[1]J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, and et al., "Molecular monolayers and films. A panel report for the Materials Sciences Division of the Department of Energy," Langmuir, vol. 3, pp. 932-950, 1987.
[2]A. B. Artyukhin and P. Stroeve, "Effects of Corrosive Chemicals on Solid-Supported Lipid Bilayers As Measured by Surface Plasmon Resonance," Ind. Eng. Chem. Res., vol. 42, pp. 2156-2162, 2003.
[3]A. Ulman, "Formation and Structure of Self-Assembled Monolayers," Chem. Rev., vol. 96, pp. 1533-1554, 1996.
[4]Q. Zhang and L. A. Archer, "Boundary Lubrication and Surface Mobility of Mixed Alkylsilane Self-Assembled Monolayers," J. Phys. Chem. B, vol. 107, pp. 13123-13132, 2003.
[5]Y. Xia, X.-M. Zhao, and G. M. Whitesides, "Pattern transfer: Self-assembled monolayers as ultrathin resists," Microelectronic Engineering, vol. 32, pp. 255-268, 1996.
[6]T. Massimo, B. Tatiana, S. Bernd, S. Georg, and W. M. Laurens, "Using ultrathin elastomeric stamps to reduce pattern distortion in microcontact printing," Applied Physics Letters, vol. 81, pp. 2094-2096, 2002.
[7]X. Ju, M. Kurahashi, T. Suzuki, and Y. Yamauchi, "Fabrication of a gold pattern with a nanoscale edge by using heptanethiol self-assembled monolayers and a metastable helium beam," Applied Surface Science, vol. 241, pp. 241-245, 2005.
[8]R. Klauser, M. L. Huang, S. C. Wang, C. H. Chen, T. J. Chuang, A. Terfort, and M. Zharnikov, "Lithography with a Focused Soft X-ray Beam and a Monomolecular Resist," Langmuir, vol. 20, pp. 2050-2053, 2004.
[9]M. J. Lercel, M. Rooks, R. C. Tiberio, H. G. Craighead, C. W. Sheen, A. N. Parikh, and D. L. Allara, "Pattern transfer of electron beam modified self-assembled monolayers for high-resolution lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 13, pp. 1139-1143, 1995.
[10]M. Zharnikov, W. Geyer, A. Gölzhäuser, S. Frey, and M. Grunze, "Modification of alkanethiolate monolayers on Au-substrate by low energy electron irradiation: Alkyl chains and the S/Au interface," Physical Chemistry Chemical Physics, vol. 1, pp. 3163 - 3171, 1999.
[11]M. Zharnikov and M. Grunze, "Modification of thiol-derived self-assembling monolayers by electron and x-ray irradiation: Scientific and lithographic aspects," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 20, pp. 1793-1807, 2002.
[12]J. Huang, D. A. Dahlgren, and J. C. Hemminger, "Photopatterning of Self-Assembled Alkanethiolate Monolayers on Gold: A Simple Monolayer Photoresist Utilizing Aqueous Chemistry," Langmuir, vol. 10, pp. 626-628, 1994.
[13]W. Mar, J. Hautman, and M. L. Klein, "Molecular dynamics studies of microscopic wetting phenomena on self-assembled monolayers," Computational Materials Science, vol. 3, pp. 481-497, 1995.
[14]N. Ballav, T. Weidner, K. Rößler, H. Lang, and M. Zharnikov, "A New Approach for the Fabrication of Strongly Heterogeneous Mixed Self-Assembled Monolayers," ChemPhysChem, vol. 8, pp. 819-822, 2007.
[15]N. Ballav, A. Shaporenko, A. Terfort, and M. Zharnikov, "A Flexible Approach to the Fabrication of Chemical Gradients," Advanced Materials, vol. 19, pp. 998-1000, 2007.
[16]N. Ballav, A. Shaporenko, S. Krakert, A. Terfort, and M. Zharnikov, "Tuning the Exchange Reaction between a Self-assembled Monolayer and Potential Substituents by Electron Irradiation," J. Phys. Chem. C, vol. 111, pp. 7772-7782, 2007.
