跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顧志峰
研究生(外文):Chih-Feng Ku
論文名稱:Sn-xAg-0.5Cu無鉛銲錫合金之拉伸變形行為與振動破壞特性研究
論文名稱(外文):The Behavior of Tensile Deformation and Vibration Fracture Characteristics of Sn-xAg-0.5Cu Lead-Free Solders
指導教授:呂傳盛呂傳盛引用關係陳立輝陳立輝引用關係
指導教授(外文):Truan-Sheng LuiLi-Hui Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:73
中文關鍵詞:銲錫
外文關鍵詞:solder
相關次數:
  • 被引用被引用:1
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
由於銲錫材料在使用過程中可能會遭受到外力而產生破壞,故研究銲錫材料之機械性質與耐破壞性質十分值得探討,本研究目的為探討Ag含量對Sn-xAg-Cu銲錫合金之拉伸機械性質與振動破壞特性之影響。
Sn-xAg-Cu銲錫合金之微觀組織觀察可分為初晶Sn相與共晶區,共晶區中包含Sn基地與金屬間化合物,透過EDS(energy distribution spectrum)可知分布於共晶區中之金屬間化合物為針棒狀之Ag3Sn與圓棒狀之Cu6Sn5。本實驗材料當Ag含量上升後可發現共晶區之面積率上升,其會影響拉伸機械性質與振動破壞特性。
由拉伸試驗可知當Ag含量上升時其UTS(ultimate tensile strength)與YS(yield strength)隨之上升;當應變速率上升時,其UTS與YS也隨之上升。整體而言,TE(total elongation)之表現平均有40%以上之應變量,在UE(uniform elongation)部分,則以SAC105大於另兩者,也代表著其在不均勻變形之前能承受較大之應變量。另外,在本實驗拉伸試驗後之微觀組織觀察中可清楚觀察到動態再結晶存在的現象,其影響了材料軟化程度,當Ag含量越低時,工程應力-應變曲線在過UTS之後應力下降更為緩慢,即動態再結晶程度越高。
觀察振動試片中之微裂縫走向,可知裂縫受共晶區中之IMC(intermetallic compounds)所影響,誘使裂縫沿初晶Sn相與共晶區之相界行走。於相同出力值之振動試驗中知制振性SAC105>SAC205>SAC305,其原因受密度、彈性係數、層狀變形、內摩擦等因素所影響;而在相等初始偏移量之振動試驗中可知,裂縫阻抗能力SAC205>SAC305>SAC105,原因包含裂縫轉折度、裂縫分歧度等。
It is worthwhile to study the mechanical properties and the fracture resistance of solders, because the solder may fracture by external forces during application. In this study, the effects of Sn-xAg-Cu (x=1,2,3) solders in different Ag addition on tensile and vibrational properties is discussed.
The Sn-xAg-Cu solder alloy can be divided into the primary β-Sn and the eutectic phase according to the observation of microstructure. The intermetallic compound (needle-like Ag3Sn and column-like Cu6Sn5 observed by EDS) and Sn matrix are distributed over the eutectic phase. The eutectic phase area affected the tensile and vibrational properties would increase with the increasing of the Ag content.
According to tensile test, the YS and UTS rose when more Ag is added as well as the strain rate is increased. And the TE are all around 40%, while SAC105 performs the best UE of the three. It will be safe to say that the SAC105 can bear more strain before the non-uniform deformation occurs, On the other hand, after tensile test, the microstructures of samples clearly show that the dynamic recrystallization (DRX) does exist, which affects the degree of material softening. As the Ag content decreases, the engineering stress-strain curve drops more slowly after passing UTS, that is to say, the DRX degree increases.
