跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡昇峰
研究生(外文):Sheng-Fong Tsai
論文名稱:利用熱蒸鍍法及熱碳還原法以鎳催化Ge及GeO2奈米結構的生長
論文名稱(外文):Ni-catalyzed growth of Ge and GeO2 nanostructures by the thermal evaporation and carbothermal reduction methods
指導教授:林文台
指導教授(外文):Wen-Tai Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:74
中文關鍵詞:GeO2奈米線Ge奈米線熱蒸鍍法熱碳還原法
外文關鍵詞:thermal evaporationcarbothermal reductionnige nanowiresgeo2 nanowires
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用熱蒸鍍法將Ge粉末置於950oC加熱,在氬氣氣氛中,經由Ni催化生長Ge奈米線、Ge奈米帶以及GeO2奈米線,Ni催化生長Ge奈米線和Ge奈米帶溫度是在420~500˚C,經由VSS機制top-growth mode所生成。Ge奈米線及Ge奈米帶的生長方向,分別偏好於<110>和<112>方向,以及<112>方向,表面能在決定Ge奈米結構方向生長上扮演重要的角色。在較高溫度600~660˚C則是首先經由VSS機制生長GeO2奈米線,此項結果與之前文獻報導經由VS機制生長GeO2奈米線,並無存在金屬催化劑有所不同。經由Ni催化生長Ge奈米線的生長模式,可以與合成方法和生長溫度無關。同時,Ni催化生長Ge及GeO2奈米結構的生長機制則被討論。
利用熱碳還原GeO2粉末,相同使用Ni催化生長模式,Ge和GeO2奈米結構也可被獲得。不過,生長GeO2奈米線的溫度則會被提高到720~750˚C,會比熱蒸鍍Ge粉末所生長GeO2奈米線在溫度600~660˚C來得高。
On the thermal evaporation of Ge powders at 950˚C in Ar, the growth of Ge nanowires (GeNWs), Ge nanobelts (GeNBs), and GeO2 nanowires (GeONWs) by the Ni catalyst was studied. The Ni-catalyzed growth of GeNWs and GeNBs at 420-500˚C followed the vapor-solid-solid (VSS) process with the top-growth mode. The GeNWs and GeNBs favored the <110> and <112>, and <112>growth orientations, respectively. The surface energy plays an important role in determining the growth direction of Ge nanostructures. At higher temperatures, 600~660˚C, the first VSS growth of GeONWs was observed. This result is contrary to the previous reports that the growth of GeONWs follows the vapor-solid (VS) process regardless of the presence of metal catalysts. The growth mode of Ni-catalyzed GeNWs may be independent of the synthesis method and growth temperature. Meanwhile, the growth mechanisms of Ni-catalyzed Ge and GeO2 nanostructures are discussed.
The same Ni-catalyzed growth mode of Ge and GeO2 nanostructures was also observed in the carbothermal reduction of GeO2 powders. However, the growth temperature of GeONWs raised up to 720~750˚C which are higher than that, 600~660˚C for the thermal evaporation of Ge powders.
第一章 簡介................................................................................................. 1
1.1 前言.................................................................................................. 1
1.2 奈米特性.......................................................................................... 2
1.2.1 奈米表面效應......................................................................... 2
1.2.2 量子尺寸效應......................................................................... 3
1.3 一維奈米材料.................................................................................. 3
第二章 文獻回顧.......................................................................................... 4
2.1 奈米線介紹...................................................................................... 4
2.2 奈米線合成技術.............................................................................. 5
2.3 奈米線生長機制............................................................................ 10
2.3.1 Vapor-Liquid-Solid(VLS 機制)........................................ 11
2.3.2 Vapor-Solid(VS 機制)...................................................... 12
2.3.3 Vapor-Solid-Solid(VSS 機制).......................................... 13
2.3.4 Supercritical fluid-Solid-Solid(SFSS 機制) ..................... 14
2.3.5 Oxide-Assisted Growth(OAG 機制)................................ 15
2.4 奈米線生長模式............................................................................ 17
2.5 儀器原理........................................................................................ 19
2.6 研究動機........................................................................................ 24
第三章 實驗步驟與方法............................................................................ 26
3.1 實驗設備及過程............................................................................ 26
3.2 實驗分析儀器................................................................................ 29
第四章 結果與討論.................................................................................... 31
4.1 熱蒸鍍法生長Ge 奈米線.............................................................. 31
4.2 熱蒸鍍法生長GeO2奈米線.......................................................... 34
4.3 GeO2奈米線的Cathode – luminescence (CL)分析....................... 35
4.4 低壓條件下熱蒸鍍法生長Ge 奈米線.......................................... 36
4.5 熱碳還原法生長Ge 奈米線.......................................................... 37
4.6 熱碳還原法生長GeO2奈米線...................................................... 38
4.7 熱碳還原法生長Ge-GeOX核殻奈米線........................................ 40
第五章 結論............................................................................................... 42
1.R. Feynman, “Plenty of Room at the Bottom”, APS Annual Meeting (1959)
2.N. Taniguchi, "On the Basic Concept of 'Nano-Technology'," Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, (1974.)
