跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 18:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王泰翔
研究生(外文):Tai-Siang Wang
論文名稱:銲錫接點於高速衝擊測試下之破壞行為及機制之研究
論文名稱(外文):Investigation on the Fracture Behavior and Mechanism of Solder Joint under High Speed Ball Impact Test
指導教授:林光隆
指導教授(外文):Kwang-Lung Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:102
中文關鍵詞:破壞機制銲錫接點
外文關鍵詞:fracture mechanismsolder joint
相關次數:
  • 被引用被引用:1
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用BIT(Ball Impact Test)系統研究四種銲錫接點系統:Sn-37Pb/Au/Ni、Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga/Au/Ni(5e/Au/Ni)、Sn-1Ag-0.5Cu/Cu(SAC105/Cu)、Sn-3Ag-0.5Cu/Au/Ni(SAC305/Au/Ni)的高速衝擊破壞行為及機制,選用的衝擊速度分別為1、1.5、2 m/s。
觀察三種衝擊速度所形成之破壞面可知,Sn-37Pb/Au/Ni沿著銲錫內部產生延性破壞;5e/Au/Ni沿著銲錫、銲錫/AgZn3、AgZn3/AuZn3界面發生延性脆性混合型破壞;SAC105/Cu則穿過Cu6Sn5產生脆性破壞;SAC305/Au/Ni幾乎沿著(Cu,Ni)6Sn5/Ni基材界面產生脆性破壞。Sn-37Pb/Au/Ni、5e/Ni/Au銲錫接點之最大衝擊破壞力Fmax隨著衝擊速度增加並無明顯變化;SAC105/Cu、SAC305/Au/Ni之Fmax則隨著衝擊速度增加約略有下降的趨勢。另外,產生初始衝擊破壞所需的能量E以延性以及延性脆性混合型破壞的Sn-37Pb/Au/Ni、5e/Au/Ni較高,而脆性破壞的SAC105/Cu、SAC305/Au/Ni產生初始破壞所需的能量較小。而四種銲錫接點在達到最大衝擊破壞力所需要的時間皆隨著衝擊速度的增加而逐漸縮短。
本研究嘗試以以下列三種原因解釋破壞行為:(1)界面晶格失配(Lattice Misfit),(2)各相之間彈性係數(Young’s Modulus)差異,以及(3)不同晶體結構造成塑性變形難易度不同。Sn-37Pb/Au/Ni接點以晶體結構的影響主導了破壞的機制;5e/Au/Ni由Lattice Misfit以及晶體結構差異兩項因素影響了破壞機制;Young’s Modulus的差異和晶體結構的不同則影響了SAC105/Cu的破壞機制;而SAC305/Au/Ni的破壞機制則由上述三種原因同時主導。
本研究提供的是判斷破壞發生的原則,進一步推論出不同銲錫接點的破壞機制,對於不同的銲錫接點系統,影響破壞機制的三種因素所佔的比重可能也會有所更動,造成破壞面發生的位置或破壞模式改變。
In this study, we used high speed Ball Impact Test (BIT) system to investigate the fracture behavior and mechanism of four different kinds of solder joints: Sn-37Pb/Au/Ni、Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga/Au/Ni 、Sn-1Ag-0.5Cu/Cu、Sn-3Ag-0.5Cu/Au/Ni (denoted by 5e/Au/Ni, SAC105/Cu and SAC305/Au/Ni respectively). The impact velocities in the experiment were 1, 1.5, and 2 m/s.
The investigation on fracture morphology indicates that Sn-37Pb/Au/Ni fractured through the solder in a ductile mode, 5e/Au/Ni fractured along the solder, solder/AgZn3 and AgZn3/AuZn3 interfaces in a ductile-brittle mixed mode, while the fracture surface of SAC105/Cu passed through the Cu6Sn5 IMC and resulted in a brittle fracture; Finally, SAC305/Au/Ni exhibited a brittle failure mode with fracture surface observed at the (Cu,Ni)6Sn5/Ni substrate interface. The maximum impact force (Fmax) of Sn-37Pb/Au/Ni and 5e/Au/Ni almost remained constant in various impact velocities while that of SAC105/Cu and SAC305/Au/Ni roughly decreased with increasing impact velocity. Additionally, the energy for fracture initiation (E) of ductile fracture Sn-37Pb/Au/Ni and ductile-brittle mixed mode fracture 5e/Au/Ni were larger than brittle mode fracture SAC105/Cu and SAC305/Au/Ni solder joints. Furthermore, the time for facture initiation reduced with higher impact velocity in all solder joints.
