跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯懿容
研究生(外文):Yi-jung Ko
論文名稱:以射頻磁控濺鍍法製備具光觸媒性質之五氧化二鉭薄膜
論文名稱(外文):Preparation of Photocatalytic Tantalum Oxide Films by RF Magnetron Sputter Deposition
指導教授:李世欽李世欽引用關係
指導教授(外文):Shi-chin Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:112
中文關鍵詞:五氧化二鉭光催化能力光致親水性
外文關鍵詞:Tatanlum oxidephotocatalytic abilityphoto-induced hydrophilicity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
五氧化二鉭是一種具半導體性質之光觸媒,可利用紫外光的照射進行有機污染物的光催化分解反應。
本研究採用射頻磁控濺鍍法,來製備Ta2O5薄膜,在固定濺鍍時間和基板溫度下,藉由控制射頻功率以及工作壓力之濺鍍參數將薄膜沉積於(100)矽晶片,以得到不同性質之鍍膜。實驗中,首先以X光粉末繞射儀(XRD)、低銳角X光繞射儀(GIXRD)以及X-ray光電子能譜(XPS)進行鍍膜結構與成分分析、然後以場發射掃描式電子顯微鏡(FE-SEM)觀察薄膜表面型態,並利用原子力顯微鏡(AFM) 量測薄膜的表面粗糙度,及穿透式電子顯顯鏡(TEM)鑑定薄膜的晶體結構,最後並以可見紫外光譜儀(UV-visible)及亞甲基藍溶液反應,探討Ta2O5薄膜的光催化能力,以及利用水接觸角分析薄膜之親水性變化及表面銀還原能力再次確認光觸媒效應 。
研究結果顯示,初鍍膜無論改變工作壓力亦或是改變射頻功率,鍍膜光催化效率相當低,其中最高亞甲基藍轉換率只有22%且接觸角沒有明顯下降,但經過650 oC退火四小時後,亞甲基藍轉換率大大提升及接觸角明顯下降,其中轉換率最高可達85%而接觸角最低可下降至10度。由本實驗可以得知,Ta2O5鍍膜的結晶性、氫氧自由基(.OH)和表面粗糙度皆是影響Ta2O5光觸媒效率主要原因。實驗顯示最佳條件是工作壓力為12 m Torr,射頻功率為400 W之薄膜經過650 oC退火四小時,Ta2O5薄膜具有最佳光催化性質以及光致親水性質。

關鍵字 : 五氧化二鉭、光催化能力、光致親水性
Abstract
Tantalum oxide is a photocatalytic semiconductor. It can decompose the organic pollutants by under UV light irradiation.
In this research, we fabricated the Ta2O5 films by using radio frequency magnetron sputtering. The properties of the deposited films were controlled by various working power and working pressure while keeping at constant substrate temperature and sputter time.
The crystal structures and composition of the films were characterized by X-ray powder diffraction (XRD),glancing incident angle X-ray Diffraction (GIXRD), and X-ray photoelectron spectroscopy (XPS). The surface morphology and roughness were studied with a field-emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM).The microstructure of the films was observed by transmission electron microscope (TEM). The visible light photocatalytic activity was evaluated by the measurement of the decomposition of methylene blue under visible light irradiation. The hydrophilicity of the deposited films was analyzed by water contact angle and measurement the ability of Ag reduction to confirm photocatalytic ability.
The results showed that no matter changed working pressure or RF power for as-deposited films which had low photocatalytic ability, methylene blue conversion Efficiency was only 22% and water contact angle had not obviously dropped. But after 650oC annealing for four hours, the methylene blue conversion Efficiency improved and water contact angle dropped greatly, among them methylene blue conversion Efficiency can reach as high as 85%, water contact angle can drop to 10 degrees. From this experiment, the crystallization of Ta2O5 films, hydroxyl radical(.OH), and the rounghness of films surface were main influence of photocatalytic Efficiency. The experiment shows that the optimum condition is that the deposited at working pressure 12 m Torr and RF power 400 W films after annealing at 650oC for four hours, it has the best photocatalytic ability and photo-induced hydrophilicity.

