跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠名
研究生(外文):Kuan-ming Chen
論文名稱:氬氣或氮氣微電漿系統對光阻去除作用之評估
論文名稱(外文):Photo-resist Stripping Effects Evaluated by Argon or Nitrogen Micro-plasma System
指導教授:廖峻德廖峻德引用關係
指導教授(外文):Jiunn-der Liao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:66
中文關鍵詞:光阻去除微電漿激發物種光學放射式光譜儀
外文關鍵詞:excited speciesoptical emission microscopyphoto-resist strippingmicro-plasma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本實驗欲開發之微電漿系統為可在大氣壓力下作用之開放式處理技術,並通入氬氣或氮氣為工作氣體用以進行光阻去除。實驗中將藉由光學放射式光譜儀以及示波器觀測即時電漿狀態,以判斷電漿中的激態物種及評估能量傳遞的效率;電漿處理過之試片則以表面粗度儀掃描光阻清除區來得到蝕刻的深度,並以X光光電子能譜儀掃描試片表面之化學元素變化以推測其可能產生的化學反應;此外亦嘗試將單元電極陣列化,期望能增加光阻去除之效能。
由示波器量測電性的結果顯示氮氣微電漿對於能量的需求相較氬氣微電漿要高,因此實驗中使用40 W於氬氣微電漿、100 W於氮氣微電漿以維持穩定電漿狀態。量測處理深度可推算出氬氣微電漿及氮氣微電漿在去除80 %光阻層的速率為404 nm/min及81.7 nm/min;X光光電子能譜儀所得到的表面化學分析結果證明了氬氣微電漿處理過的試片表面並沒有明顯形成新的化學鍵結,而氮氣微電漿處理則會造成表面形成氧化物及C-NO鍵結,這些結構可能阻礙電漿進一步的對光阻層進行清除;從光學放射式光譜儀的觀測結果亦可輔助說明在氬氣微電漿系統中產生的激發物種是以氬氣的衍生物為主,而氮氣微電漿系統中則以激態的氮氣分子及NO為主。綜合以上結果可推論,氬氣微電漿對光阻去除的作用主要是以物理性的轟擊為主,速度較快;而氮氣微電漿則多以化學性的斷鍵作用為主,並由於光阻結構複雜、C=O鍵結殘留以及部分NO打斷碳氫鍵結後附著於光阻層,減緩了光阻去除的效應,造成處理效率的下降。此外,建構陣列式的微電漿系統並在氬氣中混入0.5 %的氧氣,亦證實其確有光阻去除的效用,速率為120 nm/min。
從上述的結果我們可以發現,氬氣及氮氣微電漿系統對於光阻去除皆具有一定的成效,但後者可能會產生一些阻礙光阻去除的化學因素而減緩去除速率。因此若能加以調整工作氣體的成份比例,降低作業成本而實際應用到線上製程是可以期待的。
In this work, photo-resist stripping effects were evaluated by micro-plasma system. Argon or nitrogen was employed as the working gas under atmospheric pressure. Optical Emission Spectroscopy (OES) with oscilloscope was utilized for detecting real-time excited species and measuring energy transmission efficiency. Plasma-induced stripped depth was determined by α-step scanning, while chemical composition of treated surface was characterized by X-ray Photoelectron Spectroscopy (XPS). Furthermore, an array micro-plasma system was designed for comparing with single micro-plasma system and for the enhancement of the photo-resist stripping effect. Energy requirement for nitrogen micro-plasma system was relatively high in comparison with argon micro-plasma system, characterized by the oscilloscope. A power of 40 W was applied for argon micro-plasma system and 100 W for nitrogen micro-plasma system to maintain a stable plasma state. Experimental results demonstrated that a stripping rate of 80 % photo-resist was 404 nm/min and 81.7 nm/min for the respective system. Surface analyses by XPS revealed that no obvious chemical composition occurred in the argon-plasma treated photo-resist surface, whereas new chemical bonding such as oxide and C-NO were formed on the nitrogen-plasma treated surface and probably reduced furthermore stripping effect on the surface. From OES spectra, argon-derivatives were dominant as the excited species in argon micro-plasma system, while nitrogen and nitrogen-oxygen species were mainly found in nitrogen micro-plasma. To sum up, physical bombardment dominated photo-resist stripping effect in argon micro-plasma system, and resulted in higher stripping rate than nitrogen micro-plasma system within chemical bond breakage dominated stripping effect. Retardation of stripping in nitrogen-plasma were resulted from complicated molecular structure of photo-resist, C=O residues and part of NO bonded to photo-resist. In addition, for the array micro-plasma system with the addition of 0.5 % oxygen into argon exhibited effective in photo-resist stripping process with a stripping rate of 120 nm/min. Base on these findings, both argon and nitrogen micro-plasma systems are effective in photo-resist stripping. The latter may create stripping-prohibited bonding and retard the stripping process. It is therefore promising to adjust the ratio of the gases to reduce the overall cost and to apply array micro-plasma system for in-line processing.