[17]K. Loos, S. B. Kennedy, N. Eidelman, Y. Tai, M. Zharnikov, E. J. Amis, A. Ulman, and R. A. Gross, "Combinatorial Approach To Study Enzyme/Surface Interactions," Langmuir, vol. 21, pp. 5237-5241, 2005.
[18]S. Morgenthaler, S. Lee, S. Zurcher, and N. D. Spencer, "A Simple, Reproducible Approach to the Preparation of Surface-Chemical Gradients," Langmuir, vol. 19, pp. 10459-10462, 2003.
[19]E. E. Kunhardt and L. H. Luessen, Electrical breakdown and discharges in gases: Published in cooperation with NATO Scientific Affairs Division [by] Plenum Press, 1983.
[20]M. S. Rossnagel, J. J. Cuomo, and W. D. Westwood, Handbook of plasma processing technology :fundamentals, etching, deposition, and surface interactions. new Jersey: Noyes Publications, 1990.
[21]N. Inagaki, S. Tasaka, T. Horiuchi, and R. Suyama, "Surface modification of poly(aryl ether ether ketone) film by remote oxygen plasma," Journal of Applied Polymer Science, vol. 68, pp. 271-279, 1998.
[22]Y. W. Park and N. Inagaki, "Surface modification of poly(vinylidene fluoride) film by remote Ar, H2, and O2 plasmas," Polymer, vol. 44, pp. 1569-1575, 2003.
[23]Y. Yamada, T. Yamada, S. Tasaka, and N. Inagaki, "Surface Modification of Poly(tetrafluoroethylene) by Remote Hydrogen Plasma," Macromolecules, vol. 29, pp. 4331-4339, 1996.
[24]R. G. Nuzzo and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," J. Am. Chem. Soc., vol. 105, pp. 4481-4483, 1983.
[25]R. G. Nuzzo, B. R. Zegarski, and L. H. Dubois, "Fundamental studies of the chemisorption of organosulfur compounds on gold(111). Implications for molecular self-assembly on gold surfaces," J. Am. Chem. Soc., vol. 109, pp. 733-740, 1987.
[26]C. D. Bain and G. M. Whitesides, "Formation of monolayers by the coadsorption of thiols on gold: variation in the length of the alkyl chain," J. Am. Chem. Soc., vol. 111, pp. 7164-7175, 1989.
[27]J. P. Folkers, P. E. Laibinis, and G. M. Whitesides, "Self-assembled monolayers of alkanethiols on gold: comparisons of monolayers containing mixtures of short- and long-chain constituents with methyl and hydroxymethyl terminal groups," Langmuir, vol. 8, pp. 1330-1341, 1992.
[28]A. Ulman, An Introduction to Ultrathin Organic Films From Langmuir-Blodgett to Self-Assembly, 1991.
[29]L. H. Dubois and R. G. Nuzzo, "Synthesis, Structure, and Properties of Model Organic Surfaces," Annual Review of Physical Chemistry, vol. 43, pp. 437-463, 1992.
[30]T. Ishida, M. Hara, I. Kojima, S. Tsuneda, N. Nishida, H. Sasabe, and W. Knoll, "High Resolution X-ray Photoelectron Spectroscopy Measurements of Octadecanethiol Self-Assembled Monolayers on Au(111)," Langmuir, vol. 14, pp. 2092-2096, 1998.
[31]T. Ishida, N. Choi, W. Mizutani, H. Tokumoto, I. Kojima, H. Azehara, H. Hokari, U. Akiba, and M. Fujihira, "High-Resolution X-ray Photoelectron Spectra of Organosulfur Monolayers on Au(111): S(2p) Spectral Dependence on Molecular Species," Langmuir, vol. 15, pp. 6799-6806, 1999.
[32]R. C. Tiberio, H. G. Craighead, M. Lercel, T. Lau, C. W. Sheen, and D. L. Allara, "Self-assembled monolayer electron beam resist on GaAs," Applied Physics Letters, vol. 62, pp. 476-478, 1993.
[33]C. David, H. U. Müller, B. Völkel, and M. Grunze, "Low energy electron proximity printing using a self-assembled monolayer resist," Microelectronic Engineering, vol. 30, pp. 57-60, 1996.
[34]W. Geyer and V. Stadler, "Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resists for," Applied Physics Letters, vol. 75, p. 2401, 1999.