Key words: Tatanlum oxide、photocatalytic ability、photo-induced hydrophilicity
總目錄
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 5
第2章 理論基礎 6
2.1 光觸媒簡介 6
2.2 光觸媒作用原理機制 7
2.2.1 光化學反應之原理 7
2.2.2 半導體能隙 10
2.2.3 光催化反應原理 16
2.2.4 光催化氧化還原機構 20
2.3 二氧化鈦基本性質 24
2.4 五氧化二鉭基本性質 28
2.5 光誘導親水性的反應機構 33
2.6 光觸媒技術發展與應用 35
第3章 實驗方法與流程 36
3.1 實驗流程 36
3.1.1 基本清洗 37
3.1.2 薄膜製備 37
3.2 實驗設備 39
3.2.1 濺鍍系統 39
3.3 實驗材料 41
3.3.1 濺鍍鈀材 41
3.3.2 基材 41
3.3.3 濺鍍以及退火使用氣氛 41
3.4 分析儀器 42
3.4.1 X光繞射儀 42
3.4.2 X光光電子能譜儀 43
3.4.3 UV-Vis光譜儀 44
3.4.4 原子力顯微鏡 44
3.4.5 掃描式電子顯微鏡 44
3.4.6 穿透式電子顯微鏡 45
3.4.7 接觸角量測 46
第4章 結果與討論 47
4.1 製程參數與退火後處理對Ta2O5薄膜結構分析 47
4.1.1 沉積速率分析 47
4.1.2 工作壓力以及濺鍍功率對Ta2O5薄膜之XRD繞射分析 50
4.1.3 不同濺鍍功率及工作壓力在相同退火溫度XRD結構分析 53
4.1.4 鍍膜晶體微結構分析 59
4.1.5 不同濺鍍功率及工作壓力在相同退火溫度下表面形態探討 61
4.2 薄膜成分及表面化學鍵結鑑定 76
4.2.1 初鍍及退火處理後之Ta2O5薄膜之化學鍵結鑑定 76
4.3 Ta2O5 光觸媒之化學性質 86
4.3.1 光催化活性分析 86
4.3.2 亞甲基藍水溶液檢量線 86
4.3.3 照射紫外光時間以及濺射功率對光催化亞甲基藍的比較 87
4.3.4 光致親水性分析 98
4.3.5 硝酸銀還原測試 101
第5章 結論 103
參考文獻 104
K. H. A. Fujishima, Electrochemical photocatalysis of water at a Semiconductor Electrode, Nature, 238, 37, (1972).

經濟部工業局, 高級氧化程序在廢水處理上的應用, 61, (1994)

T. Ibusuki and K. Takeuchi, Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis, Journal of Molecular Catalysis 88, 93, (1994).

R. W. Mattews, Hydroxylation reaction induced by near-ultra-violet photolysis of
aqueous titanium dioxide suspension, J Chem Scoiety, 80, 457, (1998).

A. F. K. H. R Wang, A. kitamura, M. Shimohigoshi, and T. Watanabe, Light-Induced amphiphilic surfaces, Nature, 388, 431, (1997).

K. H. A. Fujishima and T. Watanab, TiO2 Photocatalyst for environmental cleaning, 6, (1997)

Y. Bessekhouad, D. Robert, and J.V. Weber, Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions, Catalysis Today, 101, 315, (2005).

G. Marcı, V. Augugliaro, M. J. L. Munoz, CMartı′n, L. Palmisano, V. M.Schiavello, R. J. D. Tilley, and A. M. Venezia, Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 Systems. 2. Surface, bulk characterization, and 4-Nitrophenol photodegradation in liquid-solid regime J. Phys. Chem. B., 105, 1033, (2001).

H. Tada, Z. M. Yamamoto, and S. Ito, MgOx submonolayer formation on TiO2 and it’s Effect on the photocatalytic oxidation of sodium dodecylbenzenesulfonate, Journal of The Electrochemical Society, 147, 613, (2000).

I. Shiyanovskaya and M. Hepel, Bicomponent WO3/TiO2 films as photoelectrodes, Journal of the Electrochemical Society, 146, 243, (1999).

