. Tan, and P. T. H. Low, “Drop test reliability assessment of leaded and lead-free solder joints for IC packages”, Proceedings of 6th, Electronic Packaging Technology Conference, Singapore, December 2004, pp. 210~217.
47. J. E. Luan, T. Y. Tee, X. Zhang, E. Hussa, J. Wong, C. Ford, and K. C. Jen, “Drop impact life prediction model with solder joint failure modes and mechanisms”, Proceedings of 7th, Electronic Packaging Technology Conference, Singapore, December 2005, pp. 66-72.
48. D. R. Frear, S. N. Burchett, H. S. Morgan, and J. H. Lau, “The mechanics of solder alloy interconnections”, Van Nostrand Reinhold, New York, 1994, p. 60.
49. J. M. Koo, “Mechanical and electrical properties of Cu/Sn-3.5Ag/Cu ball grid array solder joints after multiple reflows”, Journal of Electronic Materials, Vol. 37, No. 1, 2008, pp. 118~124.
50. G. E. Dieter, “Mechanical metallurgy”, McGraw-Hill, New York, 1984, pp. 160~166, 349.
51. G. Ghosh, “Elastic properties, hardness, and indentation fracture youghness of intermetallics relevant to electronic packaging”, Journal of Materials Research, Vol. 19, No. 5, May 2004, pp. 1439~1454.
52. R. A. Islam, B. Y. Wu, M. O. Alam, Y. C. Chan, and W. Jillek, “Investigations on microhardness of Sn-Zn based lead-free solder alloys as replacement of Sn-Pb solder”, Journal of Alloys and Compound, Vol. 392, 2005, pp. 149~158.
53. W. Koster and W. Rauscher, “Relations between the modulus of elasticity of binary alloys and their structure”, Technical Memorandum 1321, National Advisory Committee for Aeronautics.
54. T. Shibutani, Q. Yu, and M. Shiratori, “A study of deformation mechanism during nanoindentation creep in Tin-based solder balls”, Journal of Electronic Packaging, Vol. 129, 2007, pp. 71~75.
55. R. R. Chromik, R. P. Vinci, S. L. Allen, and M. R. Notis, “Nanoindentation measurements on Cu–Sn and Ag–Sn intermetallics formed in Pb-free solder joints”, Journal of Materials Research, Vol. 18, No. 9, September 2003, pp. 2251~2261.
56. H. Rhee, J. P. Lucas, and K. N. Subramanian, “Micromechanical characterization of thermomechanically fatigued lead-free solder joints”, Journal of Materials Science, Materials in Electronics, Vol. 13, 2002, p. 477.
57. K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys”, Materials Science and Engineering A, Vol. 333, 2002, pp. 106~114.
58. T. G. Hsuan, Department of Materials Science and Engineering, NCKU, unpublished.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top