[35]J. Xin, K. Mitsunori, S. Taku, and Y. Yasushi, "Positive and negative patterning of ethanethiol, decanethiol, and hexadecanethiol self-assembled monolayers by using a metastable helium beam," Thin Solid Films, vol. 464-465, pp. 420-424, 2004.
[36]M. Baker, A. J. Palmer, W. R. MacGillivray, and R. T. Sang, "Lithographic pattern formation via metastable state rare gas atomic beams," Nanotechnology, vol. 15, pp. 1356-1362, 2004.
[37]Y.-T. Wu, J.-D. Liao, C.-C. Weng, C.-H. Chen, M.-C. Wang, and M. Zharnikov, "Microcontact printing pattern as a mask for chemical etching: A scanning photoelectron microscopy study," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 25, pp. 1729-1736, 2007.
[38]M. C. Wang, J. D. Liao, C. C. Weng, R. Klauser, S. Frey, M. Zharnikov, and M. Grunze, "The Effect of the Substrate on Response of Thioaromatic Self-Assembled Monolayers to Free Radical-Dominant Plasma," J. Phys. Chem. B, vol. 106, pp. 6220-6226, 2002.
[39]M. C. Wang, J. D. Liao, C. C. Weng, R. Klauser, A. Shaporenko, M. Grunze, and M. Zharnikov, "Modification of Aliphatic Monomolecular Films by Free Radical Dominant Plasma: The Effect of the Alkyl Chain Length and the Substrate," Langmuir, vol. 19, pp. 9774-9780, 2003.
[40]C. C. Weng, J. D. Liao, Y. T. Wu, M. C. Wang, R. Klauser, M. Grunze, and M. Zharnikov, "Modification of Aliphatic Self-Assembled Monolayers by Free-Radical-Dominant Plasma: The Role of the Plasma Composition," Langmuir, vol. 20, pp. 10093-10099, 2004.
[41]C. C. Weng, J. D. Liao, Y. T. Wu, M. C. Wang, R. Klauser, and M. Zharnikov, "Modification of Monomolecular Self-Assembled Films by Nitrogen-Oxygen Plasma," J. Phys. Chem. B, vol. 110, pp. 12523-12529, 2006.
[42]H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, "Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers," J. Am. Chem. Soc., vol. 115, pp. 9389-9401, 1993.
[43]F. Schreiber, "Structure and growth of self-assembling monolayers," Progress in Surface Science, vol. 65, pp. 151-257, 2000.
[44]J. R. Hollahan and A. T. Bell, Techniques and Applications of Plasma Chemistry: John Wiley & Sons Inc, 1974.
[45]B. Chapman, Glow discharge processes :sputtering and plasma etching. New York: Wiley, 1980.
[46]C.-C. Wang and G. H. Hsiue, "Glucose oxidase immobilization onto a plasma-induced graft copolymerized polymeric membrane modified by poly(ethylene oxide) as a spacer," Journal of Applied Polymer Science, vol. 50, pp. 1141-1149, 1993.
[47]J.-R. Chen and T. Wakida, "Studies on the surface free energy and surface structure of PTFE film treated with low temperature plasma," Journal of Applied Polymer Science, vol. 63, pp. 1733-1739, 1997.
[48]H. K. Yasuda, Plasma Polymerization. Orlando: Academic Press, 1985.
[49]H. K. Yasuda, Plasma Polymerization and Plasma Interactions with Polymeric Materials: John Wiley and Sons, 1990.
[50]Y.-L. Hsieh and M. Wu, "Residual reactivity for surface grafting of acrylic acid on argon glow-discharged poly(ethylene terephthalate) (PET) films," Journal of Applied Polymer Science, vol. 43, pp. 2067-2082, 1991.
[51]L. Dai, H. A. W. StJohn, J. Bi, P. Zientek, R. C. Chatelier, and H. J. Griesser, "Biomedical coatings by the covalent immobilization of polysaccharides onto gas-plasma-activated polymer surfaces," Surface and Interface Analysis, vol. 29, pp. 46-55, 2000.
[52]S. C. Brown, Introduction to electrical discharges in gases: Wiley, 1966.
