跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 08:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪琪祐
研究生(外文):Chi-yew Hong
論文名稱:經由熱蒸鍍法以銀及銅催化Ge奈米結構的生長
論文名稱(外文):Ag- and Cu-catalyzed growth of Ge nanostructures by the thermal evaporation method
指導教授:林文台
指導教授(外文):Wen-Tai Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:75
中文關鍵詞:Ge 奈米結構銀催化
外文關鍵詞:Ag-catalyzedGe nanostructures
相關次數:
  • 被引用被引用:1
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討在950˚C氬氣環境中熱蒸發 Ge 粉末,銀催化生長直的 Ge 奈米線,鋸齒狀的 Ge 奈米帶與六邊形的 Ge 奈米塔。在550-600˚C生長 Ge奈米線與 Ge 奈米帶係經由VSS機制以 top-growth 模式生長而在700-750˚C 生長 Ge 奈米塔係經由 VLS 機制以 bottom-growth 模式生長。這些結果顯示銀催化生長 Ge 奈米結構的生長模式與溫度相關。同時也討論Ge 奈米結構的生長機制。Ge奈米線、Ge 奈米帶與Ge奈米塔分別偏好 <110>、<112> 與 <111> 生長方向。表面能、界面能與動力的影響係決定 Ge 奈米結構生長的重要因素。也探討在950˚C氬氣環境中,經由熱蒸發 Ge 粉末以銅催化生長 Ge 奈米線。Ge 奈米線在500-600˚C經由 VSS 機制以 top-growth 模式生長。
The Ag-catalyzed growth of straight Ge nanowires (GeNWs), serrate Ge nanobelts (GeNBs), and hexagonal Ge nanotowers (GeNTs) by the thermal evaporation of Ge powder at 950˚C in Ar were studied. The top-growth mode was found for the growth of GeNWs and GeNBs at 550-600˚C via the vapor-solid-solid (VSS) process, while the bottom-growth mode was found for that of GeNTs at 700-750˚C via the vapor-liquid-solid process. This result shows that the growth mode for the Ag-catalyzed Ge nanostructures is temperature-dependent. The large size of AgGe droplets formed at high temperatures is beneficial to the growth of GeNTs with the bottom-growth mode. In addition, the growth mechanisms of Ge nanostructures are discussed. The GeNWs, GeNBs, and GeNTs favored the <110>, <112>, and <111> growth orientations, respectively. The surface energy, interfacial energy, and kinetic effect are important factors in determining the growth direction of Ge nanostructures. The Cu-catalyzed growth of GeNWs by the thermal evaporation of Ge powder at 950˚C in Ar was also studied. The top-growth mode was also found in the growth of GeNWs at 500-600˚C via the VSS process.
本文目錄
中文摘要..................................................I
英文摘要.................................................II
誌謝感言................................................III
本文目錄.................................................IV
圖目錄...................................................VI
第一章 奈米材料..........................................1
1.1前言...................................................1
1.2一維奈米材料...........................................3
第二章 文獻回顧.........................................6
2.1 一維奈米材料合成方式..................................6
熱蒸鍍 (thermal evaporation)..............................6
化學氣相沉積(chemical vapor deposition).................7
熱碳還原(carbothermal reduction)........................9
水熱(Solvothermal) .......................................10
雷射蒸鍍(laser ablation)...............................11
模板輔助(template-assisted)............................11
溶膠-凝膠(sol-gel).....................................11
2.2 奈米線生長機制 .......................................12
Vapor-Liquid-Solid(VLS)................................13
Vapor-Solid(VS)........................................15
Vapor-Solid-Solid (VSS)..................................17