The fracture mechanism were interpreted through: (1) Lattice Misfit, (2) The difference in Young’s Modulus of each phase in the solder joint and (3) Divergent plastic deformation arose from different crystal structure. The predominant factors which controlled the fracture mechanism of solder joints are described as follows: Crystal structure was the most important factor affecting the fracture mechanism of Sn-37Pb/Au/Ni; both Lattice Misfit and crystal structure had influence on the fracture mechanism; difference in Young’s Modulus and crystal structure simultaneously contributed to the brittle fracture of SAC105/Cu; and the brittle failure mode of SAC305/Au/Ni could be ascribed to all of the three factors. These three factors will affect the fracture mechanism to different extent.
What we provided in this study is a principle to determine the fracture initiation, and then took one step further to deduce the fracture mechanism. For different solder joint systems, there exists relative proportion of the three factors in determining the fracture mechanism and the failure mode.
總目錄
中文摘要………………………………………………………….....Ⅰ
Abstract ……………………………………………………………..Ⅱ
致謝………………………………………………………….........Ⅳ
總目錄…………………………………………………………….....Ⅵ
表目錄…………………………………………………………….....Ⅸ
圖目錄…………………………………………………………….....Ⅹ
附錄目錄…………………………………………………………...ⅩⅢ
第壹章 簡介……………………………………………………….....1
1-1 銲錫接點機械性質測試方式……………………………......1
1-1-1摔落測試(Drop test)…………………………………....2
1-1-2 拉伸測試(Cold Bump Pull Tensile test)…………….2
1-1-3 剪力測試(Shear test)………………………………....5
1-1-4 衝擊測試(Impact test)………………………………...5
1-2 文獻回顧………………………………………………….....12
1-3 研究目的………………………………………………….....17
第貳章 實驗方法與步驟…………………………………………....18
2-1 實驗構想與設計………………………………………….....18
2-2 實驗材料選擇…………………………………………….....18
2-3 實驗步驟………………………………………………….....22
2-3-1 機械性質測試……………………………………….....22
2-3-2破斷表面及橫截面分析………………………………....26
2-4 高速衝擊測試簡介 (Ball Impact Test, BIT)…………….26
第參章 結果與討論………………………………………………....33
3-1 Ball Impact Test…………………………………………….33
3-1-1 Ball Impact Test實驗曲線意義……………………….33
3-1-2 Ball Impact Test實驗曲線解讀……………………….34
3-1-2-1最大衝擊破壞力 (Fmax) 之分析………………....34
3-1-2-2 產生初始破壞所需能量 (E) 之分析…………....44
3-1-2-3 達最大衝擊破壞力時之時間(t)之分析…………..44
3-2 衝擊破壞面之分析……………………………………….....50
3-2-1 Sn-37Pb/Au/Ni銲錫接點之破壞分析………………....50
3-2-1-1 衝擊前之原始Sn-37Pb/Au/Ni界面微觀組織…....50
3-2-1-2 Sn-37Pb/Au/Ni於不同速度衝擊破壞後之分析…..50
3-2-2 Sn-8.5-0.5Ag-0.01Al-0.1Ga/Au/Ni銲錫接點之破壞分
析………………………………………………………...54