摘要 I
Abstract II
誌謝 IV
目錄 VI
表目錄 VIII
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 實驗動機 1
1.3 文獻回顧 3
1.3.1 低壓電漿去除光阻 3
1.3.2 常壓電漿去除光阻 4
1.3.3 微電漿發展現況 5
1.4 研究目的及架構 8
第二章 理論基礎 10
2.1 電漿簡介 10
2.1.1 電漿 10
2.1.2 大氣電漿 11
2.2 微電漿 12
2.2.1 定義 12
2.2.2 微型中空陰極放電式微電漿 13
2.2.3 介電層阻礙放電式微電漿 15
2.2.4 毛細管式電漿放電式微電漿 16
2.2.5 電源供應器 16
2.3 光阻去除 20
2.3.1 光阻簡介 20
2.3.2 光阻去除方法 22
2.4 光學放射光譜儀 23
2.5 X光光電子能譜儀 26
第三章 材料與方法 29
3.1 微電漿系統設置 29
3.1.1 實驗流程設計 29
3.1.2 系統參數設定 30
3.2 以微電漿系統進行光阻去除 34
3.2.1 試片處理位置 34
3.2.2 電漿狀態即時監測及分析 35
3.2.3 去除效率之比較 35
3.2.4 表面化學成分變化之分析 35
第四章 結果與討論 37
4.1 微電漿狀態之監測 37
4.1.1 微電漿特性 37
4.1.2 不同工作氣體產生微電漿之電流電壓特性 39
4.1.3 電漿狀態即時監測 40
4.2 氬氣及氮氣微電漿光阻去除效率評估 45
4.3 氬氣微電漿處理不同時間之表面變化分析 47
4.4 氮氣微電漿處理不同時間之表面變化分析 49
4.5 使用陣列式微電漿系統對光阻去除之效率評估 53
結論 55
未來展望 56
參考文獻 57
附錄 62
一、 光學放射式光譜儀半定量分析簡介 62
二、 X光光電子能譜儀(XPS)分析原理 63
三、 集膚效應 64
自述 66
[1] J. D. Plimmer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals Practice and Modeling: Prentice-Hall Inc, 2000.
[2]S. E. Thompson and S. Parthasarathy, "Moore's law: the future of Si microelectronics," Materials Today, vol. 9, pp. 20-25, 2006.
[3]C. H. Yi, Y. H. Lee, and G. Y. Yeom, "The study of atmospheric pressure plasma for surface cleaning," Surface and Coatings Technology, vol. 171, pp. 237-240, 2002.
[4]K. Inomata, H. Koinuma, Y. Oikawa, and T. Shiraishi, "Open air photoresist ashing by a cold plasma torch: Catalytic effect of cathode material," Applied Physics Letters, vol. 66, pp. 2188-2190, 1995.
[5]M. Iwasaki, Y. Matsudaira, K. Takeda, M. Ito, E. Miyamoto, T. Yara, T. Uehara, and M. Hori, "Roles of oxidizing species in a nonequilibrium atmospheric-pressure pulsed remote O[sub 2]/N[sub 2] plasma glass cleaning process," Journal of Applied Physics, vol. 103, pp. 023303-7, 2008.
[6]S. Park and C. Kim, "An array of inductivly coupled plasma sources for large area plasma," Thin Solid Films, pp. 355-356, 252-255, 1999.
[7]K.-i. Takagi, A. Ikeda, T. Fujimura, and Y. Kuroki, "Inductively coupled plasma application to the resist ashing," Thin Solid Films, vol. 386, pp. 160-164, 2001.