Oxide-Assisted Growth(OAG).............................18
Solution-Liquid-Solid(SLS、SFLS、SFSS)...................19
2.3 奈米線生長模式 .......................................20
2.4 儀器原理.............................................21
2.4.1 掃瞄式電子顯微鏡(Scanning Electron Microscope,SEM)....................................................21
2.4.2 掠角X光繞射儀(Grazing Incidence X-ray Diffractometer,GID)....................................23
2.4.3 穿透式電子顯微鏡(Transmission Electron Microscope,TEM)....................................................24
2.4.4 X光能量散佈分析儀(Energy Dispersive X-ray Spectrometer,EDS)......................................25
2.5 研究動機.............................................26
第三章 實驗步驟與方法...................................29
3.1 實驗設備及流程.......................................29
3.2 基板製備與清洗與TEM試片製備..........................30
3.2.1基板製備與清洗......................................30
3.2.2 TEM試片製備........................................31
3.3 實驗分析.............................................32
3.3.1掃瞄式電子顯微鏡分析................................32
3.3.2 低掠角X光繞射分析..................................32
3.3.3 穿透式電子顯微鏡分析...............................33
第四章 結果與討論.......................................34
4.1 Ge 奈米結構的生長機制................................34
4.2 影響 Ge 奈米結構的生長方向與形貌的因素...............38
4.3銅催化生長Ge奈米線....................................40
第五章 結論.............................................43
參考文獻.................................................44

圖目錄
圖2-1. VLS示意圖.........................................50
圖2-2(a).用Au做催化劑生長Ge奈米線示意圖..................50
圖2-2(b)..Au-Ge相圖......................................50
圖2-2(c).以TEM即時觀察影像圖.............................51
圖2-3.以OAG合成Si奈米線的成核與成長示意圖................51
圖2-4. SiOx NWs銅膜厚度60nm,銅膜會變成cluster-like(叢聚)的結構,且SiOx的核會變成塊狀(agglomeration)................52
圖2-5. VLS機制和Solution-Liquid-Solid機制的比較..........52
圖2-6. SFLS方法反應機構示意圖............................53
圖2-7. SFSS方法反應機構示意圖............................53
圖2-8. 生長模式示意圖....................................54
圖3-1 高溫爐與試片擺設位置示意圖.........................55
圖3-2. 下游試片擺設位置示意圖............................55
圖3-3. 實驗流程示意圖....................................56
圖4-1.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,純Si基板擺在溫度550~600℃上生成物之SEM影像圖.................57
圖4-2. Si基板上沉積的Ag顆粒之SEM影像圖...................57
圖4-3.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Ag╱Si基板擺在溫度550~600℃上所生成的奈米線之SEM影像圖.......58
圖4-4.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Ag╱Si基板擺在溫度550~600℃上的生成物之XRD分析圖.............58
圖4-5.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Ag╱Si基板擺在溫度550~600℃上所生長的<110>方向奈米線之TEM影像圖及繞射圖.................................................59
圖4-6.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Ag╱Si基板擺在溫度550~600℃, (a)生長的奈米線之TEM影像圖, (b)在圖(a)所圈選位置之EDS能譜圖.............................59
圖4-7.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Ag╱Si基板擺在溫度550~600℃, (a)生長的<112>方向奈米帶之TEM影像圖, (b)在圖(a)較下方標示為(b)的奈米線,靠近頭部之TEM影像圖, (c)在圖(b)中,其頭部顆粒之EDS能譜圖.................60
圖4-8.在圖4-7(a)中較下方標示為(b)的奈米線,靠近尾部之區域,(a)放大之TEM影像圖 (b)在圖(a)的1位置之EDS能譜圖, (c)在圖(a)的2位置之EDS能譜圖, (d)在圖(a)的3位置之EDS能譜圖, (e)在圖(a)的4位置之TEM繞射圖, (f)在圖(a)的5位置之TEM繞射圖.......................................................62