3-2-2-1 衝擊前之原始5e/Au/Ni銲錫接點界面微觀組織...54
3-2-2-2 5e/Au/Ni於不同速度衝擊破壞後之分析………...55
3-2-3 Sn-1.0Ag-0.5Cu/Cu銲錫接點之破壞分析……………..57
3-2-3-1 衝擊前之原始Sn-1.0Ag-0.5Cu/Cu銲錫接點界面微
觀組織………………………………………….....57
3-2-3-2 Sn-1.0Ag-0.5Cu/Cu於不同速度衝擊破壞後之分析
………………………………………………….....60
3-2-4 Sn-3.0Ag-0.5Cu/Au/Ni銲錫接點之破壞分析………...63
3-2-4-1 衝擊前之原始Sn-3.0Ag-0.5Cu/Au/Ni銲錫接點界面
微觀組織…………………………………….......63
3-2-4-2 Sn-3.0Ag-0.5Cu/Au/Ni於不同速度衝擊破壞後之分
析……………………………………………….....63
3-3 衝擊機制之探討………………………………………….....67
3-3-1 Lattice Misfit對整體結構之影響…………………….67
3-3-2 彈性係數在衝擊過程中扮演之角色……………….....74
3-3-3 塑性變形之關聯性………………………………….....78
3-4 綜合討論………………………………………………….....82
3-4-1 Sn-37Pb/Au/Ni銲錫接點之破裂機制………………....82
3-4-2 5e/Au/Ni銲錫接點之破裂機制………………………...83
3-4-3 SAC105/Cu銲錫接點之破裂機制……………………....84
3-4-4 SAC305/Au/Ni銲錫接點之破壞機制……………….....85
第肆章 結論………………………………………………………....88
參考文獻………………………………………………………….....90

表目錄

表1-1不同衝擊測試之文獻資料…………………………………....14
表2-1四種銲錫接點於不同衝擊速度之實驗組數(左:實驗組數 右:
去除異常值後組數)…………………………………….......25
表3-1四種銲錫接點在不同衝擊速度下之最大衝擊力(Fmax)平均值
與標準差……………………………………………..........41
表3-2四種銲錫之應變速率敏感指數( Strain rate sensitivity
index, m)……………………………………………………...43
表3-3四種銲錫接點在不同衝擊速度下產生初始破壞所需要的能量
平均值(E)與標準差………………………………….........46
表3-4四種銲錫接點在不同衝擊速度下達到最大衝擊破壞力所需的
時間(t)及標準差…………………………………….........48
表3-5四種銲錫接點中所含的相及晶體結構與晶格常數………....70
表3-6四種銲錫接點各相之間的Lattice Misfit值………………..73
表3-7四種銲錫接點中各相的彈性係數及彈性係數差…………....77
表3-8不同結構的材料滑移系統及數目…………………………....79
表3-9影響四種銲錫接點破壞機制原因之比較…………………....87

圖目錄

圖1-1摔落測試機台示意圖 (a)儀器整體構造,(b)衝擊模具組…...3
圖1-2拉伸測試示意圖…………………………………………….....4
圖1-3剪力測試示意圖…………………………………………….....7
圖1-4 Micro-impact Testing Machine裝置示意圖………………..8
圖1-5 Micro Impact Tester裝置示意圖…………………………...9
圖1-6 Ball Impact Test系統示意圖……………………………….11
圖2-1實驗流程圖…………………………………………………....19
圖2-2銲錫接點結構示意圖:(a)Sn-37Pb、5e、SAC305與Au/Ni/Cu
銲墊,(b)SAC305與Cu銲墊……………………...............20
圖2-3衝球測試 ( Ball Impact Test ) 系統裝置示意圖…………21
圖2-4撞針穿過儀器中央平台輕置於銲錫接點示意圖…………....23
圖2-5 Ball impact test所選用的試片尺寸及測試之銲錫接點位置
示意圖………………………………………………….......24
圖2-6由CCD camera側面定位撞針及BGA基板之間的距離….......27
圖2-7 (a)由CCD camera正面定位撞針及球的相對位置示意圖 (b)
由CCD camera側面定位撞針及基板間距示意圖…….......28
圖2-8 Ball Impact Test力量─位移示意圖……………………….32
圖3-1 Sn-37Pb/Au/Ni銲錫接點在不同衝擊速度下的力量(F)─位移
(d)與所有曲線平均值圖,衝擊速度分別為(a),(b) 1 m/s
(c),(d) 1.5 m/s (e),(f) 2 m/s……………………………37
圖3-2 Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga/Au/Ni銲錫接點在不同衝擊
速度下的力量(F)─位移(d)與所有曲線平均值圖,衝擊速度
分別為(a),(b) 1 m/s (c),(d) 1.5 m/s (e),(f) 2 m/s…38