To observe the micro-cracks on the specimens after vibrational test, we can find that cracks are affected by the intermetallic compound of eutectic area. The IMC will induce cracks propagate along the phase boundaries between β-Sn and eutectic area. The damping capacity of the vibration tests under constant force is SAC105>SAC305>SAC205, while is affected by density, elastic modulus, striated deformation and inner friction. When the vibration tests are operated under constant deflection amplitude, we know the crack resistance is SAC205>SAC305>SAC105. The results affected by the degree of crack branching and the degree of crack transition.
第一章 前言 1
第二章 文獻回顧 3
2-1 無鉛銲錫與軟銲技術介紹 3
2-2 Sn-Ag-Cu銲錫合金 3
2-3 拉伸性質與動態再結晶 4
2-4 振動性質 5
2-4-1 共振頻率(resonant frequency) 5
2-4-2 阻泥與制振性 5
2-4-3 D-N曲線與共振壽命 6
2-4-4 振動破壞性質 7
2-4-5 研究現況 7
第三章 實驗方法 13
3-1 研究架構 13
3-2 合金澆鑄 13
3-3 金相觀察 13
3-4 拉伸破斷試驗 13
3-4-1 試片製備 13
3-4-2 不同應變速率之拉伸破斷試驗 14
3-5 振動破壞試驗 14
3-5-1 試片規格與振動設備 14
3-5-2 共振頻率 14
3-5-3 不同銀含量之振動疲勞測試 15
第四章 實驗結果 22
4-1 微觀組織 22
4-1-1 OM 22
4-1-2 EPMA 22
4-2 拉伸試驗 22
4-2-1 拉伸機械性質 22
4-2-2 拉伸破斷之次表面觀察 23
4-2-3 加工硬化率 23
4-2-4 拉伸破斷韌性 23
4-2-5 流變應力差值 24
4-3 振動破壞試驗 24
4-3-1 振動破壞次表面微觀組織 24
4-3-2 D-N曲線 25
4-3-3 共振壽命 25
第五章 討論 51
5-1 Ag含量與應變速率對拉伸機械性質影響 51
5-2 動態再結晶與拉伸機械性質 51
5-2-1 動態再結晶 51
5-2-2 Ag含量與應變速率對動態再結晶影響 52
5-3 Ag含量對振動破壞特性影響 52
5-3-1 制振性 52
5-3-2 裂縫傳播阻抗 53
5-4 拉伸與振動試驗之綜合探討 54
第六章 結論 63
參考資料 65
1.D. Q. Yu, J. Zhao and L. Wang, Journal of Alloys and Compounds, pp. 170-175, 2004.
2.B. Salam, C. Virseda, H. Da, N. N. Ekere and R. Durairaj, Soldering and Surface Mount Technology, vol. 16, no.1, pp. 23-27, 2004.
3.I. Shohji, S. Tsunoda, H. Watanabe, T. Asai and M. Nagano, Materials Transactions, vol. 46, no.12, pp.2737-2744, 2005.
4.J. M. Song, G. F. Lan, T. S. Lui and L. H. Chen, Scripta Materialia, vol. 48, pp.1047-1051, 2003.
5.C. M. L. Wu, C. M. T. Law, D. Q. Yu and L. Wang, Electronic Materials, vol. 32 , no.2, pp. 63-69, 2003.
6.Q. J. Yang, H. L. J. Pang, Z. p. Wang, G. H. Lim, F. F. Yap and R. M. Lin, “Vibration Reliability Characterization of PBGA Assemblies”, Microelectronic Reliability, vol. 40, pp. 1097-1107, 2000.
7.黃頌閔,「不同迴銲條件之Sn-Ag-Cu無鉛錫球接合推剪阻抗之韋伯分析」,國立成功大學材料科學及工程學系,碩士論文,民國九十五年。
8.S. M. McGuire, M. E. Fine and J. D. Achenbach, “Crack Detection by Resonant Frequency Measurements”, Metallurgical & Materials Transactions, vol. 26, pp. 1123-1127, 1995.