圖4-9.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Ag╱Si基板擺在溫度550~600℃所生長的<112>方向奈米帶之TEM影像圖及其繞射圖.................................................63
圖4-10. Ag-Ge相圖........................................63
圖4-11. Ag顆粒尺寸大小對應熔點下降關係圖.................64
圖4-12.粉末溫度950℃,氬氣流量100 sccm,持溫時間60min,Ag╱Si基板擺在溫度550~600℃上所生長的奈米線之TEM影像圖.......64
圖4-13.粉末溫度950℃,氬氣流量100 sccm,持溫時間60min,Ag╱Si基板擺在溫度550~600℃上所生長的奈米線之TEM影像圖.......65
圖4-14.粉末溫度950℃,氬氣流量100 sccm,持溫時間30 min,Ag╱Si基板擺在溫度550~600℃, (a)生長的奈米線之SEM影像圖, (b)高倍 SEM影像圖........................................65
圖4-15.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Ag╱Si基板擺在溫度550~600℃, (a)生長<112>方向的奈米帶之TEM影像圖, (b)為圖(a)的奈米帶之[111]方向繞射圖, (c)為圖(a)的奈米帶之[011]方向繞射圖..................................66
圖4-16.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Ag╱Si基板擺在溫度700~750℃上, (a)生長的奈米塔之SEM影像圖, (b)為圖(a)奈米塔之SEM影像放大圖,內插圖為尖端局部放大圖.......................................................67
圖4-17.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Ag╱Si基板擺在溫度700~750℃上所生長<111>方向的奈米塔之TEM影像圖及其繞射圖...........................................68
圖4-18(a) 粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Ag╱Si基板擺在溫度700~750℃, (a)生長的奈米線之TEM影像圖, (b)在圖(a)上頭部圈選位置的EDS能譜圖......................68
圖4-19.粉末溫度950℃,氬氣流量100 sccm,持溫時間30 min,Ag╱Si基板擺在溫度700~750℃, (a)生長的奈米線之SEM影像圖, (b)在圖(a)上A位置的EDS能譜圖, (c)生長的奈米線之SEM影像圖, (d)在圖(c)上B位置的EDS能譜圖........................69
圖4-20. [110]方向生長的奈米線............................70
圖4-21.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Cu╱Si基板擺在溫度500~600℃, (a)生長的奈米線的SEM影像圖, (b) 為圖(a)之SEM影像放大圖...............................70
圖4-22.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Cu╱Si基板擺在溫度500~600℃,生成物的XRD分析圖.............71
圖4-23. Cu-Ge相圖........................................71
圖4-24.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Cu╱Si基板擺在溫度660~750℃, (a)生長的奈米線的SEM影像圖, (b)為圖(a)之SEM影像放大圖................................72
圖4-25.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Cu╱Si基板擺在溫度500~600℃, (a)生長的奈米線的TEM影像圖, (b)在圖(a)上1位置之EDS能譜圖, (c)在圖(a)上2位置之EDS能譜圖, (d)在圖(a)上3位置之EDS能譜圖,
(e)在圖(a)上4位置之EDS能譜圖, (f)在圖(a)上5位置之EDS能譜圖.......................................................73
圖4-26.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Cu╱Si基板擺在溫度500~600℃, (a)生長的奈米線的TEM影像圖, (b)為圖(a)奈米線的TEM繞射圖..............................74
圖4-27.粉末溫度950℃,氬氣流量100 sccm,持溫時間60 min,Cu╱Si基板擺在溫度500~600℃, (a)生長的奈米線之TEM影像圖, (b)為圖(a)奈米線的high-resolution高解析圖................75
1. 馬遠榮,“科學發展”382, 72 (2004)
2. X. D. Wang, J.H. Song, and Z. L. Wang, J. Mater. Chem. 17, 711(2007)
3. X. S. Peng, G. S. Wu, and Holt-Hindle, P, et al. Mater. Lett. 62, 1969 (2008)
4. C. L. Hsin, J. H. He, and C.Y. Lee, et al. Nano Lett. 7, 1799 (2007)
5. Z. L. Wang, Z. W. Pan, Z. R. Dai, Microsci. Microanal. 8, 467 (2002)
6. H.W. Kim, Func. Mater. Devices 517, 53 (2006)
7. T. Qiu, X. L. Wu, F. Y. Jin, et al. Appl. Surf. Sci. 253, 3987 (2007)
8. X. K. Hu, Y. T. Qian, Z. T. Song, et al. Chem. Mater. 20, 1527 (2008)
9. T. Karabacak, A. Mallikarjunan, J. P. Singh, et al. Appl. Phys. Lett. 83, 3096 (2003)
10. L. C. Wang, Y. M. Liu, M. Chen, et al. J. Phys. Chem. C 112, 6981 (2008)