圖3-3 Sn-1.0Ag-0.5Cu/Cu銲錫接點在不同衝擊速度下的力量(F)─
位移(d)與所有曲線平均值圖,衝擊速度分別為(a),(b) 1
m/s (c),(d) 1.5 m/s (e),(f) 2 m/s……………………..39
圖3-4 Sn-3.0Ag-0.5Cu/Au/Ni銲錫接點在不同衝擊速度下的力量
(F)─位移(d)與所有曲線平均值圖,衝擊速度分別為(a),
(b) 1 m/s (c),(d) 1.5 m/s (e),(f) 2 m/s………………40
圖3-5四種銲錫接點之最大衝擊力─衝擊速度關係圖…………....42
圖3-6四種銲錫接點於不同衝擊速度下產生初始破壞所需要的能量
關係圖…………………………………………………........47
圖3-7四種銲錫接點在不同衝擊速度下達到最大衝擊破壞力之時間
關係圖…………………………………………………........49
圖3-8未衝擊前銲錫接點橫截面微觀組織圖(a)Sn-37Pb/Au/Ni銲錫
接點,(b)A區域之放大圖, (c)Sn-8.5Zn-0.5Ag-0.01Al-
0.1Ga/Au/Ni銲錫接點,(d)B區域之放大圖………………....51
圖3-9 Sn-37Pb/Au/Ni銲錫接點於不同衝擊速度下之破壞面上視圖
,衝擊速度分別為:(a)1 m/s (c)1.5 m/s (e)2 m/s;(b)
(d)分別為(a)(c)之局部放大圖………………………………52
圖3-10 Sn-37Pb/Au/Ni銲錫接點於不同速度下之破壞面橫截面圖,
衝擊速度分別為:(a)1 m/s (c)1.5 m/s (e)2 m/s;(b)(d)
分別為 (a)(c)之局部放大圖……………………………...53
圖3-11 5e/Au/Ni銲錫接點於不同衝擊速度下之破壞面上視圖,衝
擊速度分別為:(a)1 m/s (c)1.5 m/s (e)2 m/s;(b)(d)
(f)分別為(a)(c)(e)之局部放大圖…………………......56
圖3-12 5e/Au/Ni銲錫接點於不同速度下之破壞面橫截面圖,衝擊
速度分別為:(a)1 m/s (c)1.5 m/s (e)2 m/s;(b)(d)(f)
分別為 (a)(c)(e)之局部放大圖……………………………58
圖3-13未經衝擊前銲錫接點橫截面顯微組織圖(a)SAC105/Cu銲錫接
點,(b)C區域之放大圖,(c)SAC305/Au/Ni銲錫接點,(d)D區域
之放大圖……………………………………...............59
圖3-14 SAC105/Cu銲錫接點於不同衝擊速度下之破壞面上視圖,衝
擊速度分別為:(a)1 m/s (c)1.5 m/s (e)2 m/s;(b)(d)
(f)分別為(a)(c)(e)之局部放大圖…………………......61
圖3-15 SAC105/Cu銲錫接點於不同速度下之破壞面橫截面圖,衝擊
速度分別為:(a)1 m/s (c)1.5 m/s (e)2 m/s;(b)(d)(f)
分別為(a)(c)(e)之局部放大圖………………….........62
圖3-16 SAC305/Au/Ni銲錫接點於不同衝擊速度下之破壞面上圖 ,
衝擊速度分別為:(a)1 m/s (c)1.5 m/s (e)2 m/s;(b)(d)
(f)分別為(a)(c)(e)之局部放大圖…………………......64
圖3-17 SAC305/Au/Ni銲錫接點於不同速度下之破壞面橫截面圖,
衝擊速度分別為:(a)1 m/s (c)1.5 m/s (e)2 m/s;(b)(d)
(f)分別為(a)(c)(e)之局部放大圖…………………......65
圖3-18異相界面不對稱及產生之misfit dislocation示意圖…...68
圖3-19 Sn-37Pb/Au/Ni銲錫接點中富鉛相與Ni3Sn4 IMC之間的
Lattice Misfit(δ)計算範例……………………………….72
圖3-20彈性係數不同的材料在彈性變形區域內的σ - ε關係圖....76

附錄目錄

附錄一 負荷元電壓轉換方式說明………………………………....99
附錄二 Ball Impact Test系統參數設定………………………….100
附錄三 實際負荷元所記錄的電壓-時間關係圖………………....101
1.J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York (1995), pp. 1-76.
2.L. C. Shiau, C. E. Ho, and C. R. Kao, “Reactions Between Sn-Ag-Cu Lead-Free Solders and the Au/Ni Surface Finish in Advanced Electronic Packages”, Soldering and Surface Mount Technology, Vol. 14, No. 3 (2002) pp. 25-29.
3.H. T. Chen, C. Q. Wang, M. Y. Li, and D.W. Tian, “Effect of Cu Diffusion Through Ni on the Interfacial Reactions of Sn3.5Ag0.75Cu and SnPb Solders with Au/Ni/Cu Substrate During Aging”, Materials Letters, Vol. 60 (2006) pp. 1669-1672.