N. Serpone, P. Marthamuthu, P. Pichat, E. Pelizzetti and H. Hidaka, Size Effects on the Photophysical Properties of Colloidal Anatase Ti02 Particles: Size Quantization or Direct Transitions in This Indirect Semiconductor? Journal of Photochemistry and Photobiology A: Chemistry, 85, 3, (1995).

J. Shang, W.Q. Yao, Y. F. Zhu, and N. Z. Wu, Structure and photocatalytic
performances of glass/SnO2/TiO2 interface composite film, Applied Catalysis a-General, 257, 25, (2004).

B. Liu, X. Zhao, N. Zhang, Q. Zhao, X. He, and J. Feng, Photocatalytic mechanism of TiO2–CeO2 films preparedby magnetron sputtering under UV and visible light, Surface Science, 595, 203, (2005).

N. Kanai, T. Nuida, K. Ueta, K. Hashimoto, T. Watanabe and H. Ohsaki, Photocatalytic Efficiency of TiO2/SnO2 thin film stacksprepared by DC magnetron sputtering, Vacuum, 74, 723, (2004).

M. G. Kang, H. E. Han and K. J. K. Enhanced, photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 125, 119, (1999).

Y. Zhu, F. Yu, Y. Man, Q. Tian, Y. He and N. Wu, Preparation and performances of nanosized Ta2O5 powder photocatalyst, Journal of Solid State Chemistry, 178, 224, (2005).

T. Murase, H. Irie, and K. Hashimoto, Visible Light Sensitive Photocatalysts, Nitrogen-Doped Ta2O5 Powders, J. Phys. Chem. B, 108, 15803, (2004).

Z. G Zou, J. H. Ye, K Sayama, and H Arakawa, Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 ( M = Mn, Fe, Co, Ni and Cu ) photocatalysts, Journal of Photochemistry and Photobiology A: Chemistry, 148, 65, (2002).

X. Yang, L. Xua, X. Yu, W. Li, K. Li, and M. Huob, Yihang Guoa, Enhanced photocatalytic activity of Eu2O3/Ta2O5 mixed oxidesColloids on degradation of rhodamine B and 4-nitrophenol, Surfaces A: Physicochem. Eng, (2008).

A. Y. Mao, K. A. Son, D. A. Hess, L. A. Brown, J. M. Whitea, D. L. Kwong, D. A. Roberts, and R. N. Vrtis, Annealing ultra thin Ta2O5 films deposited on bare and nitrogen passivated Si(100), Thin Solid Films, 349, 230, (1999).
S. Boughaba, M. U. Islam, G. I. Sproule, and M. J. Graham, Characterization of tantalum oxide films grown by pulsed laser deposition, Surface and Coatings Technology, 757, (1999).

S. G. Yoona, H. K. Kimb, M. J. Kim, H. M. Lee, and D. H. Yoona, Effect of substrate temperature on surface roughness and optical properties of Ta2O5 using ion-beam sputtering, Thin Solid Films, 475, 239, (2005).

P. J. BECKAGE, D. B. KNORR, X. M. WU, T. M. LU, and E. J. Rymaszewski, Discrete β-Ta2O5 crystallite formation in reactively sputtered amorphous thin film, Journal of Materials Science 33, 4375, (1998).

Z. firiou, J. Dubien, J Zepp, and R. G. Zika, Photochemistry of Natural Waters, Environmental Science and Technology , 18, 12, (1995).

M. I. Litter, Review Heterogeneous photocatalysis transition metal ions in photocatalytic systems, Applied Catalysis B: Environmental, 23, 89, (1999).

S. C. Lo, C. F. Lin, C. H. Wub, and P. H. Hsieh, Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chlorophenol, Journal of Hazardous Materials B, 114, 183, (2004).

R. P. McHugh, and J. F Manwaring, Advanced oxidation processes for control of Off-Gas emissions from VOC stripping, American Water Works Association, (1989).