[8]K. Shinagawa, J. Yamamoto, S. Ohgawara, S. Zaima, and M. Furukawa, "Effects of nitrogen addition to microwave oxygen plasma in surface wave with disk-Plate window and photoresist ashing," Japanese Journal of Applied Physics, vol. 43, pp. 6858-6862, 2004.
[9]A. Schutze, A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and H. R. F., "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE Transactions on Plasma Science, vol. 26, pp. 1685-1694, 1998.
[10]Y.-H. Lee, C.-H. Yi, M.-J. Chung, and G.-Y. Yeom, "Characteristics of He/O2 atmospheric pressure glow discharge and its dry etching properties of organic materials," Surface and Coatings Technology, vol. 146-147, pp. 474-479, 2001.
[11]W.-J. Liu, Y.-C. Lan, Y.-C. Chen, W.-C. Lo, and C.-H. Lin, "Study of photo-resistance and polyimide strip by atmospheric plasma technology," Surface and Coatings Technology, vol. 201, pp. 6530-6535, 2007.
[12]K. Tanaka, T. Inomata, and M. Kogoma, "Improvement in adhesive strength of fluorinated polymer films by atmospheric pressure glow plasma," Thin Solid Films, vol. 386, pp. 217-221, 2001.
[13]H. Yoshiki, "Localized etching of an insulator film coated on a copper wire using an atmospheric-pressure microplasma jet," Review of Scientific Instruments, vol. 78, pp. 043510-4, 2007.
[14]M.-H. Jung and H.-S. Choi, "Photoresist etching using Ar/O2 and He/O2 atmospheric pressure plasma," Thin Solid Films, vol. 515, pp. 2295-2302, 2006.
[15]H. Yoshiki, A. Oki, H. Ogawa, and Y. Horiike, "Inner wall modification of a poly(ethyleneterephthalate)(PET) capillary by 13.56 MHz capacitively coupled microplasma," Thin Solid Films, vol. 407, pp. 156-162, 2002.
[16]H. Yoshiki, K. Taniguchi, and Y. Horiike, "Localized Removal of a Photoresist by Atmospheric Pressure Micro-plasma Jet Using RF Corona Discharge," Japanese Journal of Applied Physics, vol. 41, pp. 5797-5798, 2002.
[17]H. Yoshiki, K. Ikeda, A. Wakaki, S. Togashi, K. Taniguchi, and Y. Horiike, "Localized Plasma Processing of Materials Using Atmospheric-Pressure Microplasma Jets," Japanese Journal of Applied Physics, vol. 42, pp. 4000-4003, 2003.
[18]B. M. Penetrante and S. E. Schultheiss, Procee of the NATO-ASI vol. 34A/B. New York: Plenum Press, 1993.
[19]A. Koutsospyros, S. M. Yin, C. Christodoulatos, and K. Becker, "Destruction of hydrocarbons in non-thermal, ambient-pressure, capillary discharge plasmas," International Journal of Mass Spectrometry, vol. 233, pp. 305-315, 2004.
[20]A. Koutsospyros, S. M. Yin, C. Christodoulatos, and K. Becker, "Plasmochemical Degradation of Volatile Organic Compounds(VOC) in a Capillary Discharge Plasma Reactor," IEEE Transactions on Plasma Science, vol. 33, pp. 42-49, 2005.
[21]M. Laroussi, J. P. Richardson, and F. C. Dobbs, "Effects of nonequilibrium atmospheric pressure plasmas on the heterotrophic pathways of bacteria and on their cell morphology," Applied Physics Letters, vol. 81, pp. 772-774, 2002.
[22]J. G. Birmingham, J. G. Birmingham, and D. J. Hammerstrom, "Bacterial decontamination using ambient pressure nonthermal discharges," IEEE Transactions on Plasma Science, vol. 28, pp. 51-55, 2000.
[23]N. M. Efremov, B. Y. Adamiak, V. I. Blouchin, S. J. Dadashev, K. J. Dmitriev, O. P. Gryaznova, and V. F. Jusbashev, "Action of a self-sustained glow discharge in atmospheric pressure air on biological objects," IEEE Transactions on Plasma Science, vol. 28, pp. 238-241, 2000.
[24]M. Laroussi, "Sterilization of contaminated matter with an atmospheric pressure plasma," IEEE Transactions on Plasma Science, vol. 24, pp. 1188-1191, 1996.