9.Clifford L. Barber,「銲錫:基本與應用」,協志工業叢書,38,1-2頁,民國74年。
10.W. J. Plumbridge, “Review Solders in Electronic”, Journal of Materials Science, vol. 31, pp. 2501-2514, 1996.
11.Boyer and T.L. Gall, Metals Handbook, ASM, Desk Edition, Chap. vol. 30, pp.73-76, 1985.
12.S. Vaynman and M. E. Fine, “Development of Fluxes for Lead-Free Solders Containing Zinc”, Scripta Materialia, vol. 41, no. 12, pp. 1269-1271, 1999.
13.M. McCormack, S. Jin and G. W. Kammlott, “Suppression of Microstructural Coarsening and Creep Deformation in a Lead-Free Solder”, American Institute of Physics, vol. 64, pp. 580-582, 1994.
14.P. T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing”, Journal of Alloys, vol. 45, pp. 14-19, 1993.
15.M. N. Islam, Y. C. Chan, M. J. Rizvi and W. Jillek, “Investigation of Interfacial Reactions of Sn-Zn Based and Sn-Ag-Cu Lead-Free Solder Alloys as Replacement for Sn-Pb Solder”, Journal of Alloys and Compounds, vol. 400, pp. 136-144, 2005.
16.N. C. Lee, “Getting Ready for Lead Free Solders”, Surface Mount Technology, no. 26, pp. 65-73, 1997.
17.李芳儀,「銅含量對Sn-Ag-Cu無鉛銲錫振動破壞特性之效應」,國立成功大學材料科學及工程學系,碩士論文,民國九十二年。
18.“Maters Handbook Vol.8 Metallography, Structures and Phase Digrams”, Ed. T. Lyman, H. E. Bouer, W. J. Carnes, ASM Metals Park, Ohio, USA, pp. 256.
19.C. M. Chung, T. S. Lui and L. H. Chen, “Effect of Aluminum Addition on Tensile Properties of Naturally Aging Sn-9Zn Eutectic Solder”, Journal Materials Science, no. 37, pp. 191-195, 2002.
20.M. Mccormack, S. Jin, H. S. Chen and D. A. Machusak, “New Lead-Free Sn-Zn-In Solder Alloys”, Journal of Electronic Materials, no. 123, pp. 687-690, 1994.
21.A. Hirose, H. Yanagawa, E. Ide and K. F. Kobayashi, “Joint Strength and Interfacial Microstructure between Sn-Ag-Cu and Sn-Zn-Bi Solders and Cu Substrate”, Science and Technology of Advanced Materials, vol. 5, pp. 267-276, 2004.
22.D. Suh and D. W. Kim,“Effects of Ag Content on Fracture Resistance of Sn–Ag–Cu Lead-Free Solders under High-Strain Rate Conditions”, Material Science and Engineering, pp. 595-603, 2007.
23.S. L. Allen, M. R. Notis, R. R. Chromik and R. P. Vinci, “Microstructural Evolution in Lead-Free Solder Alloys: Part II. Directionally Solidified Sn-Ag-Cu, Sn-Cu and Sn-Ag”, Journal of Materials Research, vol. 19, pp. 1425-1431, 2004.
24.X. Deng, N. Chawla, K. K. Chawla and M. Koopman, “Deformation Behavior of (Cu,Ag)-Sn Intermetallics by Nanoindetation”, Acta Materialia, no. 52, pp. 4291-4303, 2004.
25.S. L. Allen, M. R. Notis, R. R. Chromik and R. P. Vinci, “Microstructural Evolution in Lead-Free Solder Alloys: Part I. Cast Sn-Ag-Cu eutectic”, Journal of Materials Research, vol. 19, pp. 1417-1424, 2004.
26.F. Zhu, H. Zhang, R. Guan and S. Liu, “Effects of Temperature and Strain Rate on Mechanical Property of Sn96.5Ag3Cu0.5”, Journal of Alloys and Compounds, vol. 438, pp. 100-105, 2007.
