1. J. E. Hatch(Ed.), “Aluminum: properties and physical metallurgy”, Metals Park, Ohio: American Society for Metals, (1984).
2. I. J. Polmear, “Light alloys metallurgy of the light metals, 2nd ed.”, Edward Arnold, London, England, (1989), 15-123.
3. L. F. Mondolfo, “Aluminum alloys structure & properties”, Butterworth’s Ltd., (1976), 806-840.
4. J. R. Davis, “Aluminum and aluminum alloys”, ASM Specialty Handbook, ASM International, (1993).
5. 劉文海,『鋁合金車體及底盤之發展動向』,機械工業雜誌281期,民國95年8月,75-89頁。6. C. J. Daues, W. H. Thomas, “Friction stir process welds aluminum alloys”, Welding Journal, 75, (1996), 41-45.
7. Y. S. Sato, H. Kokawa, “Distribution of tensile property and microstructure in friction stir weld of 6063
aluminum”, Metallurgical and Materials Transactions Series A, 32, (2001), 3023-3031.
8. R. W. Fonda, J. F. Bingert, K. J. Colligan, “Development of grain structure during friction stir welding”, Scripta Materialia, 51, (2004), 243-248.
9. L. Liu, H. Nakayama, S. Fukumoto, A. Yamamoto, H. Tsubakino, “ Microstructural Evolution in Friction Stir Welded 1050 Aluminum and 6061 Aluminum Alloy”, Materials Transactions, 45, (2004), 2665-2668.
10. M. M. Avedesian, H. Baker, “ASM Specialty Handbook- Magnesium and Magnesium Alloys”, ASM, Metals Park, OH, (1999), 13-43.
11. R. S. Mishra, “Friction stir processing technologies”, Advanced Materials and Processes, (2003), 43-46.
12. R. S. Mishra, Z. Y. Ma, “Friction stir welding and processing”, Material Science and Engineering, R50, (2005), 1-78.
13. D. Liang, P. Korgul, H. Jones, “Composition and solidification microstructure selection in the interdendritic matrix between primary Al3Fe dendrites in hypereutectic Al2Fe Alloys” , Acta Materialia, 44, 7, (1996), 2999-3004.
14. J. Q. Su, T. W. Nelson, C. J. Sterling, “Microstructure evolution during FSW/FSP of high strength aluminum alloys”, Materials Science and Engineering A, 405, (2005), 277-286.
15. T. R. McNelley, S. Swaminathan, J. Q. Su, “Recrystallization mechanisms during friction stir welding/processing of aluminum alloys”, Scripta Materialia, 58, (2008), 349-354.
16. W. Wen, J.G. Morris, “An investigation of serrated yielding in 5000 series aluminum alloys”, Materials Science and Engineering A, 354, (2003), 279-285.
17. K. Chihab, H. Ait-Amokhtar, K. Bouabdellah, “Serrated yielding due to Protevin-LeChatelier effect in commercial Al-Mg alloys”, Annales de Chimie Science des Materiaux, 27, (2002), 69-75.
18. F. B. Klose, F. Hagemann, P. Hahner, H. Neuhauser, “Investigation of the Portevin-LeChâtelier effect in Al-3wt.%Mg alloys by strain-rate and stress-rate controlled tensile tests”, Materials Science & Engineering A, 387-389 , (2004), 93-97.
19. N. Ranc, D. Wagner, “Experimental study by pyrometry of Portevin-LeChatelier plastic instabilities—Type A to type B transition”, Materials Science and Engineering A, 474, (2008), 188-196.
20. E. Pink, A. Grinberg, “Stress drop in serrated flow curves of Al-5Mg”, Acta Materialia, 30, (1982), 2153-2163.
21. W. Wen, Y. Zhao, J. G. Morris, “The effect of Mg precipitation on the mechanical properties of 5xxx aluminum alloys”, Materails Science and Engineering A, 392, (2005), 136-144.
22. E. Pink, S. Kumar, B. Tian, “serrated flow of aluminium alloys influenced by precipitates”, Materails Science and Engineering A, 280, (2000), 17-24.