胡振國譯,半導體原件-物理與技術,全華圖書公司,(1989)

W. Stumn, Chemistry of the Solid-Water Interface, John Wiley & Sons,New York (1992).

H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian and M. Anpo ,Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2, Catalysis Today, 84, 191, (2003).

C. He, Y. Yu, X. Hu, and A. Larbot, Influence of silver doping on the photocatalytic activity of titania films, Applied Surface Science, 200, 239, (2002).

A. T. W. Choi and Hoffmann, The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, Journal of Physical Chemistry B, 98, 13669, (1994).

G. Zhao, H. Kozuka, H. Lin, and T. Yoko, Sol-gel preparation of Ti1−xVxO2 solid solution film electrodes with conspicuous photoresponse in the visible region, Thin Solid Films, 339, 123, (1999)

R. Michael, Hoffmann, S. T. Martin, W. Choi, and W. D. Bahneman, Environmental Applications of Semiconductor Photocatalysis, Chem.Rev., 95, 69, (1995).

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-LightPhotocatalysis in Nitrogen-Doped Titanium Oxides, Science, 295, (2001).

O. Diwald, T. L. Thompson, E. G. Goralski, S. D. Walck, and J. T. Yates, The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile Single Crystals, J. Phys. Chem. B, 108 (1), 52, (2004).

M. S. Wong, H. P. Chou, and T. S. Yang, Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst, Thin Solid Films 494, 244, (2006).

T. Miyagi, M. Kamei, T. Mitsuhashi, T. Ishigaki, and A. Yamazaki, Charge separation at the rutile/anatase interface: a dominant factor of photocatalytic activity, Chemical Physics Letters, 390, 399, (2004).

N. Spanos, I. Georgiadou, and A. Lycourghiotis ,Investigation of Rutile, Anatase, and Industrial Titania/Water Solution Interfaces using Potentiometric Titration and Microelectrophoresis, Journal of colloid and interface science,172, 374, (1995).

L. Miao, P. Jin, K. Kaneko, A. Terai, N. N. Gabain, and S. Tanemura, Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering, Applied Surface Science, 212, 255, (2003).

B. Sun and P. G. Smirniotis, Interaction of anatase and rutile TiO2 particles in aqueous photooxidation, catalysis, 88, 49, (2003).

D. Beydoun, R. Amal, G. Low, and S. McEvoy, Role of nanoparticles in photocatalysis, Journal of Nanoparticle Research, 1, 439, (1999).

J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, and W. K. Ho, The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition, J. Phys. Chem. B, 107, 13871, (2003).

J. Yu, C. Y. Jimmy, M. K. P. Leun, W. Ho, B. Cheng, X. Zhao, and J. Zhao, Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania, Journal of Catalysis, 217, 69, (2003).

W. Ho, J. C. Yuand, S. Lee, Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity, Journal of Solid State Chemistry, 179, 1171, (2006).

A. Mills and S. L. Hunte, An overview of semiconductor photocatalysis,Journal of Photochemistry and Photobiology, A:Chemistry 108, 1, (1997).

M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis,Chem. Rev., 20, 69, (1995).

G. Balasubramanian, D. D. Dionysiou, M. T. Suidan, I. Baudinand, J. M. Laîné, Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water, Applied Catalysis B: Environmental, 47, 73, (2004).

劉鴻, 博士論文, 杭州, 浙江大學, (1999)

T. E. Weirich, M. Winterer, S. Seifried, H. Hahn and H. Fuess, Rietveld analysis of electron powder diffraction data from nanocrystalline anatase,TiO2, Ultramicroscopy, 81, 263, (2000).

J. Muscat, N. M. Harrison and G. Thornton, First-principles study of potassium adsorption on TiO2 surface, Physical Review B, 59, 2310, (1999).

丁訓,祖庸,李曉娥,奈米TiO2 表面改性,化工進展, 19, 67, (2000).

T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi,A. Fujishimab, K. Hashimoto, Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Thin Solid Films, 351, 260, (1999).

X. T. Zhaoa, K. Sakkaa, N. Kiharaa, Y. Takadab, and M. M. Aritaa, Structure and photo-induced features of TiO2 thin films prepared by RF magnetron sputtering, Microelectronics Journal, 36, 549,(2005).