27.詹承偉,「Sn-3.0Ag-0.5Cu-xNi 無鉛銲錫合金拉伸及振動破壞特性之研究」,國立成功大學材料科學及工程學系,碩士論文,民國九十六年。
28.J. C. Tan, M. J. Tan, “Dynamic Continuous Recrystallization Characteristics in Two Stage Deformation of Mg-3Al-1Zn Alloy Sheet”, Materials Science and Engineering, vol. 339, pp. 124-132, 2003.
29.A. L. Etter, T. Baudin, N. Fredj, R. Penelle, “Recrystallization Mechanisms in 5251 H14 and 5251 O Aluminum Friction Stir Welds”, Materials Science and Engineering, pp. 94-99, 2007.
30.K. Ihara and Y. Miura, “Dynamic Recrystallization in Al-Mg-Sc Alloys”, Materials Science and Engineering, pp. 647-650, 2004.
31.H. Miura, M. Ozama, R. Mogawa, and T. Sakai, “Strain-Rate Effect on Dynamic Recrystallization at Grain Boundary in Cu Alloy Bicrystal”, Scripta Materialia, vol. 48, pp. 1501-1505, 2003.
32.J. H. Jun, K. D. Seong, J. M. Kim, K. T. Kim and W. J. Jung, “Strain-Induced Microstructural Evolution and Worksoftening Behavior of Zn-15% Al Alloy”, Journal of Alloys and Compounds, pp 311-314, 2007.
33.J Hu and D Lin, “Superplasticity of Single-Phase Ni–48Al Intermetallics with Large Grains”, Materials Letters, vol. 58, pp. 1297-1301, 2004.
34.J. Zhao, Y. Miyashita and Y. Mutoh, “Fatigue Crack Growth Behavior of 95Pb-5Sn Solder under Various Stress Ratios and Frequencies”, International Journal of Fatigue, vol. 22, pp. 665-673, 2000.
35.K. S. Kim, S. H. Huh and K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys”, Materials Science and Engineering, vol. 333, pp. 106-114, 2002.
36.Y. Ding, C. Wang, Y. Tian and M. Li, “Influence of Aging Treatment on Deformation Behavior of 96.5Sn3.5Ag Lead-Free Solder Aalloy During in Situ Tensile Tests”, Journal of Alloys and Compounds, vol. 428, pp. 274-285, 2007.
37.K. S. Kim, S. H. Huh, K. Suganuma, “Effects of Fourth Alloying Additive on Microstructures and Tensile Properties of Sn-Ag-Cu Alloy and Joints with Cu”, Microelectronics Reliability, vol. 43, pp. 259-267, 2003.
38.T. C. Hsuan and K. L. Lin, “Effects of Aging Treatment on Mechanical Properties and Microstructure of Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga Solder”, Materials Science and Engineering, vol. 456, pp. 202-209, 2007.
39.R. Mayappan, A. B. Ismail, Z. A. Ahmad, T. A., and L. B. Hussain, “The Effect of Crosshead Speed on the Joint Strength Between Sn-Zn-Bi Lead-Free Solders and Cu Substrate”, Journal of Alloys and Compounds, vol. 436, pp. 112-117, 2007.
40.Y. S. Kim, K. S. Kim, and C. W. Hwang and K. Suganuma, “Effect of Composition and Cooling Rate on Microstructure and Tensile Properties of Sn-Zn-Bi Alloys”, Journal of Alloys and Compounds, vol. 352, pp. 237-245, 2003.
41.C. Y. Tang, M. Jie, W. Shen and K. C. Yung, “The Degradation of Elastic Proerties of Aluminum Alloy 2024T3 Due to Strain Damage, ” Scripta Metall. Mater., vol. 38, no. 2, pp. 221-238, 1998.