4.C. W. Huang and K. L. Lin, “Interfacial Reactions of Lead-Free Sn–Zn Based Solders on Cu and Cu Plated Electroless Ni–P/Au Layer Under Aging at 150 °C”, Journal of Materials Research, Vol. 19, No.12 (2004) pp. 3560-3568.
5.J. W. Yoon and S. B. Jung, “Reliability Studies of Sn-9Zn/Cu Solder Joints with Aging Treatment”, Journal of Alloys and Compounds, Vol. 407 (2005) pp. 141-149.
6.J. W. Yoon and S. B. Jung, “Solder Joint Reliability Evaluation of Sn-Zn/Au/Ni/Cu Ball-Grid-Array Package During Aging”, Materials Science and Engineering A, Vol. 452-453 (2007) pp. 46-54.
7.K. S. Kim, J. M. Yang, C. H. Yu, and H. J. Jeon, “Microstructures and Shear Strength of Interfaces Between Sn-Zn Lead-free Solders and Au/Ni/Cu UBM”, Materials Transactions, Vol. 45, No. 3 (2004) pp. 721-726.
8.H. T. Lee and Y. H. Lee, “Adhesive Strength and Tensile Fracture of Ni Particle Enhanced Sn-Ag Composite Solder Joints”, Materials Science and Engineering A, Vol. 419 (2006) pp. 172-180.
9.H. T. Lee, M. H. Chen, J. M. Jao, and T. L. Liao, “Influence of Intermetallic Compound on Fracture Behavior of Solder Joints”, Materials Science and Engineering A, Vol. 358 (2003) pp. 134-141.
10.Subassembly Mechanical Shock, JESD22-B110, JEDEC Solid State Technology Association, (March 2001).
11.Board Level Drop Test Method of Component for Handheld Electronic Products, JESD22-B110, JEDEC Solid State Technology Association, (July 2003).
12.M. Nishiura, A. Nakayama, S. Sakatani, Y. Kohara, K. Uenishi, and K. F. Kobayashi, “Mechanical Strength and Microstructure of BGA Joints Using Lead-Free Solders”, Materials Transactions, Vol. 43, No.8 (2002) pp. 1802-1807.
13.BGA Ball Shear, JESD22-B117, JEDEC Solid State Technology Association, (July 2000).
14.J. M. Koo and S. B. Jung, “Effect of Displacement Rate on Ball Shear Properties for Sn-37Pb and Sn-3.5Ag BGA Solder Joints during Isothermal Aging”, Microelectronics Reliability, Vol. 47 (2007) pp. 2169-2178.
15.J. W. Yoon, H. S. Chun, and S. B. Jung, “Interfacial Reaction and Mechanical Characterization of Eutectic Sn-Zn/ENIG Solder Joints during Reflow and Aging”, Materials Transactions, Vol. 46, No.11 (2005) pp. 2386-2393.
16.J. W. Yoon and S. B. Jung, “Interfacial Reactions and Shear Strength on Cu and Electrolytic Au/Ni Metallization with Sn-Zn Solder”, Journal of Materials Research, Vol. 21, No. 6 (2006) pp. 1590-1599.
17.T. Shoji, K. Yamamoto, R. Kajiwara, T. Morita, K. Sato, and M. Date, Proceedings of the 16th JIEP Annual Meeting (2002) pp. 97.
18.M. Date, T. Shoji, M. Fujiyoshi, K. Sato, and K. N. Tu, “Ductile-to-Brittle Transition in Sn-Zn Solder Joints Measured by Impact Test”, Scripta Materialia, Vol. 51 (2004) pp. 641-645.
19.S. Ou, Y. Xu, and K. N. Tu, “Micro-Impact Test on Lead-Free BGA Balls on Au/Electrolytic Ni/Cu Bond Pad”, Proceedings of the 55th Electronic Components and Technology Conference (2005) pp. 467-471.
20.M. Date, K. N. Tu, T. Shoji, M. Fujiyoshi, and K. Sato, “Interfacial Reactions and Impact Reliability of Sn-Zn Solder Joints on Cu or Electroless Au/Ni(P) Bond-Pads”, Journal of Materials Research, Vol. 19, No. 10 (2004) pp. 2887-2896.