11. S. M. Zhou, H. C. Gong, B. Zhang, et al. Nanotechnology 19, 175303 (2008)
12. Y. R. Ma, C. M. Lin, C. L. Yeh, et al. J. Vac. Sci. Technol. B 23, 2141 (2005)
13. F. Wang, G. Q. Jin, X. Y. Guo, Mater. Lett. 60, 330 (2006)
14. X. F. Duan, C. M. Lieber, J. A. C. S. 122, 188 (2000)
15. A. D. Berry, R. J. Tonucci, M. Fatemi, Appl. Phys. Lett. 69, 2846 (1996)
16. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, et al. Solid State Communications 109, 677 (1999)
17. C. Q. Xu, Z. C. Zhang, Q. Ye, et al. Chem. Lett. 32, 198 (2003)
18. A. I. Hochbaum, R. K. Chen, R. D. Delgado, et al. Nature 451, 163 (2008)
19. A. I. Boukai, Y. Bunimovich, Jamil Tahir-Kheli, et al. Nature 451, 168 (2008)
20. D. Nagesha, M. A. Whitehead, J. L. Coffer, Adv. Mater. 17, 924 (2005)
21. B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002)
22. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001)
23. Y. Hao, G. Meng, C. Ye, and L. Zhang, Appl. Phys. Lett. 87, 033106 (2005)
24. Y. B. Li, T. Bando, D. Golberg, and K. Kurashima, Appl. Phys. Lett. 81, 5048 (2002)
25. Y. Wu and P. Yang, Appl. Phys. Lett. 77, 43 (2000)
26. P. Hidalgo, B. Mendez, and J. Piqueras, Nanotechnology 16, 2521 (2005)
27. 盧永坤, “奈米科技概論”,滄海書局(2005)
28. 張俊彥譯,施敏著,“半導體元件物理與製作技術” ,高立圖書有限公司
29. Y. Huang, J. Lin, J. Zhang, X. X. Ding, S. R. Qi, and C. C. Tang, Nanotechnology 16, 1369 (2005)
30. D. Wang and H. Dai, Angew. Chem. Int. Ed. 41, 4783 (2002)
31. H. Adhikari , P. C. Mclntyre, S. Sun, P. Pianetta, C. E. D. Chidsey, Appl. Phys. Lett. 87, 263109 (2005)
32. S. Kodambaka, J Tersoff, M.C.Reuter,F.M.Ross, Science 316, 4 (2007)
33. G. Gundiah, F. L. Deepak, A. Govindaraj, and C. N. R. Rao, Top. Catal. 24, 137 (2003)
34. X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao, Chem. Phys. Lett. 373, 28 (2003)
35. C. Y. Chen, C. I. Lin, and S. H. Chen, Br. Ceram. Trans. 99, 57 (2000)
36. J. P. Murray, A. Steinfeld, and E. A. Fletcher, Energy 20, 695 (1995)
37. M. Johnsson, Solid State Ionics 172, 365 (2004)
38. C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440 (2004)
39. A. Alizadeh, E. T. Nassaj, and N. Ehsani, J. Eur. Ceram. Soc. 24, 3227 (2004)
40. X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao, Chem. Phys. Lett. 373, 28 (2003)
41. P. Nguyen, H. T. Ng, and M. Meyyappan, Adv. Mater. 17, 549 (2005)
42. K. P. Kalyanikutty, G. Gundiah, A. Govindaraj, and C.N. R. Rao, J. Nanosci. Nanotech. 5, 421 (2005)
43. B. T. Park and K. Yong, Nanotechnology 15, S365 (2004)
44. Y. Ryu, T. Tak, and K. Yong, Nanotechnology 16, S370 (2005)
45. Y. C. Lin and W. T. Lin, Nanotechnology 16, 1648 (2005)
46. S. H. Li, X. F. Zhu, Y. P. Zhao, J. Phys. Chem. B 108, 17032 (2004)
47. S. Kar and S. Chaudhuri, Solid State Commun. 133, 151 (2005)
48. J. R. Heath, F. K. LeGoues, Chem. Phys. Lett. 208, 263 (1993)
49. T. Guo﹐P. Nikolaev﹐A. Thess﹐D. T. Colbert﹐R. E. Smalley﹐Chem. Phys. Lett. 243, 49 (1995)
50. Y. H. Tang, Y. F. Zhang, N. Wang, I. Bello, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 74, 3824 (1999)
51. Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
52. T. A. Crowley, K. H. Ziegler, D. M. Lyons, D. Erts, H. Olin, M.A. Morris, and J. D. Holmes, Chem. Mater. 15, 3518 (2003)
