跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡世群
研究生(外文):Shih-Chun Tsai
論文名稱:藉由順流式微波電漿在自組裝單分子層上進行圖案轉移並應用於微影製程及分子的置換
論文名稱(外文):Patterning self-assembled monolayers for micro-lithography and molecular exchange using downstream microwave plasma
指導教授:廖峻德廖峻德引用關係
指導教授(外文):Jiunn-Der Liao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:72
中文關鍵詞:順流式微波電漿掃描式光電子顯微術自組裝單分子層負型或正型阻劑置換反應同步輻射高解析X光光電子能譜術
外文關鍵詞:synchrotron-based high resolution X-ray photoemiscanning photoelectron microscopymolecular exchangenegative or positive resistdownstream microwave plasmaself-assembled monolayers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
自我組裝單分子層(self-assembled monolayers, SAMs)受X-ray、電子束或離子束等物理源照射後可呈現負型或正型阻劑的特性;且利用電子束照射可促進SAMs分子的置換反應;除了前述的物理源之外,順流式微波電漿也是一種對SAMs改質的方法。因此,本研究利用順流式微波氮氣電漿對以化學吸附於金面上的octadecanethiol (ODT) SAMs進行改質,ODT/Au以金網遮罩後暴露於電漿進行圖案轉移,接著利用金蝕刻液進行蝕刻反應使轉移後的圖案顯影;隨後利用Mercapto-undecanoic acid (MUA)的酒精溶液進行置換反應測試電漿處理過的ODT/Au,觀察是否存在來自MUA的新S-Au鍵結及COOH尾端官能基來識別置換反應的發生。藉由同步輻射高解析X光光電子能譜術及掃描式光電子顯微術分析各個不同階段的表面鍵結變化,以探討兩個主題:形成負型或正型阻劑的可能機制,以及隨著電漿處理後進行的置換反應發生程度。
實驗結果顯示,藉著控制不同電漿處理時間,可使電漿改質後的ODT/Au呈現出負型或正型阻劑的特性,造成此現象的可能效應有:頭端分子、碳鏈層及尾端官能基的氧化及脫附而破壞SAMs在金面上的結構,還有碳鏈的交錯鏈結而強化分子的結構。經電漿處理過的ODT分子則會因MUA而發生脫附與置換。基於這些研究結果,利用電漿在SAMs上進行圖案轉移並結合分子的置換反應,未來可應用於製作微米/奈米等級元件如微流道、微型生物感晶片等。
Self-assembled monolayers (SAMs) can behave as negative or positive resist after irradiated by physical sources such as X-ray, electron beam or ion beam. As well, the electron beam irradiated SAMs can thereafter promote exchange reactions with other SAMs molecules. In addition to the mentioned physical sources, the downstream microwave plasma can provide an alternative method to modify SAMs. In this study, we applied the downstream microwave nitrogen plasma for the modification of the octadecanethiol (ODT) SAMs chemically adsorbed on Au. The ODT/Au was masked by Au mesh and patterned by the exposure of plasma. The patterned ODT/Au was then developed by Au etching process. Subsequently the plasma-exposed ODT/Au was particularly examined by the molecular exchange reaction with Mercapto-undecanoic acid (MUA) in ethanol. The exchange reaction on the plasma-exposed ODT/Au was distinguished by the presence of newly formed S-Au bonds and the COOH tail group from MUA. Synchrotron-based high resolution X-ray photoemission spectroscopy and scanning photoelectron microscopy were applied to characterize the surfaces prepared in different stages. Two topics were discussed: a possible mechanism that formed a negative or positive resist and an extent of subsequent exchange reaction on the plasma-exposed ODT/Au. Experimental results demonstrated that by controlling the plasma exposure time, the modified ODT/Au was competent to behave as negative or positive resist. The most probable process is related to the oxidization or molecular desorption (i.e. with the tail group, alkyl chains, and the head group) that tends to damage SAMs structure adsorbed on Au as well as cross-linking among alkyl chains (i.e. with a significant amount of lasting S-Au bonds) that tends to enhance the molecular configuration. The plasma-exposed ODT molecules on Au could also be desorbed and exchanged by MUA. Based on these findings, it is promising to apply the plasma-patterned SAMs combined with the molecular exchange reaction for making the variety of micro/nano devices such as micro-fluid channels and micro-scale bio-chip.