[25]M. Laroussi, "Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects," IEEE Transactions on Plasma Science, vol. 30, pp. 1409-1415, 2002.
[26]M. Laroussi, L. Alexeff, and W. L. Kang, "Biological decontamination by nonthermal plasmas," IEEE Transactions on Plasma Science, vol. 28, pp. 184-188, 2000.
[27]M. Laroussi and F. Leipold, "Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure," International Journal of Mass Spectrometry, vol. 233, pp. 81-86, 2004.
[28]D. A. Mendis, M. Rosenberg, and F. Azam, "A note on the possible electrostatic disruption of bacteria," IEEE Transactions on Plasma Science, vol. 28, pp. 1304-1306, 2000.
[29]T. C. Montie, K. Kelly-Wintenberg, and J. R. Roth, "An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials," IEEE Transactions on Plasma Science, vol. 28, pp. 41-50, 2000.
[30]S. Moreau, M. Moisan, M. Tabrizian, J. Barbeau, J. Pelletier, A. Ricard, and L. H. Yahia, "Using the flowing afterglow of a plasma to inactivate Bacillus subtilis spores: Influence of the operating conditions," Journal of Applied Physics, vol. 88, pp. 1166-1174, 2000.
[31]C. L. Nelson and T. J. Berger, "Inactivation of microorganisms by oxygen gas plasma," Current Microbiology, vol. 18, pp. 275-276, 1989.
[32]N. S. Panikov, S. Paduraru, R. Crowe, P. J. Ricatto, C. Christodoulatos, and K. Becker, "Destruction of Bacillus Subtilis cells using an atmospheric-pressure capillary plasma electrode discharge," IEEE Transactions on Plasma Science, vol. 30, pp. 1424-1428, 2002.
[33]R. E. J. Sladek, E. Stoffels, R. Walraven, P. J. A. Tielbeek, and R. A. Koolhoven, "Plasma treatment of dental cavities: a feasibility study," IEEE Transactions on Plasma Science, vol. 32, pp. 1540-1543, 2004.
[34]R. Foest, E. Kindel, A. Ohl, M. Stieber, and K.-D. Weltmann, "Non-thermal atmospheric pressure discharges for surface modification," Plasma Physics and Controlled Fusion vol. 47, pp. B525-B536, 2005.
[35]R. Rahul, O. Stan, A. Rahman, E. Littlefield, K. Hoshimiya, A. P. Yalin, A. Sharma, A. Pruden, C. A. Moore, Z. Yu, and G. J. Collins, "Optical and RF electrical characteristics of atmospheric pressure open-air hollow slot microplasmas and application to bacterial inactivation," Journal of Physics D: Applied Physics vol. 38, pp. 1750-1759, 2005.
[36]A. Grill, Cold Plasma in Materials Fabrication-From Fundamentals to Application. NY: IEEE Press, 1994.
[37]C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, pp. 2-30, 2006.
[38]U. Kogelschatz, "Applications of Microplasmas and Microreactor Technology," Contributions to Plasma Physics, vol. 47, pp. 80-88, 2007.
[39]H. V. Boenig, Plasma Science and Technology: Cornell University Press, 1982.
[40]A. D. White, "New Hollow Cathode Glow Discharge," Journal of Applied Physics, 2004.
[41]R. Foest, M. Schmidt, and K. Becker, "Microplasmas, an emerging field of low-temperature plasma science and technology," International Journal of Mass Spectrometry, vol. 248, pp. 87-102, 2006.
[42]K. H. Becker, K. H. Schoenbach, and J. G. Eden, "Microplasmas and applications," Journal of Physics D: Applied Physics, p. R55, 2006.
[43]K. H. Becker, "High-Pressure Microplasmas, a New World of Low-Temperature Plasmas," 2005.
[44]K. H. Becker, U. Kogelschatz, K. H. Schoenbach, and R. J. Barker, Non-Equilibrium Air Plasmas ar Atmospheric Pressure: Taylor & Francis, CRC Press, 2004.
[45]U. Kogelschatz, "Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications," Plasma Chemistry and Plasma Processing, vol. 23, pp. 1-46, 2003.