23. W. Wen, J. G. Morris, “An investigation of serrated yielding in 5000 series aluminum alloys”, Materials Science & Engineering A, 354, (2003), 279-285.
24. M. Wagenhofer, M. A. Erickson-Natishan, R. W. Armstrong, F. J. Zerilli, “Influences of strain rate and grain size on yield and serrated flow in commercial Al-Mg alloy 5086”, Scripta Materialia, 41, 11, (1999), 1177-1184.
25. D. Thevent, M. Mliha-Touati, A. Zeghloul, “The effect of precipitation on the Portevin-LeChatelier effect in an Al-Zn-Mg-Cu alloy”, Materials Science and Engineering A, 266, (1999), 175-182.
26. H. Dierke, F. Krawehl, S. Graff, S. Forest, J. Sachl, H. Neuhauser, “Portevin – LeChatelier effect in Al-Mg alloys: influence of obstacles – experiments and modellings”, Computational Materials Science, 39, (2007), 106-112.
27. S. Gourdet, F. Montheillet, “An experimental study of the recrystallization mechanism during hot deformation of aluminum”, Materials Science and Engineering A, 283, (2000), 274-288.
28. D. Liang, H. Jones, “Morphologies of primary Al3Fe in bridgman solidification and TIG weld traversing of hypereutectic Al-Fe alloys”, Materials Science and Engineering A, 173, (1993), 109-114.
29. A. Bussiba, A. B. Artyz, A. Shtechman, Sifergan and M. Kupiec, “Grain Refinement of AZ31 and ZK60 Mg Alloys-Towards Superplasticity Studies”, Materials Science and Engineering A, 302, (2001), 56-62.
30. H. J. McQueen, C. A. C. Imbert, “Dynamic recrystallization: plasticity enhancing structural development”, Journal of Alloys and Compounds, 378, (2004), 35-43.
31. 林春億, 『摩擦攪拌製程對5083鋁合金等軸晶鑄造材顯微組織與拉伸性質之影響』,國立成功大學 材料及工程學系,碩士論文,民國九十五年。32. Y. S. Sato, S. H. C. Park, H. Kokawa, “Microstructural factors governing hardness in friction-stir welds of solid-solution-hardnened Al alloys”, Metallurgical and Materials Transactions A, 32, (2001), 3033-3042.
33. 黃國聰,『鋁-鎂合金拉伸與振動破壞特性之摩擦攪拌效應研究』,國立成功大學材料及工程學系, 博士論文,民國九十七年。34. R. E. Reed-Hill, R. Abbaschian, “Physical Metallurgy Principles”, Chapter 9.15, (1994), 294.
35. A. van den Beukel, “The Influence of static and dynamic strain ageing on the temperature dependence of the flow stress in solid solutions”, Scripta Metallurgica et Materiala, (1983), 659-663.
36. H. J. McQueen, “Development of dynamic recrystallization theory”, Materails Science and Engineering A, 387-389, (2004), 203-208.
37. A. Yanagida, J. Yanagimoto, “A novel approach to determin the kinetics for dynamic recrystallization by using the flow curve”, Journal of Materials Processing Technology, 151, (2004), 33-38.
38. J. R. Cho, W. B. Bae, W. J. Hwang, P. Hartley, “A study on the hot-deformation behavior and dynamic recrystallization of Al-5 wt. %Mg alloy”, Journal of Materials Processing Technology, 118, (2001), 356-361.
39. H. E. Hu, L. Zhen, L. Yang, W. Z. Shao, B.Y. Zhang, “Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation”, Materials Science and Engineering A, 488, (2008), 64-71.
40. 李信委,『AZ31B鎂合金室溫至500℃之拉伸性質與其變形組織探討』,國立成功大學材料及工程 學系,碩士論文,民國九十年。41. R. Kaibyshev, O. Stidikov, “Dynamic Recrstallization of Magnesium at Ambient temperature”, 85, (1994), 738-743.
42. 蕭一清,『5083鋁合金低溫超塑性研發與變形機構分析』,國立中山大學材料及工程研究所,博士 論文,民國九十年。