第一章 序論 1
1.1 前言 1
1.2 研究動機 2
1.3文獻回顧 2
1.3.1 自組裝單分子層 2
1.3.2 以自組裝單分子層作為蝕刻阻劑 4
1.3.3 藉由電子束照射促進自組裝單分子層的置換反應(exchange reaction) 5
1.3.4 電漿對自組裝單分子層之表面處理 6
1.4 研究目的 7
第二章 理論基礎 8
2.1 自組裝單分子層 8
2.1.1 自組裝單分子層基本介紹 8
2.1.2 自組裝單分子層的結構描述與排列方式 11
2.2 電漿簡介 14
2.2.1 電漿放電形式 14
2.2.2 電漿反應 15
2.2.3 電漿表面改質 16
2.2.4 電漿系統 18
2.3 高解析光電子能譜儀以及掃描式光電子顯微術分析 26
第三章 材料與方法 31
3.1 自組裝單分子層製備 31
3.2 實驗設計 31
3.2.1 順流式氮氣電漿應用於SAMs為超薄光阻的Au表面圖案轉移 32
3.2.2 ODT SAMs經順流式微波氮氣電漿處理後分子的置換反應 34
3.3 順流式微波電漿機台 34
第四章 順流式氮氣電漿應用於SAMs為超薄光阻層的Au表面圖案轉移 36
4.1 順流式氮氣電漿處理後ODT/Au的表面型態及鍵結變化情形 36
4.1.1 SEM表面型態觀察 36
4.1.2 XPS與SPEM分析表面鍵結變化 38
4.2 順流式氮氣電漿處理ODT/Au經濕式蝕刻顯影後之圖案 48
第五章 ODT SAMs經順流式微波氮氣電漿處理後分子的置換反應 51
5.1 未經電漿處理的SAMs分子置換反應 51
5.2 ODT SAMs經電漿處理後分子的置換反應 53
5.2.1 XPS分析表面化學鍵結變化 53
5.2.2 SPEM分析表面微區化學鍵結變化 56
結論 63
參考文獻 64
[1]J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, and et al., "Molecular monolayers and films. A panel report for the Materials Sciences Division of the Department of Energy," Langmuir, vol. 3, pp. 932-950, 1987.
[2]A. B. Artyukhin and P. Stroeve, "Effects of Corrosive Chemicals on Solid-Supported Lipid Bilayers As Measured by Surface Plasmon Resonance," Ind. Eng. Chem. Res., vol. 42, pp. 2156-2162, 2003.
[3]A. Ulman, "Formation and Structure of Self-Assembled Monolayers," Chem. Rev., vol. 96, pp. 1533-1554, 1996.
[4]Q. Zhang and L. A. Archer, "Boundary Lubrication and Surface Mobility of Mixed Alkylsilane Self-Assembled Monolayers," J. Phys. Chem. B, vol. 107, pp. 13123-13132, 2003.
[5]Y. Xia, X.-M. Zhao, and G. M. Whitesides, "Pattern transfer: Self-assembled monolayers as ultrathin resists," Microelectronic Engineering, vol. 32, pp. 255-268, 1996.
[6]T. Massimo, B. Tatiana, S. Bernd, S. Georg, and W. M. Laurens, "Using ultrathin elastomeric stamps to reduce pattern distortion in microcontact printing," Applied Physics Letters, vol. 81, pp. 2094-2096, 2002.
[7]X. Ju, M. Kurahashi, T. Suzuki, and Y. Yamauchi, "Fabrication of a gold pattern with a nanoscale edge by using heptanethiol self-assembled monolayers and a metastable helium beam," Applied Surface Science, vol. 241, pp. 241-245, 2005.
[8]R. Klauser, M. L. Huang, S. C. Wang, C. H. Chen, T. J. Chuang, A. Terfort, and M. Zharnikov, "Lithography with a Focused Soft X-ray Beam and a Monomolecular Resist," Langmuir, vol. 20, pp. 2050-2053, 2004.
[9]M. J. Lercel, M. Rooks, R. C. Tiberio, H. G. Craighead, C. W. Sheen, A. N. Parikh, and D. L. Allara, "Pattern transfer of electron beam modified self-assembled monolayers for high-resolution lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 13, pp. 1139-1143, 1995.
[10]M. Zharnikov, W. Geyer, A. Gölzhäuser, S. Frey, and M. Grunze, "Modification of alkanethiolate monolayers on Au-substrate by low energy electron irradiation: Alkyl chains and the S/Au interface," Physical Chemistry Chemical Physics, vol. 1, pp. 3163 - 3171, 1999.
[11]M. Zharnikov and M. Grunze, "Modification of thiol-derived self-assembling monolayers by electron and x-ray irradiation: Scientific and lithographic aspects," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 20, pp. 1793-1807, 2002.