21.K. T. Tsai, F. L. Liu, E. H. Wong, and R. Rajoo, “High Strain Rate Testing of Solder Interconnections”, Soldering and Surface Mount Technology, Vol. 18, No. 2 (2006) pp. 12-17.
22.Y. L. Huang, K. L. Lin, and D. S. Liu, “The Micro-Impact Fracture Behavior of Lead-free Solder Ball Joints”, Journal of Materials Research, Vol. 23, No. 4 (2008) pp. 1057-1063.
23.Y. S. Lai, J. M. Song, H. C. Chang, and Y. T. Chiu, “ Ball Impact Responses of Ni- or Ge-Doped Sn-Ag-Cu Solder Joints”, Journal of Electronic Materials, Vol. 37, No. 2 (2008) pp. 201-209.
24.C. L. Yeh, Y. S. Lai, H. C. Chang, and T. H. Chen, “Correlation Between Package-Level Ball Impact Test and Board-Level Drop Test”, Proceeding of 7th Electronics Packaging Technology Conference (2005) pp. 270-275.
25.C. L. Yeh and Y. S. Lai, Journal of Electronic Materials, “Effects of Solder Alloy Constitutive Relationships on Impact Force Responses of Package-Level Solder Joints Under Ball Impact Test”, Vol. 35, No. 10 (2006) pp. 1892-1901.
26.C. L. Yeh and Y. S. Lai, “Insights into Correlation Between Board-Level Drop Reliability and Package-Level Ball Impact Test Characteristics”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 30, No. 1 (2007) pp. 84-91.
27.Y. S. Lai, H. C. Chang, and C. L. Yeh, “Evaluation of Solder Joint Strengths Under Ball Impact Test”, Microelectronics Reliability, Vol. 47 (2007) pp. 2179-2187.
28.C. L. Yeh and Y. S. Lai, “Design Guideline for Ball Impact Test Apparatus”, Journal of Electronic Packaging, Transactions of ASME, Vol. 129 (2007) pp. 98-104.
29.C. L. Yeh and Y. S. Lai, “Support Excitation Scheme for Transient Analysis of JEDEC Board-Level Drop Test”, Microelectronics Reliability, Vol. 46 (2006) pp. 626-636.
30.G. E. Dieter, Mechanical Metallurgy, New York: McGraw-Hill (1984).
31.X. Long, I. Dutta, V. Sarihan, and D. R. Frear, “Deformation Behavior of Sn-3.8Ag-0.7Cu Solder at Intermediate Strain Rates: Effect of Microstructure and Test Conditions”, Journal of Electronic Materials, Vol.37, No.2 (2008) pp. 189-200.
32.F. Lang, H. Tanaka, O. Munegata, T. Taguchi, and T. Narita, Materials, “The Effect of Strain Rate and Temperature on the Tensile Properties of Sn-3.5Ag Solder”, Materials Characterization Vol. 54 (2005) pp. 223-229.
33.T. G. Hsuan, Department of Materials Science and Engineering, NCKU, unpublished.
34.張烜琥, 多種錫鉛及無鉛銲錫材料之動態衝擊特性研究, 國立成功大學碩士論文, 民國九十六年, pp. 102.
35.K.S. Kim, S.H. Huh, and K. Sugamuma, “Effects of Cooling Speed on the Microstructure and Tensile Properties of Sn-Ag-Cu Alloys”, Materials Science and Engineering A, Vol. 333 (2002) pp. 106-114.
36.H. Okamoto and S. D. Henry, Alloy Phase Diagrams, ASM, Handbook, Vol. 3, pp. 40.
37.P. T. Vianco, J. A. Rejent, and P. F. Hlava, “Solid-State Intermetallic Compound Layer Growth Between Copper and 95.5Sn-3.9Ag-0.6Cu Solder”, Journal of Electronic Materials, Vol.33, No.9 (2004) pp. 991-1003.
38.T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, K. Zeng, and J. K. Kivilahti, “Morphology, Kinetics, and Thermodynamics of Solid-State Aging of Eutectic SnPb and Pb-Free Solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu”, Journal of Materials Research, Vol.17, No.2, Feb (2002) pp. 291-301.
39.Y. D. Jeon, S. Nieland, A.Ostamann, H. Reichl, and K. W. Paik, “A Study on Interfacial Reactions Between Electroless Ni-P Under Bump Metallization and 95.5Sn-4.0Ag-0.5Cu Alloy”, Journal of Electronic Materials, Vol.32 (2003) pp. 548-557.