K. H. A. Fujishima, and T. Watanabe, TiO2 photocatalysis fundamentals and application, 1st edition, BKC Inc, (1999).

U. Diebold, The surface science of titanium dioxide, Surface Science Reports, 229, 48, (2003).

E. Atanassova, D. Spassov, A. Paskaleva, Effect of the Metal Electrode on the Characteristics of Ta2O5 Capacitors for DRAM Applications, IEEE,14, 543 (2006).

Q. Lu,D. Park,A. K. King, T. J. Cheng, and C. Cheng, Transistor characteristics with Ta2O5 gatedielectric, IEEE Electron Device Letters, 19, 341, (1998).

D. L. Perry and S. L. Philips, Handbook of Inorganic Compounds, Boca Raton, New York, (1995).

G. V. Samsonov, The Oxide Handbook, New York : IFI, (1973).

N. C. Sterphenson and R. S. Roth, Ischemia-Reperfusion Injury in Skeletal Muscle: CD18-Dependent Neutrophil-Endothelial Adhesion and Arteriolar Vasoconstriction, Acta Crystallographica. Sec. B., 27, 1037, (1971).

A. Fukumoto and K. Miwa, Prediction of hexagonal Ta2O5 structure by first-principles calculations,Physical Review. B. Solid State, 55, 11155, (1997).

T. B. Massalski, Binary Alloy Phase Diagrams, 1, 2921, (1986).

T. Sreethawong, S. Ngamsinlapasathian,Y. Suzuki, S. Yoshikawa, Nanocrystalline mesoporous Ta2O5-based photocatalysts prepared by surfactant-assisted templating sol–gel process for photocatalytic H2 evolution, Journal of Molecular Catalysis A: Chemical, 235, 1, (2005).

M. R. Mohammadia, D. J. Fray, S. K. Sadrnezhaad, A. Mohammadi, A simple particulate sol–gel route to synthesize nanostructural TiO2–Ta2O5 binary oxides and their characteristics , Materials Science and Engineering, 142, 16, (2007).

J. Robertson, Electronic structure and band offsets of high-dielectric-constant gate oxides, MRS Bulletin Mar, 27, 217 (2002).

Y. Takahara, J. N. Kondo, D. Lu, and K. Domen, Synthesis and application for overall water splitting of transition metal-mixed mesoporous Ta oxid, Solid State Ionics 151, 305, (2002).

Wang. R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, and T. Watanabe, Light-induced amphiphilic Surfaces., Nature 388(6641), 431, (1997).

A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1, (2000).

T. Watanabea, A. Nakajimaa, R. Wang, M. Minabe, S. Koizumi, A. Fujishimab, and K. Hashimoto, Photocatalytic activity and photoinduced hydrophilicity of titaniumdioxide coated glass, Thin Solid Films, 351, 260,(1999).

B. Chapman, Glow Discharge Processes, John Wiley & Sons Inc., N.Y., 2, 21, (1999).

Q. Zhang and L. Gao, Ta3N5 Nanoparticles with Enhanced Photocatalytic Efficiency under Visible Light Irradiation, Langmuir, 20, 9821, (2004).

H. Kominami, M. Miyakawa, S. Y. Murakami, T. Yasuda, M. Kohno, S. I. Onoue, Y. Kera, and Bunsho Ohtani, Solvothermal synthesis of tantalum(V) oxide nanoparticles and theirphotocatalytic activities in aqueous suspension systems, Phys. Chem. Chem., 3, 2697, (2001).

S. R. Jeon, S. W. Han, and J. W. Park, Effect of rapid thermal annealing treatment on electrical properties and nkrostructure of tantalum oxide thin film deposited by plasma-enhanced chemical vapor deposition, J.Appl. Phys.,77, 11, (1995).

H. Kominami, MegumiMiyakawa, S. Y. Murakami, T. Yasuda, M. Kohno, S. I. Onoue, Y. Kera, and B. Ohtani, Solvothermal synthesis of tantalum(V) oxide nanoparticles and theirphotocatalytic activities in aqueous suspension systems, Phys. Chem. Chem. 3, 2697, (2001).