[12]J. Huang, D. A. Dahlgren, and J. C. Hemminger, "Photopatterning of Self-Assembled Alkanethiolate Monolayers on Gold: A Simple Monolayer Photoresist Utilizing Aqueous Chemistry," Langmuir, vol. 10, pp. 626-628, 1994.
[13]W. Mar, J. Hautman, and M. L. Klein, "Molecular dynamics studies of microscopic wetting phenomena on self-assembled monolayers," Computational Materials Science, vol. 3, pp. 481-497, 1995.
[14]N. Ballav, T. Weidner, K. Rößler, H. Lang, and M. Zharnikov, "A New Approach for the Fabrication of Strongly Heterogeneous Mixed Self-Assembled Monolayers," ChemPhysChem, vol. 8, pp. 819-822, 2007.
[15]N. Ballav, A. Shaporenko, A. Terfort, and M. Zharnikov, "A Flexible Approach to the Fabrication of Chemical Gradients," Advanced Materials, vol. 19, pp. 998-1000, 2007.
[16]N. Ballav, A. Shaporenko, S. Krakert, A. Terfort, and M. Zharnikov, "Tuning the Exchange Reaction between a Self-assembled Monolayer and Potential Substituents by Electron Irradiation," J. Phys. Chem. C, vol. 111, pp. 7772-7782, 2007.
[17]K. Loos, S. B. Kennedy, N. Eidelman, Y. Tai, M. Zharnikov, E. J. Amis, A. Ulman, and R. A. Gross, "Combinatorial Approach To Study Enzyme/Surface Interactions," Langmuir, vol. 21, pp. 5237-5241, 2005.
[18]S. Morgenthaler, S. Lee, S. Zurcher, and N. D. Spencer, "A Simple, Reproducible Approach to the Preparation of Surface-Chemical Gradients," Langmuir, vol. 19, pp. 10459-10462, 2003.
[19]E. E. Kunhardt and L. H. Luessen, Electrical breakdown and discharges in gases: Published in cooperation with NATO Scientific Affairs Division [by] Plenum Press, 1983.
[20]M. S. Rossnagel, J. J. Cuomo, and W. D. Westwood, Handbook of plasma processing technology :fundamentals, etching, deposition, and surface interactions. new Jersey: Noyes Publications, 1990.
[21]N. Inagaki, S. Tasaka, T. Horiuchi, and R. Suyama, "Surface modification of poly(aryl ether ether ketone) film by remote oxygen plasma," Journal of Applied Polymer Science, vol. 68, pp. 271-279, 1998.
[22]Y. W. Park and N. Inagaki, "Surface modification of poly(vinylidene fluoride) film by remote Ar, H2, and O2 plasmas," Polymer, vol. 44, pp. 1569-1575, 2003.
[23]Y. Yamada, T. Yamada, S. Tasaka, and N. Inagaki, "Surface Modification of Poly(tetrafluoroethylene) by Remote Hydrogen Plasma," Macromolecules, vol. 29, pp. 4331-4339, 1996.
[24]R. G. Nuzzo and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," J. Am. Chem. Soc., vol. 105, pp. 4481-4483, 1983.
[25]R. G. Nuzzo, B. R. Zegarski, and L. H. Dubois, "Fundamental studies of the chemisorption of organosulfur compounds on gold(111). Implications for molecular self-assembly on gold surfaces," J. Am. Chem. Soc., vol. 109, pp. 733-740, 1987.
[26]C. D. Bain and G. M. Whitesides, "Formation of monolayers by the coadsorption of thiols on gold: variation in the length of the alkyl chain," J. Am. Chem. Soc., vol. 111, pp. 7164-7175, 1989.
[27]J. P. Folkers, P. E. Laibinis, and G. M. Whitesides, "Self-assembled monolayers of alkanethiols on gold: comparisons of monolayers containing mixtures of short- and long-chain constituents with methyl and hydroxymethyl terminal groups," Langmuir, vol. 8, pp. 1330-1341, 1992.
[28]A. Ulman, An Introduction to Ultrathin Organic Films From Langmuir-Blodgett to Self-Assembly, 1991.
[29]L. H. Dubois and R. G. Nuzzo, "Synthesis, Structure, and Properties of Model Organic Surfaces," Annual Review of Physical Chemistry, vol. 43, pp. 437-463, 1992.
[30]T. Ishida, M. Hara, I. Kojima, S. Tsuneda, N. Nishida, H. Sasabe, and W. Knoll, "High Resolution X-ray Photoelectron Spectroscopy Measurements of Octadecanethiol Self-Assembled Monolayers on Au(111)," Langmuir, vol. 14, pp. 2092-2096, 1998.