[46]U. Kogelschatz, "Filamentary, patterned, and diffuse barrier discharges," Plasma Science, IEEE Transactions on, vol. 30, pp. 1400-1408, 2002.
[47]J. J. Coogan and A. D. Sappey, "Distribution of OH within silent discharge plasma reactors," IEEE Transactions on Plasma Science, vol. 24, pp. 91-92, 1996.
[48]A. L. Garner, "Cathode spot motion in an oblique magnetic field," Applied Physics Letters, vol. 92, pp. 011505-3, 2008.
[49]Y. Takuma, H. Shuhei, I. Shinji, Y. Koichi, and I. Shozo, "Atmospheric dc discharges with miniature gas flow as microplasma generation method," Journal of Physics D: Applied Physics, vol. 38, pp. 1684-1689, 2005.
[50]F. Iza and J. Hopwood, "Split-ring resonator microplasma: microwave model, plasma impedance and power efficiency," Plasma Sources Science and Technology, vol. 14, pp. 397-406, 2005.
[51]龍文安, 半導體微影技術: 五南圖書出版公司, 2004.
[52]C. P. Wang, Polymers for Electronic and Photonic Applications. Boston: Academic Press, 1993.
[53]W. A. Bingel, Theory of Molecular Spectra: John Wiley & Sons Press, 1970.
[54]B. W. Shore and D. H. Menzel, Principles of Atomic Spectra. NY, 1969.
[55]S. Y. Moon, W. Choe, and B. K. Kang, "A uniform glow discharge plasma source at atmospheric pressure," Applied Physics Letters, vol. 84, pp. 188-190, 2004.
[56]J. J. Shi and M. G. Kong, "Radio-frequency dielectric-barrier glow discharges in atmospheric argon," Applied Physics Letters, vol. 90, pp. 111502-3, 2007.
[57]A. Bogaerts, R. Gijbels, and J. Vlcek, "Modeling of glow discharge optical emission spectrometry: Calculation of the argon atomic optical emission spectrum," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 53, pp. 1517-1526, 1998.
[58]U. Cvelbar, N. Krstulovic, S. Milosevic, and M. Mozetic, "Inductively coupled RF oxygen plasma characterization by optical emission spectroscopy," Vacuum, vol. 82, pp. 224-227, 2007.
[59]A. Rahman, A. P. Yalin, V. Surla, O. Stan, K. Hoshimiya, Z. Yu, L. Eric, and G. J. Collins, "Absolute UV and VUV emission in the 110-400 nm region from 13.56 MHz driven hollow slot microplasmas operating in open air," Plasma Sources Science and Technology, vol. 13, pp. 537-547, 2004.
[60]S. Forster, C. Mohr, and W. Viol, "Investigations of an atmospheric pressure plasma jet by optical emission spectroscopy," Surface and Coatings Technology, vol. 200, pp. 827-830, 2005.
[61]J. Hopwood, F. Iza, S. Coy, and D. B. Fenner, "A microfabricated atmospheric-pressure microplasma source operating in air," Journal of Applied Physics D: Apply physics, vol. 38, pp. 1698-1703, 2005.
[62]A. Czernichowski, "Temperature evaluation from the partially resolved 391 nm N2+ band," Journal of Physics D: Applied Physics, vol. 20, pp. 559-564, 1987.
[63]H. Motomura, H. Matsuba, M. Kawata, and M. Jinno, "Gas-Specific Characteristics of Argon Low-Frequency Atmospheric-Pressure Nonequilibrium Microplasma Jet " Japanese Journal of Applied Physics, vol. 46, pp. pp. L939-L941, 2007.
[64]Y. C. Hong and H. S. Uhm, "Microplasma jet at atmospheric pressure," Applied Physics Letters, vol. 89, pp. 221504-3, 2006.
[65]J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy: Physical Electronics, Inc., 1995.
[66]N. H. Turner, "X-ray Photoelectron and Auger Electron Spectroscopy," Applied Spectroscopy Reviews, vol. 35, pp. 203-254, 2000.
[67]汪建民, 材料分析: 中國材料學會, 1999.
[68]R. Brandenburg, H. E. Wagner, A. M. Morozov, and K. V. Kozlov, "Axial and radial development of microdischarges of barrier discharges in N2/O2 mixtures at atmospheric pressure," Journal of Physics D: Applied Physics vol. 38, pp. 1649-1657, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top