42.S. M. McGuire, M. E. Fine, O. Buck and J. D. Achenbach, “Nondestructive Detection of Fatigue Cracks in PM 304 Stainless Steel by Internal Friction and Elasticity”, J. Mater. Res., vol. 8, pp. 2216-2223, 1993.
43.S. M. McGuire, M. E. Fine and J. D. Achenbach, “Crack Detection by Resonant Frequency Measurements”, Metal. Trans., vol. 26, pp. 1123-1127, 1995.
44.孫慶鴻、張啟軍、姚慧珠,『振動與噪音的阻尼控制』,機械工業出版社,北京,38-57頁,民國81年。
45.A. Granato and K. Lucke, “Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies”, Journal of Applied Physics, vol. 27, pp. 583-593, 1956.
46.S. E. Urreta, D. Pereyrem, A. Ghilarducci, D. Salva and F. Louchet, “Precipitation Internal Friction Peak in Al-Mg-Si”, Physica Status Solidi, vol. 139, pp. 345-360, 1993.
47.J. Zhang, R. J. Perez and E. J. Lavernia, “Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials”, Journal Materials Science, vol. 28, pp. 2395-2404, 1993.
48.R. J. Perez, J. Zhang, M. N. Gungor and E. J. Lavernia, “Damping Behavior of 6061Al/Gr Metal Matrix Composites”, Metallurgical & Materials Transactions, vol. 24, pp. 701-711, 1993.
49.E. J. Lavernia, R. J. Perez and J. Zhang, “Damping Behavior of Discontinuously Reinforced Al Alloy Metal-Matrix Composites”, Metallurgical & Materials Transactions, vol. 26, pp. 2803-2818, 1995.
50.M. Okabe, T. Mori and T. Mura, “Internal Friction Caused by Diffusion Around a Second-Phase Particle Al-Si Alloy”, Philosophical Magazine A, vol. 44, pp. 1-12, 1981.
51.A. Wolfenden, L. S. Cook and J. M. Wolla, “Phase Changes and Damping in Crystalline Materials”, American Society for Testing and Materials Philadelpgia, pp. 124-141, 1992.
52.洪佳和,「亞共晶鋁-矽(-鎂)合金之共振破壞特性及其冶金影響因素之探討」,國立成功大學材料科學及工程學系,博士論文,民國90年。
53.藍國峰,「Sn-Zn-xAg無鉛銲錫合金之振動破壞特性研究」,國立成功大學材料科學及工程學系,碩士論文,民國91年。
54.D. Taylor, “Fatigue Threshold”, Butterworth and Co. Ltd, pp. 71-91, 1989.
55.S. Suresh and Gerberich, “ Fatigue of Materials”, Applied Mechanics Reviews, vol. 45, pp. 291-292, 1992.
56.S. Suresh, “Crack Deflection: Implication for the Growth of Long and Short Fatigue Cracks”, Metallurgical Transactions, vol. 14, pp. 2375-2385, 1983.
57.J. M. Song, J. J. Lin, C. F. Huang and H. Y. Chuang, “Crystallization, Morphology and Distribution of Ag3Sn in Sn-Ag-Cu Alloys and their Influence on the Vibration Fracture Properties”, Materials Science and Engineering, vol. 466, pp. 9-17, 2007.
58.J. Liu, Z. Cui and C. Li, “Modelling of Flow Stress Characterizing Dynamic Recrystallization For Magnesium AlloyAZ31B”, Computational Materials Science, vol. 40, pp. 375-382, 2008.
59.A. Yanagida and J. Yanagimoto, “A Novel Approach to Determine the Kinetics for Dynamic Recrystallization by Using the Flow Curve”, Journal of Materials Processing Technology, vol. 151, pp. 33-38, 2008.
60.Z. Yang, Y. C. Guo, J. P. Li, F. He, F Xia and M. X. Liang, “Plastic Deformation and Dynamic Recrystallization Behaviors of Mg-5Gd-4Y-0.5Zn-0.5Zr Alloy”, Materials Science and Engineering, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