3.Drexler, K Eric. Engines of Creation.London:Fourth Eastate(1990)
4.馬振基,"奈米材料科技原理與應用",全華科技 (2003)
5.盧永坤,"奈米科技概論",滄海書局 (2005)
6.S. Iijima, Nature 354, 56 (1991)
7.K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 77, 447 (1995)
8.Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 1700 (1999)
9.Y. Li, G. W. Meng, and L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)
10.Y. Saito, S. Uemura, Carbon 38, 169 (2000)
11.M. Hirakawa, S. Sonoda, C. Tanaka, H. Murakami, H. Yamakawa, Appl. Surf. Sci. 169-170, 662 (2001)
12.S. M. Lee, K. S. Park, Y. C. Chai, Y. S. Park, J.M. Bok, D. J. Bae, K. S. Nahm, Y. G. Choi, S. C. Yu, N. Kim, T. Frauenheim, Y. H. Lee, Synth. Met. 113, 209 (2000)
13.R. T. Yang, Carbon 38, 623 (2000)
14.J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999)
15.C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim, and C. M. Lieber, Appl. Phys. Lett. 76, 3136 (2000)
16.H. Dai, J.H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 384, 147 (1996)
17.D.P. Yu, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, J.S. Fu, H.Z. Zhang, Y. Ding, G.C. Xiong, L.P. You, J. Xu, and S.Q. Feng, Phys. Rev. B 59, R2498 (1999)
18.Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, T. Karali, H. Terrones, J.P. Hare, P.D. Townsend, H.W. Kroto, and D.R.M. Waltson, Adv. Mater. 11, 844 (1999)
19.A. P. Alivisatos, Science 271, 933 (1996)
20.F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmelka, and G. D. Stucky, Adv. Mater. 11, 632 (1999)
21.D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z.G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998)
22.Sze, S. M. Physics of Semiconductor Device; Wiley: NY (1981)
23.Wang DW, PURE AND APPLIED CHEMISTRY 79 (1): 55-65 JAN (2007)
24.J. R. Heath, F. K. LeGoues, Chem. Phys. Lett. 208, 263 (1993)
25.T. Hanrath and B. A. Korgel , J. Am. Chem. Soc. 124, 1424 (2002)
26.D. Wang, Y. L. Chang, Q. Wang, J. Cao, D. B. Farmer, R. G. Gordan, and H. Dai, J. Am. Chem. Soc. 126, 11602 (2004)
27.Y. Wu and P. Yang, Appl. Phys. Lett. 77, 43 (2000)
28.Y. Huang, J. Lin, J. Zhang, X.X. Ding, S. R. Qi, and C. C. Tang, Nanotechnology 16, 1369 (2005)
29.J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, Adv. Mater. 15, 70 (2003)
30.C. Y. Ko,and W. T. Lin, Nanotechnology 17,4464(2006)
31.Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
32.M. Zacharias and P. M. Fauchet, J. Non-Cryst. Solids 227-230, 1058 (1998)
33.A. Margaryan, M.A. Piliavin, Germanate Glasses, Structure, Spectroscopy, and Properties, Artech House, Boston, MA, p. 135 (1993)
34.Y. H. Tang, Y. F. Zhang, N. Wang, I. Bello, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 74, 3824 (1999)
35.J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, Adv. Mater. 14, 1396 (2002)
36.Y. J. Zhang, J. Zhu, Q. Zhang, Y. J. Yan, N. L. Wang, X. Z. Zhang, Chem. Phys. Lett. 317, 504 (2000)
37.Z. Jiang, T. Xie, G. Z. Wang, X. Y. Yuan, C. H. Ye, W. P. Cai, G. W. Meng, G. H. Li, and L. D. Zhang, Mater. Lett. 59, 416 (2005)
38.P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, M. S. Khil, D. R. Lee, and E. K. Suh, J. Chem. Phys. 121, 441 (2004)
39.X. C. Wu, W. H. Song, B. Zhao, Y. P. Sun, and J. J. Du, Chem. Phys. Lett. 349, 210 (2001)
40.P. Hidalgo, B. Mendez, and J. Piqueras, Nanotechnology 16, 2521 (2005)
41.Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000)
42.Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, C. C. Xiong, and S. Q. Feng, Chem. Phys. Lett. 303, 311 (1999)
43.X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao, Chem. Phys. Lett. 373, 28 (2003)
44.C. Y. Chen, C. I. Lin, and S. H. Chen, Br. Ceram. Trans. 99, 57 (2000)
45.J. P. Murray, A. Steinfeld, and E. A. Fletcher, Energy 20, 695 (1995)
46.M. Johnsson, Solid State Ionics 172, 365 (2004)
47.C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440 (2004)
48.A. Alizadeh, E. T. Nassaj, and N. Ehsani, J. Eur. Ceram. Soc. 24, 3227 (2004)
49.P. Nguyen, H. T. Ng, and M. Meyyappan, Adv. Mater. 17, 549 (2005)
50.D. Wang and H. Dai, Angew. Chem. Int. Ed. 41, 4783 (2002)