40.C. W. Hwang, K. Suganuma, M. Kiso, and S. Hashimoto, “Influence of Cu Addition to Interface Microstructure Between Sn-Ag Solder and Au/Ni-6P Plating”, Journal of Electronic Materials, Vol.33 (2004) pp. 1200-1209.
41.D. G. Kim, J. W. Kim, and S. B. Jung, “Effect of aging conditions on interfacial reaction and mechanical joint strength between Sn-3.0Ag-0.5Cu solder and Ni–P UBM”, Materials Science and Engineering B, Vol.121 (2005) pp. 204-210.
42.D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys. CRC Press (1992).
43.S. Ahat, M. sheng, and L. Luo, “Microstructure and Shear Strength evolution of SnAg/Cu Surface Mount Solder Joint During Aging”, Journal of Electronic Materials, Vol. 30, No. 10 (2001) pp. 1317-1322.
44.K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, and K. N. Tu, “Kirkendall Void Formation in Eutectic SnPb Solder Joints on Bare Cu and its Effect on Joint Reliability”, Journal of Applied Physics, Vol.97 (2005) 024508.
45.Donald R. Askeland, The Science and Engineering of Materials, 3rd edition , PWS Publishing Company, Boston, MA (1994).
46.R. W. G. Wyckoff. Crystal Structure 1, 2nd edition, Interscience Publisher, New York, New York (1963) pp. 7-83.
47.Nowotny, Schubert, Metallforschung 1/2, Vol. 23 (1946).
48.E. R. Jette and F. Foote, “Precision Determination of Lattice Constants”, Journal of Chemical Physics, Vol. 3 (1935) pp. 605-616.
49.T. B. Massalski, Binary Alloy Phase Diagrams, Vol. 1, American Society for Metalls, Metals Park, Ohio (1986) pp. 338-339.
50.K. Gotzmann, U. Burkhardt, M. Ellner, and Yu. Grin, Power Diffraction, Vol. 12 (1997) pp. 248-251.
51.A. K. Larsson, L. Stenberg, and S. Lidin, “The Superstructure of Domain-Twinned η’-Cu6Sn5”, Acta Crystallographica Section B, Vol. 50 (1994) pp. 636-643.
52.I. K. Suh, H. Ohta, Y. Waseda, Journal of Materials Science, Vol. 23 (1988) 757-760.
53.Y. D. Jeon, S. Nieland, A. Ostmann, H. Reichl, and K. Y. Paik, “A Study on Interfacial Reactions Between Electroless Ni-P Under Bump Metallization and 95.5Sn-4.0Ag-0.5Cu Alloy”, Journal of Electronic Materials, Vol. 32 (2003) pp. 548-557.
54.T. Shibutani, Q. Yu, and M. Shiratori, “A Study of Deformation Mechanism during Nanoindentation Creep in Tin-Based Solder Balls”, Journal of Electronic Packing, Vol. 129 (2007) pp. 71-75.
55.H. Tanaka, L. F. Qun, O. Munekata, T. Taguchi, and T. Narita, “Elastic Properties of Sn-Based Pb-Free Solder Alloys Determined by Ultrasonic Pulse Echo Method”, Materials Transactions, Vol. 46, No. 6 (2005) pp. 1271-1273.
56.John H. Lau, Solder Joint Reliability, Van Nostrand Reinhold (1990) pp. 455-477.
57.John H. Lau and Y. H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGrawHill (1997) pp. 132-147.
58.G. Y. Jang, J. W. Lee, and J. G. Duh, “The Nanoidentation Characteristic of Cu6Sn5, Cu3Sn, and Ni3Sn4 Intermetallic Compounds in the Solder Bump”, Journal of Electronic Materials, Vol. 33, No.10 (2004) pp. 1103-1110.
59.G. Ghosh, “Elastic Properties, Hardness, and Indentation Fracture Toughness Intermetallic Relevant to Electronic Packaging”, Journal of Material Research, Vol. 19, No. 5 (2004) pp. 1439-1454.
60.R.J. Fields, S.R. Law Ⅲ, and G.K. Lucey, Jr., The Metal Science of Joining, edited by M. J. Cieslak, J. H. Perepezko, S. Kang, and M. E. Glicksman, TMS, Warrendale, PA (1992) pp. 165-173.