[53]M. Moisan and J. Pelletier, Microwave excited plasmas. New York: Amsterdam ;Elsevier, 1992.
[54]M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing. New York: John Wiley & Sons, Inc., 1994.
[55]K. Makasheva, A. Shivarova, and L. Stoev, "Applied signal-propagation properties in surface-wave-produced discharges," Vacuum, vol. 76, pp. 397-400, 2004.
[56]T. J. Wu and C. S. Kou, "Analysis of waves in the plasma guided by a periodical vane-type slow wave structure," Physics of Plasmas, vol. 12, p. 103504, 2005.
[57]A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Applications: Wiley-IEEE Press, 1994.
[58]洪一弘, 曾平忠, and 曾金榮, "U5球型光柵分光儀光束線的近況," 同步輻射研究中心簡訊, vol. 43, p. 17, 1999.
[59]王兆恩 and 張正祥, "U5聚頻磁鐵介紹," 同步輻射研究中心簡訊, vol. 37, p. 12, 1997.
[60]崔古鼎, "同步輻射研究中心簡介 " 物理雙月刊, vol. 20, pp. 607-612, 1998.[61]國家同步輻射研究中心, 同步加速器光源, 2005.
[62]J.-J. Yeh, Atomic calculation of photoionization cross-sections and asymmetry parameters: Gordon and Breach science, 1993.
[63]陳家浩, "從光電效應到光電子顯微術," 物理雙月刊, vol. 27, pp. 666-669, 2005.[64]柯正浩, "同步幅射X光掃描式光電子能譜顯微儀 " 物理雙月刊, vol. 20, pp. 510-516, 2002.[65]洪一弘, 李德輝, 殷廣鈐, 魏德新, 但唐諤, 柯陸詩, 陳建德, 曾金榮, and 莊東榮, "掃描式光電子能譜顯微儀簡介," 科學發展月刊, vol. 29, pp. 21-28, 2000.
[66]A.-S. Duwez, "Exploiting electron spectroscopies to probe the structure and organization of self-assembled monolayers: a review," Journal of Electron Spectroscopy and Related Phenomena, vol. 134, pp. 97-138, 2004.
[67]D. Stamou, C. Musil, W. P. Ulrich, K. Leufgen, C. Padeste, C. David, J. Gobrecht, C. Duschl, and H. Vogel, "Site-Directed Molecular Assembly on Templates Structured with Electron-Beam Lithography," Langmuir, vol. 20, pp. 3495-3497, 2004.
[68]Y. Xia, X.-M. Zhao, E. Kim, and G. M. Whitesides, "A Selective Etching Solution for Use with Patterned Self-Assembled Monolayers of Alkanethiolates on Gold," Chem. Mater., vol. 7, pp. 2332-2337, 1995.
[69]N. Saito, Y. Wu, K. Hayashi, H. Sugimura, and O. Takai, "Principle in Imaging Contrast in Scanning Electron Microscopy for Binary Microstructures Composed of Organosilane Self-Assembled Monolayers," J. Phys. Chem. B, vol. 107, pp. 664-667, 2003.
[70]A. G. Bittermann, S. Jacobi, L. F. Chi, H. Fuchs, and R. Reichelt, "Contrast Studies on Organic Monolayers of Different Molecular Packing in FESEM and Their Correlation with SFM Data," Langmuir, vol. 17, pp. 1872-1877, 2001.
[71]G. P. López, H. A. Biebuyck, and G. M. Whitesides, "Scanning electron microscopy can form images of patterns in self-assembled monolayers," Langmuir, vol. 9, pp. 1513-1516, 1993.
[72]K. Heister, M. Zharnikov, M. Grunze, L. S. O. Johansson, and A. Ulman, "Characterization of X-ray Induced Damage in Alkanethiolate Monolayers by High-Resolution Photoelectron Spectroscopy," Langmuir, vol. 17, pp. 8-11, 2001.
[73]R. Klauser, I. H. Hong, S. C. Wang, M. Zharnikov, A. Paul, A. Golzhauser, A. Terfort, and T. J. Chuang, "Imaging and Patterning of Monomolecular Resists by Zone-Plate-Focused X-ray Microprobe," J. Phys. Chem. B, vol. 107, pp. 13133-13142, 2003.