53. Y. Wu, T. Livneh, Y. X. Zhang, G. Cheng, J. Wang, J. Tang, M. Moskovits, and G.D. Stucky, Nano Lett. 4, 2337 (2004)
54. K. M. Ryan, D. Erts, H. Olin, M. A. Morris, and J. D. Holmes, J. Am. Chem. Soc. 125, 6284 (2003)
55. N. R. B. Coleman, K. M. Ryan, T. R. Spalding, J. D. Holmes, and M. A. Morris, Chem. Phys. Lett. 343, 1 (2001)
56. Y. Yin, Y. Lu, Y. Sun, and Y. Xia, Nano Lett. 2, 427 (2002)
57. B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, J. Am. Chem. Soc. 123, 11500 (2001)
58. C. N. R. Rao, A. Govindaraj, F.L. Deepak, N. A. Gunari, and M. Nath, Appl. Phys. Lett. 78, 1853 (2001)
59. A. Govindaraj, F.L. Deepak, N.A. Gunari, C. N. R. Rao, Israel J. Chem. 41, 23 (2001)
60. C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440 (2004)
61. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
62. H. W. Kim ,S. H. Shim, J. W. Lee, Physica E 37 (2007 163)
63. M. Sanjay, S. Hao, S. Vladimir, and W. Ulf, Chem. Mater. 16, 2449 (2004)
64. M. Nagai, Electrochemical and Solid-State Lett. 10, H43 (2007)
65. S. Y. Li, C. Y. Lee, T. Y. Tseng, J. Crystal Growth 247, 357 (2003) .
66. Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am. Chem. Soc. 124, 1817 (2002)
67. Z. W. Pan, S. Dai, D. B. Beach, D. H. Lowndes, Appl. Phys. Lett. 83, 3159 (2003)
68. S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, MRS Bull. 24, 36 (1999)
69. J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, Adv. Mater. 14, 1396 (2002)
70. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science 270, 1791 (1995)
71. X. Lu, D. D. Fanfair, K. P. Johnston, and B. A. Korgel, J. Am. Chem. Soc. 127, 15718 (2005)
72. Y. Yao, S. Fan, Materials Letters 61, 177 (2007)
73. J. Arbiol, B. Kalache, P. R. Cabarrocas, et al. Nanotechnology 18, 305606 (2007)
74. T. I. Kamins, R. S. Williams, Y. Chen, Y. L. Chang, Y. A. Chang, Appl. Phys. Lett. 76, 562 (2000)
75. Wang, V. Schmidt, S. Senz, U. Gosele, Nature Nanotech. 1, 186 (2006)
76. A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, L . R. Wallenberg, Nature Mater. 3, 677 (2004)
77. N. Wang, Y. H. Tang, Y. F. Zhang, C. S .Lee, and S. T. Lee, Phys. Rev. B 58, R16024 (1998)
78. T. S. Chu, R. Q. Zhang, and H. F. Cheung, J. Phys. Chem. B 105, 1705 (2001)
79. R. Q. Zhang, Y. Lifshitz, and S. T. Lee, Adv. Mater. 15, 635 (2003)
80. Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
81. J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, Adv. Mater. 15, 70 (2003)
82. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 345, 377 (2001)
83. H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 27, 263 (2000)
84. X. M. Meng, J. Q. Hu, Y. Jiang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 83, 2241 (2003)
85. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Adv. Mater. 13, 591 (2001)
86. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 78, 3304 (2001)
87. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, J. Vac. Sci. Technol. B 19, 1115 (2001)
88. J. Q. Hu, X. L. Ma, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 344, 97 (2001)
89. Y. H. Tang, N. Wang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 2921 (1999)
90. L. Dai, X. L. Chen, T. Zhou, and B. Q. Hu, J. Phys.: Condens. Matter 14, L473 (2002)
91. L. Dai, X. L. Chen, J. K. Jian, W. J. Wang, T. Zhou, and B. Q. Hu, Appl. Phys. A 76, 625 (2003)
92. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science 270, 1791 (1995)
93. X. Lu, T. Hanrath, K. P. Johnston, and A. B. Korgel, Nano Lett. 3, 93 (2003)
94. T. Hanrath and B. A. Korgel , J. Am. Chem. Soc. 124, 1424 (2002)
95. H. Y. Tuan, D. C. Lee, T. Hanrath, and B. A. Korgel Chem. Mater. 17, 5705 (2005)
96. E. I. Givargizov, J. Crystal Growth 20, 217 (1973)
97. K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, and F. Willaime, Science 278, 653 (1997)
98. D. C. Bell, Y. Wu, C. J. Barrelet, S. Gradecak, J. Xiang, B. P. Timko,C. M. Lieber, Microsc. Res. Tech. 64, 373 (2004)
99. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
100. S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, Y. W. Chung, J. Mater. Res. 14, 4503 (1999)
101. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science 270, 1791 (1995)