51.Mathur S, Shen H, Sivakov V, Werner U, Chem. Mater. 16, 2449 (2004)
52.A. Morales, C.M. Lieber, Science, 279, 208 (1998)
53.Y. H. Tang, Y. F. Zhang, N. Wang, I. Bello, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 74, 3824 (1999)
54.B. Wen, Y Huang, J. J. Boland, J. Mater. Chem., 18, 2011 (2008)
55.C.N.R. Rao, F.L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003)
56.R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
57.R.S. Wagner and W.C. Ellis, Trans. Met. Soc. AIME 233, 1053 (1965)
58.R.S. Wagner, “Whisker Technology”, Ed. A.P. Levitt, Wiley New York, pp.47-119 (1970)
59.Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
60.T. I. Kamins, R. S. Williams, Y. Chen, Y. L. Chang, Y. A. Chang, Appl. Phys. Lett. 76, 562 (2000)
61.Wang, V. Schmidt, S. Senz, U. Gosele, Nature Nanotech. 1, 186 (2006)
62.A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, L . R. Wallenberg, Nature Mater. 3, 677 (2004)
63.T. Hanrath and B.A. Korgel , J. Am. Chem. Soc. 124, 1424 (2002)
64.T. Hanrath and B. A. Korgel, Adv. Mater. 15, 437 (2003)
65.F. M. Davidson, A. D. Schricker, R. J. Wiacek, B. A. Korgel, Advanced Materials 16, 646 (2004)
66.H. Y. Tuan, D. C. Lee, T. Hanrath, and B. A. Korgel, Chem. Mater. 17, 5705 (2005)
67.S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, MRS Bull. 24, 36 (1999)
68.S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, J. Mater. Res. 14, 4503 (1999)
69.N. Wang, Y. H. Tang, Y. F. Zhang, C. S .Lee, and S. T. Lee, Phys. Rev. B 58, R16024 (1998)
70.Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
71.J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, Adv. Mater. 15, 70 (2003)
72.T. S. Chu, R. Q. Zhang, and H. F. Cheung, J. Phys. Chem. B 105, 1705 (2001)
73.R. Q. Zhang, Y. Lifshitz, and S. T. Lee, Adv. Mater. 15, 635 (2003)
74.X. M. Meng, J. Q. Hu, Y. Jiang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 83, 2241 (2003)
75.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 345, 377 (2001)
76.H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 27, 263 (2000)
77.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Adv. Mater. 13, 591 (2001)
78.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 78, 3304 (2001)
79.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, J. Vac. Sci. Technol. B 19, 1115 (2001)
80.J. Q. Hu, X. L. Ma, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 344, 97 (2001)
81.Y. H. Tang, N. Wang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 2921 (1999)
82.Kurt W. Kolasinski, Current Opinion in Solid State and Materials Science 10, 182 (2006)
83.汪建民等人,"材料分析",中國材料科學學會 (1998)
84.T. I. Kamins, X. Li, R. S. Williams, and X. Liu X, Nano Lett. 4, 503 (2004)
85.X. H. Sun, C. Didychuk, T. K. Sham, and N. B. Wong, Nanotechnology 17, 2925 (2006)
86.J. R. Morant, J. E. Carceller, A. Herms, P. Cartujo, and J. Barbolla, Appl. Phys. Lett. 41, 656 (1982)
87.A. M. Morales and C. M. Lieber, Science 279, 208 (1998)
88.S. Mathur, H. Shen, V. Sivakov, and U. Werner, Chem. Mater. 16, 2449 (2004)
89.W. L. Lo, H. C. Chang, T, J. Hsu, and W. T. Lin, Jpn. J. Appl. Phys. 47, 3299 (2008)
90.X. Sun, G. Calebotta, B. Yu, G. Selvaduray, and M. Meyyappan, J. Vac. Sci. Technol. B25, 415 (2007)
91.H. Y. Tuan, D. C. Lee, and B. A. Korgel, Angew. Chem. Int. Ed. 45, 5184 (2006)
92.Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, P.H. Fleming, Appl. Phys. Lett. 81, 3046 (2002)
93.Z. Zhu, T.L. Chen, Y. Gu, J. Warren, R.M. Osgood, Jr. Chem. Mater. 17, 4227 (2005)
94.Y F Zhang, Y H Tang, N Wang, C S Lee, I Bello and S T Lee, Phys. Rev. B 61 4518 (2000)
95.K. P. Kalyanikutty, G. Gundiah, A. Govindaraj, and C. N. R. Rao, J. Nanosci. Nanotech. 5, 421 (2005)
96.H. W. Kim, S. H. Shim, and J. W. Lee, Appl. Sur. Sci. 253, 7207 (2007)
97.M. Zacharias and P.M.Fauchet, J. Non-Cryst. Solids 227, 1058 (1998)
98.H. J. Fitting, T. Barfels, A. N. Trukhin, B. Schmidt, Journal of Non-Crystalline Solids 279, 51 (2001)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top