[31]T. Ishida, N. Choi, W. Mizutani, H. Tokumoto, I. Kojima, H. Azehara, H. Hokari, U. Akiba, and M. Fujihira, "High-Resolution X-ray Photoelectron Spectra of Organosulfur Monolayers on Au(111): S(2p) Spectral Dependence on Molecular Species," Langmuir, vol. 15, pp. 6799-6806, 1999.
[32]R. C. Tiberio, H. G. Craighead, M. Lercel, T. Lau, C. W. Sheen, and D. L. Allara, "Self-assembled monolayer electron beam resist on GaAs," Applied Physics Letters, vol. 62, pp. 476-478, 1993.
[33]C. David, H. U. Müller, B. Völkel, and M. Grunze, "Low energy electron proximity printing using a self-assembled monolayer resist," Microelectronic Engineering, vol. 30, pp. 57-60, 1996.
[34]W. Geyer and V. Stadler, "Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resists for," Applied Physics Letters, vol. 75, p. 2401, 1999.
[35]J. Xin, K. Mitsunori, S. Taku, and Y. Yasushi, "Positive and negative patterning of ethanethiol, decanethiol, and hexadecanethiol self-assembled monolayers by using a metastable helium beam," Thin Solid Films, vol. 464-465, pp. 420-424, 2004.
[36]M. Baker, A. J. Palmer, W. R. MacGillivray, and R. T. Sang, "Lithographic pattern formation via metastable state rare gas atomic beams," Nanotechnology, vol. 15, pp. 1356-1362, 2004.
[37]Y.-T. Wu, J.-D. Liao, C.-C. Weng, C.-H. Chen, M.-C. Wang, and M. Zharnikov, "Microcontact printing pattern as a mask for chemical etching: A scanning photoelectron microscopy study," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 25, pp. 1729-1736, 2007.
[38]M. C. Wang, J. D. Liao, C. C. Weng, R. Klauser, S. Frey, M. Zharnikov, and M. Grunze, "The Effect of the Substrate on Response of Thioaromatic Self-Assembled Monolayers to Free Radical-Dominant Plasma," J. Phys. Chem. B, vol. 106, pp. 6220-6226, 2002.
[39]M. C. Wang, J. D. Liao, C. C. Weng, R. Klauser, A. Shaporenko, M. Grunze, and M. Zharnikov, "Modification of Aliphatic Monomolecular Films by Free Radical Dominant Plasma: The Effect of the Alkyl Chain Length and the Substrate," Langmuir, vol. 19, pp. 9774-9780, 2003.
[40]C. C. Weng, J. D. Liao, Y. T. Wu, M. C. Wang, R. Klauser, M. Grunze, and M. Zharnikov, "Modification of Aliphatic Self-Assembled Monolayers by Free-Radical-Dominant Plasma: The Role of the Plasma Composition," Langmuir, vol. 20, pp. 10093-10099, 2004.
[41]C. C. Weng, J. D. Liao, Y. T. Wu, M. C. Wang, R. Klauser, and M. Zharnikov, "Modification of Monomolecular Self-Assembled Films by Nitrogen-Oxygen Plasma," J. Phys. Chem. B, vol. 110, pp. 12523-12529, 2006.
[42]H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, "Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers," J. Am. Chem. Soc., vol. 115, pp. 9389-9401, 1993.
[43]F. Schreiber, "Structure and growth of self-assembling monolayers," Progress in Surface Science, vol. 65, pp. 151-257, 2000.
[44]J. R. Hollahan and A. T. Bell, Techniques and Applications of Plasma Chemistry: John Wiley & Sons Inc, 1974.
[45]B. Chapman, Glow discharge processes :sputtering and plasma etching. New York: Wiley, 1980.
[46]C.-C. Wang and G. H. Hsiue, "Glucose oxidase immobilization onto a plasma-induced graft copolymerized polymeric membrane modified by poly(ethylene oxide) as a spacer," Journal of Applied Polymer Science, vol. 50, pp. 1141-1149, 1993.
[47]J.-R. Chen and T. Wakida, "Studies on the surface free energy and surface structure of PTFE film treated with low temperature plasma," Journal of Applied Polymer Science, vol. 63, pp. 1733-1739, 1997.
[48]H. K. Yasuda, Plasma Polymerization. Orlando: Academic Press, 1985.
[49]H. K. Yasuda, Plasma Polymerization and Plasma Interactions with Polymeric Materials: John Wiley and Sons, 1990.
[50]Y.-L. Hsieh and M. Wu, "Residual reactivity for surface grafting of acrylic acid on argon glow-discharged poly(ethylene terephthalate) (PET) films," Journal of Applied Polymer Science, vol. 43, pp. 2067-2082, 1991.