102. Y. Y. Wu and P. D. Yang, Chem. Mater. 12, 605 (2000).
103. D. W. Wang and H. J. Dai, Angew. Chem. Int. Ed. 41, 4783 (2002).
104. T. Hanrath and B. A. Korgel, Adv. Mater. 15, 437 (2003).
105. J. R. Morante, J. E. Carceller, A. Herms, P. Cartujo, and J. Barbolla, Appl. Phys. Lett. 41, 656 (1982).
106. A. M. Morales, and C. M. Lieber, Science 279, 208 (1998)
107. S. Mathur, H. Shen, V. Sivakov, and U. Werner, Chem. Mater. 16, 2449 (2004)
108. W. L. Lo, H. C. Chang, T. J. Hsu, and W. T. Lin, Jpn. J. Appl. Phys. 47, 3299 (2008)
109. X. Sun, G. Calebotta, B. Yu, G. Selvaduary, and M. Meyyappan, J. Vac. Sci. Technol. B25, 415 (2007)
110. H. Y. Tuan, D. C. Lee, T. Hanrath, and B. A. Korgel, Chem. Mater. 17, 5705 (2005)
111. H. Y. Tuan, D. C. Lee, and B. A. Korgel, Angew. Chem. Int. Ed. 45, 5184 (2006)
112. Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, and D. P. Norton, Appl. Phys. Lett. 81, 3046 (2002).
113. Z. Zhu, T. L. Chen, Y. Gu, J. Warren, and R. M. Osgood, J. Chem. Mater. 17, 4227 (2005)
114. C. Li, G. J. Fang, Y. Y. Ren, Q. Fu, and X. Z. Zhao, J. Nanosci. Nanotechnol. 6, 1467 (2006)
115. Z. J. Li, X. L. Chen, H. J. Li, Q. Y. Tu, Z. Yang, Y. P. Xu, and B. Q. Hu, Appl. Phys. A 72, 629 (2001).
116. J. W. Lee, H. W. Kim, and S. H. Shim, Adv. Mater. Res. 15-17, 947 (2007)
117. J. Zhang, X. Qing, F. H. Jiang, and Z. H. Dai, Chem. Phys. Lett. 371, 311 (2003)
118. X. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, Appl. Phys. Lett. 83, 5533 (2003)
119. K. Sreejith, J. Nuwad, C. Thinaharan, G. K. Dey, and C. G. S. Pillai, Appl. Surf. Sci. 253, 7041 (2007)
120. X. Jiang and A. Yu, J. Nanopart. Res. 10, 475 (2008)
121. Z. J. Li, H. J. Li, X. L. Chen, L. Li, Y. P. Xu, and K. Z. Li, J. Alloys Comp. 345, 275 (2002)
122. S. H. Yun, J.Z. Wu, A. Dibos, X. Gao, and U. O. Karlsson, Appl. Phys. Lett. 87, 113109 (2005)
123. D, W. Wang, Y. L. Chang, Q. Wang, L. Cao, D. B. Farmer, R. G. Gordan, and H. Dai , J. Am. Chem. Soc.126,11602 (2004)
124. M. Nagai, Electrochemical and Solid-State Lett. 10, H43 (2007).
125. T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, Phys. Rev. B 42, 8548 (1990).
126. A. H. Carim, K. K. Lew, and J. M. Redwing, Adv. Mater. 13, 1489 (2001)
127. F. M. Davidson, M, D. Lee, D. D. Fanfair, and B. A. Korgel, J. Phys. Chem. C 111, 2929 (2007)
128. D. F. Lynch, Acta Cryst. A27, 399 (1971).
129. D. C. Bell, Y. Wu, C. J. Barrelet, S. Gradecak, J. Xiang, B. P. Timko, and C. M. Lieber, Microsc. Res. Tech. 64, 373 (2004).
130. T. Hanrath and B. A. Korgel, Small 1, 717 (2005).
131. Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, Nano Lett. 4, 433 (2004)
132. D. A. Porter and K. E. Easterling: Phase Transformations in Metals and Alloys 2th edition, p179
133. D. A. Porter and K. E. Easterling: Phase Transformations in Metals and Alloys 2th edition, p115
134. Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 - 4521 (2000)
135. Y. Yao, S. Fan, Mater. Lett. 61, 177 (2007)
136. X. H. Sun, C. Didychuk, T. K. Sham, and N B Wong, Nanotechnology 17, 2925 (2006)
137. K. W. Kolasinski, Current Opinion in Solid State and Materials Science 10, 182 (2006)
138. T. B. Massalski, J. L. Murray, L. H. Bennet, and H. Baker, : Binary Alloy Phase Diagrams, 1, 960 (1986)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top