61.D. R. Frear, S. N. Burchett, H. S. Morgan and J. H. Lau, eds., The Mechanics of Solder Alloy Interconnects, Van Nostrand Reinhold, New York (1994), pp. 60.
62.Luhua. Xu and John H. L. Pang, “Nanoindentation on SnAgCu Lead-Free Solder Joints and Analysis”, Journal of Electronic Materials, Vol. 35, No. 12 (2006) pp. 2107-2115.
63.Robert B. Ross, Metallic Materials Specification Handbook 4th edition, Chapman and Hall, New York (1992).
64.K. M. Kumar, V. Kripesh, L. Shen, K. Zeng, and Andrew A.O. Tay, “Nanoindentation Study of Zn-Based Pb Free Solders used in Fine Chip Interconnect Applications”, Materials Science and Engineering A, Vol. 423 (2006) pp. 57-63.
65.W. Koster and W. Rauscher, National Advisory Committee for Aeronautics, Technical Memorandum Vol. 1321 (1951) pp. 32-33.
66.W. Hayden, W. G. Moffat, and J. Wulff, Mechanical Behavior, 3rd edition, Wiley Eastern private limited, New Delhi (1974) pp. 36.
67.X. Deng, M. Koopman, N.Chawla, and K. K. Chawla, “Young’s Modulus of (Cu, Ag)-Sn Intermetallics Measured by Nanoindentation”, Materials Science and Engineering A, Vol. 364 (2004) pp. 240-243.
68.W. D. Callister, Introduction to Materials Science and Engineering, Wiley, New York (2002).
69.D. Suh, D. W. Kim, P Liu, H Kim, J. A. Weninger, C. M. Kumar, A. Prasad, B. W. Grimsley, and H. B. Tejada, “Effects of Ag Content on Fracture Resistance of Sn-Ag-Cu Lead-Free Solders under High-Strain Rate Conditions”, Materials Science and Engineering A, Vol. 460-461 (2007) pp. 595-603.
70.B. Subrahmanyan, “Elastic Moduli of Some Complicated Binary Alloy Systems”, Transactions - Japan Institute of Metals, Vol.130 (1972) pp. 93-95.
71.R. R. Chromik, R.P. Vinci, S.L. Allen, and M.R. Notis, “Nanoidentation Measurements on Cu-Sn and Ag-Sn Intermetallics Formed in Pb-Free Solder Joints”, Journal of Material Research, Vol. 18, No. 9 (2003) pp. 2251-2261.
72.R. Cabarat, L. Gullet, and R. LeRouz, J. Inst. Met., Vol.75 (1975) pp. 391.
73.L. M. Ostrovskaya, V. N. Rodin, and A. I. Kuznetsov, Sov. J. Non-Ferrous Metall. (Tsv. Metally), Vol. 26 (1985) p. 90.
74.C. Kanchanomai, Y. Miyashita and Y. Mutoh, “Low-Cycle Fatigue Behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi Lead-Free Solders”, Journal of Electronic Materials, Vol.31 (2002) pp. 456-465.
75.L. Xu and John H. L. Pang, “Nano-indentation Characterization of Ni-Cu-Sn IMC Layer Subjected to Isothermal Aging", Thin Solid Film, Vol. 504 (2006) pp. 362-366.
76.N. S. Liu and K. L. Lin, “Microstructure and Mechanical Properties of Low Ga content Sn-8.55Zn-0.5Ag-0.1Al-xGa Solders”, Scripta Materialia, Vol. 52 (2005) pp. 369-374.
77.K. I. Chen and K. L. Lin, “The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys-The Effect of Ga”, Journal of Electronic Materials, Vol. 32, No. 10 (2003) pp. 1111-1116.
78.K. I. Chen, S. C. Cheng, S. Wu, and K. L. Lin, “Effects of Small Additions of Ag, Al, and Ga on the Structure and Properties of the Sn–9Zn Eutectic Alloy”, Journal of Alloys and Compounds, Vol. 416 (2006) pp. 98-105.
79.C. L. Yeh, Y. S. Lai, H. C. Chang, and T. H. Chen, “Empirical Correlation between Package-level Ball Impact Test and Board-level Drop reliability”, Microelectronics Reliability, Vol. 47, No. 7 (2007) pp. 1127-1134.
80.Marc. A. Meyers, Dynamic Behavior of Materials, John Wiley and Sons, New York (1994) pp. 323-381.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top