V. Gupta, Effect of post deposition annealing on sputtered zinc oxide film, IEEE, 508, (1995).

A. Amaral, P. Brogueira, C. Nunes de Carvalho, and G. Lavareda, Early stage growth structure of indium tin oxide thin films deposited by reactive thermal evaporation, Surface and Coatings Technology, 125, 151, (2000).

H. Kim, J. S. Horwitz, G. Kushto, A. Pique , Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, Effect of film thickness on the properties of indium tin oxide thin films, J. Appl. Phys, 88, 6021, (2000).

J. H. Kim, K. A. Jeon, G. H. Kim, and S. Y. Lee, Electrical, structure, and optical properties of ITO thin films prepared at room temperature by pulsed laser deposition, Applied Surface Science, 252, 13, (2006).

R. W. M. K.work, XPSPEAK 4.0, Department of Chemistry, The Chinese University of Hong Kong.

M. Repoux, Comparison of Background Removal Methods for XPS, Surf. Interface Anel., 18, 567 (1992).

J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy.

E. Atanassova, D. Spassov, X-ray photoelectron spectroscopy of thermal thin Ta2O5 films on Si, Applied Surface Science, 71, 135, (1998).

Y. KuO , J. Electrochem. Soc. 139, 579, (1992).

L. Chen, R. W. Hoffman, Angle-resolved x-ray photoelectron spectroscopy method for the thickness measurement of metal oxide/metal ultrathin films, J. Vac. Sci. Technol., 11, 2303, (1993).

E. Atanassova, T. Dimitrova, and J. Koprinarova, AES and XPS study of thin RF-sputtered Ta2O5 layers , Appl. Surf. Sci. 84, 193, (1995).

A. Muto, F. Yano, Y. Sugawara, and S. Iijima, The Study of Ultrathin Tantalum Oxide Films bEfore and after Annealing with X-Ray Photoelectron Spectroscopy, Jpn. J. Appl. Phys. 33, 2699, (1994).

C. Chaneliere, S. Four, J. L. Autran, and R. A. B. Devine, Comparison between the Properties of amorphous and crystalline Ta2O5 thin films deposited on Si, Microelectronics Reliability. 39, 261, (1999).

汪建民(編),材料分析, Materail Analysis. (中國材料科學學會, 民國93年).

P. Zeman, S Takabayashi, Surf Tech. 15, 393, (2002).

P. K. Song, Y. Irie, Y. Sato, and Y. Shigesato, Crystal Structure and Photocatalytic Activity of TiO2 Films Deposited by Reactive Sputtering Using Ne, Ar, Kr, or Xe Gases, Japanese Journal of Applied Physics,43,(2004).

X. P. Wang, Y. Yu, X. F. Hu, L. Gao, Hydrophilicity of TiO2 films prepared by liquid phase deposition, Thin Solid Films, 371, 148, (2000).

J. Yu, X. Zhao, Effect of Surface treatment on the photocatalytic activity and hydrophilic of the sol-gel derived TiO2 thin films, Materials Research Bulletin, 36, 97, (2001).

X. T. Zhao, K. Sakka, N. Kihara, Y. Takata, M. Arita, and M. Masuda, Hydrophilicity of TiO2 thin films obtained by RF magnetron sputtering deposition, Current Applied Physics, 6, 931, (2006).

C. H. Heo, S. B. Lee, J. H. Boo, Deposition of TiO2 thin films using RF magnetron sputtering methodand study of their surface characteristics, Thin Solid Films, 475, 183, (2005).

M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev. 20, 69, (1995).

Z. W. Zhao .B. K. Tay, Study of nanocrystal TiO2 thin films by thermal annealing, Jounal of Electroceram, 16, 489,(2006).

T. Miyagi, M. Kamei, T. Mitsuhashi, T. Ishigaki, and A. Yamazaki, Charge separation at the rutile/anatase interface: a dominant factor of photocatalytic activity, Chemical Physics Letters, 390, 399, (2004).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top