[51]L. Dai, H. A. W. StJohn, J. Bi, P. Zientek, R. C. Chatelier, and H. J. Griesser, "Biomedical coatings by the covalent immobilization of polysaccharides onto gas-plasma-activated polymer surfaces," Surface and Interface Analysis, vol. 29, pp. 46-55, 2000.
[52]S. C. Brown, Introduction to electrical discharges in gases: Wiley, 1966.
[53]M. Moisan and J. Pelletier, Microwave excited plasmas. New York: Amsterdam ;Elsevier, 1992.
[54]M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing. New York: John Wiley & Sons, Inc., 1994.
[55]K. Makasheva, A. Shivarova, and L. Stoev, "Applied signal-propagation properties in surface-wave-produced discharges," Vacuum, vol. 76, pp. 397-400, 2004.
[56]T. J. Wu and C. S. Kou, "Analysis of waves in the plasma guided by a periodical vane-type slow wave structure," Physics of Plasmas, vol. 12, p. 103504, 2005.
[57]A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Applications: Wiley-IEEE Press, 1994.
[58]洪一弘, 曾平忠, and 曾金榮, "U5球型光柵分光儀光束線的近況," 同步輻射研究中心簡訊, vol. 43, p. 17, 1999.
[59]王兆恩 and 張正祥, "U5聚頻磁鐵介紹," 同步輻射研究中心簡訊, vol. 37, p. 12, 1997.
[60]崔古鼎, "同步輻射研究中心簡介 " 物理雙月刊, vol. 20, pp. 607-612, 1998.
[61]國家同步輻射研究中心, 同步加速器光源, 2005.
[62]J.-J. Yeh, Atomic calculation of photoionization cross-sections and asymmetry parameters: Gordon and Breach science, 1993.
[63]陳家浩, "從光電效應到光電子顯微術," 物理雙月刊, vol. 27, pp. 666-669, 2005.
[64]柯正浩, "同步幅射X光掃描式光電子能譜顯微儀 " 物理雙月刊, vol. 20, pp. 510-516, 2002.
[65]洪一弘, 李德輝, 殷廣鈐, 魏德新, 但唐諤, 柯陸詩, 陳建德, 曾金榮, and 莊東榮, "掃描式光電子能譜顯微儀簡介," 科學發展月刊, vol. 29, pp. 21-28, 2000.
[66]A.-S. Duwez, "Exploiting electron spectroscopies to probe the structure and organization of self-assembled monolayers: a review," Journal of Electron Spectroscopy and Related Phenomena, vol. 134, pp. 97-138, 2004.
[67]D. Stamou, C. Musil, W. P. Ulrich, K. Leufgen, C. Padeste, C. David, J. Gobrecht, C. Duschl, and H. Vogel, "Site-Directed Molecular Assembly on Templates Structured with Electron-Beam Lithography," Langmuir, vol. 20, pp. 3495-3497, 2004.
[68]Y. Xia, X.-M. Zhao, E. Kim, and G. M. Whitesides, "A Selective Etching Solution for Use with Patterned Self-Assembled Monolayers of Alkanethiolates on Gold," Chem. Mater., vol. 7, pp. 2332-2337, 1995.
[69]N. Saito, Y. Wu, K. Hayashi, H. Sugimura, and O. Takai, "Principle in Imaging Contrast in Scanning Electron Microscopy for Binary Microstructures Composed of Organosilane Self-Assembled Monolayers," J. Phys. Chem. B, vol. 107, pp. 664-667, 2003.
[70]A. G. Bittermann, S. Jacobi, L. F. Chi, H. Fuchs, and R. Reichelt, "Contrast Studies on Organic Monolayers of Different Molecular Packing in FESEM and Their Correlation with SFM Data," Langmuir, vol. 17, pp. 1872-1877, 2001.
[71]G. P. López, H. A. Biebuyck, and G. M. Whitesides, "Scanning electron microscopy can form images of patterns in self-assembled monolayers," Langmuir, vol. 9, pp. 1513-1516, 1993.
[72]K. Heister, M. Zharnikov, M. Grunze, L. S. O. Johansson, and A. Ulman, "Characterization of X-ray Induced Damage in Alkanethiolate Monolayers by High-Resolution Photoelectron Spectroscopy," Langmuir, vol. 17, pp. 8-11, 2001.
[73]R. Klauser, I. H. Hong, S. C. Wang, M. Zharnikov, A. Paul, A. Golzhauser, A. Terfort, and T. J. Chuang, "Imaging and Patterning of Monomolecular Resists by Zone-Plate-Focused X-ray Microprobe," J. Phys. Chem. B, vol. 107, pp. 13133-13142, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top